Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction, Amplification and Sequencing of the ND4 Gene
2.3. Genetic Variations
2.4. Phylogenetic Relationship between Populations
2.5. Population Genetic Structure
3. Results
3.1. Identification and Haplotype Analysis of Mitochondrial ND4 Genes
3.2. Genetic Variability in ND4 Mitochondrial Genes of Aedes aegypti
3.3. Phylogenetic Relationships in Aedes aegypti Subspecies
3.4. Pairwise FST Genetic Variations and Isolation by Distance Results:
3.5. Population Genetics
3.6. Neutrality Test and Natural Selection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salgueiro, P.; Serrano, C.; Gomes, B.; Alves, J.; Sousa, C.; Abecasis, A.; Pinto, J. Phylogeography and invasion history of Aedes aegypti, the dengue and zika mosquito vector in Cape Verde islands (West Africa). Evol. Appl. 2019, 12, 1797–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elduma, A.H.; LaBeaud, A.D.; APlante, J.; Plante, K.S.; Ahmed, A. high seroprevalence of dengue virus infection in Sudan: Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2020, 5, 120. [Google Scholar] [CrossRef] [PubMed]
- Seidahmed, O.M.E.; Siam, H.A.M.; Soghaier, M.A.; Abubakr, M.; Osman, H.A.; Elrhman, L.S.A.; Elmagbol, B.; Velayudhan, R. Dengue vector control and surveillance during a major outbreak in a coastal Red Sea area in Sudan. East Mediterr. Health J. 2012, 18, 8. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Hassan, S.M.; Elrahman, A.H. Climatic factors affecting density of Aedes aegypti (Diptera: Cu-licidae) in Kassala City, Sudan 2014/2015. Aspoloro Biomed. Clin. Case Rep. 2019, 21, 58–68. [Google Scholar]
- Mattingly, P.F. Genetical aspects of the Aedes aegypti problem. Ann. Trop. Med. Parasitol. 1957, 51, 392–408. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti—A review. Memórias Inst. Oswaldo Cruz 2013, 108 (Suppl. S1), 11–17. [Google Scholar] [CrossRef]
- Moore, M.; Sylla, M.; Goss, L.; Burugu, M.W.; Sang, R.; Kamau, L.; Kenya, E.U.; Bosio, C.; Muñoz, M.D.L.; Sharakova, M.; et al. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Neglected Trop. Dis. 2013, 7, e2175. [Google Scholar] [CrossRef] [Green Version]
- Abuelmaali, S.; Jamaluddin, J.; Noaman, K.; Allam, M.; Abushama, H.; Elnaiem, D.; Ishak, I.; Wajidi, M.; Jaal, Z.; Abu Kassim, N. Distribution and genetic diversity of Aedes aegypti subspecies across the Sahelian Belt in Sudan. Pathogens 2021, 10, 78. [Google Scholar] [CrossRef]
- Black, W.C.; Bennett, K.E.; Gorrochótegui-Escalante, N.; Barillas-Mury, C.V.; Fernández-Salas, I.; de Lourdes Muñoz, M.; Farfán-Alé, J.A.; Olson, K.E.; Beaty, B.J. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res. 2002, 33, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Dickson, L.B.; Sanchez-Vargas, I.; Sylla, M.; Fleming, K.; Iv, W.C.B. Vector competence in West African Aedes aegypti is Flavivirus species and genotype dependent. PLoS Neglected Trop. Dis. 2014, 8, e3153. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.E.; McBride, C.S.; Johnson, P.; Ritchie, S.; Paupy, C.; Bossin, H.; Lutomiah, J.; Fernandez-Salas, I.; Ponlawat, A.; Cornel, A.J.; et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. Boil. Sci. 2011, 278, 2446–2454. [Google Scholar]
- Da Costa-Da-Silva, A.L.; Capurro, M.L.; Bracco, J.E. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Memórias Inst. Oswaldo Cruz 2005, 100, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.L.; Torres, M.M.; Torres, R.; Moreno, M. Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and zika. Parasit. Vectors 2018, 11, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnour, M.B.; Moustafa, M.A.M.; Khogali, R.; Azrag, R.S.; Alanazi, A.D.; Kheir, A.; Nakao, R.; De Meeûs, T.; Sal-im, B. Distinct haplotypes and free movement of Aedes aegypti in Port Sudan, Sudan. J. Appl. Entomol. 2020, 144, 817–823. [Google Scholar] [CrossRef]
- Naim, D.M.; Kamal, N.Z.M.; Mahboob, S. Population structure and genetic diversity of Aedes aegypti and Aedes albopictus in Penang as revealed by mitochondrial DNA cytochrome oxidase I. Saudi J. Biol. Sci. 2020, 27, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Twerdochlib, A.L.; Bonna, A.C.D.; Leite, S.S.; Chitolina, R.F.; Westphal, B.; Navarro-Silva, M.A. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev. Bras. de EÈntomol. 2012, 56, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Hebert, P.D.N.; Mirza, J.H.; Khan, A.M.; Zafar, Y.; Mirza, M.S. Analyzing mosquito (Diptera: Culicidae) diversity in Pakistan by DNA Barcoding. PLoS ONE 2014, 9, e97268. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, A.A.; Fraga, E.; Sampaio, I.; Schneider, H.; Barros, M.C. Genetic differentiation in populations of Aedes aegypti (Diptera, Culicidae) dengue vector from the Brazilian state of Maranhão. Rev. Bras. EÈntomol. 2017, 61, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Fraga, E.C.; Oliveira, D.R.S.; Aragao, D.G.; Sampaio, H.S.; Barros, M.C. Genetic variability and evidence of two distinct lineages of Aedes aegypti (Diptera, Culicidae) on São Luís Island in Maranhão, Brazil. Open Trop. Med. J. 2013, 6, 11–18. [Google Scholar] [CrossRef]
- Paupy, C.; Le Goff, G.; Brengues, C.; Guerra, M.; Revollo, J.; Simon, Z.B.; Hervé, J.-P.; Fontenille, D. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect. Genet. Evol. 2012, 12, 1260–1269. [Google Scholar] [CrossRef]
- Paupy, C.; Fontenille, D.; Simard, F.D.R. Gene flow between domestic and sylvan populations of Aedes aegypti (Diptera: Culicidae) in North Cameroon. J. Med. Entomol. 2008, 45, 10. [Google Scholar] [CrossRef]
- Hopkins, G.H.E. Mosquito of the Ethiopian Region, 2nd ed.; British Museum (Natural History): London, UK, 1952; Available online: http://mosquito-taxonomic-inventory.info/sites/mosquito-taxonomic-inventory.info/files/Hopkins%201952.pdf (accessed on 24 February 2011).
- Huang, Y.-M. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera: Culicidae). In Zootaxa; Magnolia Press: Auckland, New Zealand, 2004; Volume 700, p. 1. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree. 2012. Available online: https://github.com/rambaut/figtree/releases (accessed on 26 November 2018).
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Dupanloup, I.; Schneider, S.; Excoffier, L. A simulated annealing approach to define the genetic structure of populations: Defining the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef]
- Adam, A.; Seidahmed, O.M.; Weber, C.; Schnierle, B.; Schmidt-Chanasit, J.; Reiche, S.; Jassoy, C. Low Seroprevalence indicates vulnerability of Eastern and Central Sudan to infection with chikungunya virus. Vector Borne Zoonotic Dis. 2016, 16, 290–291. [Google Scholar] [CrossRef] [PubMed]
- El Bushra, H.E.; Habtewold, B.W.; al Gasseer, N.; Mohamed, R.E.; Mohamednour, S.A.; Abshar, M.; al Magboul, B.; Mohamednour, S.; Abshar, M.; Al Magboul, B. Outbreak of chikungunya fever in Sudan, 2018–2019. Juniper Online J. Public Health 2019, 4, 555644. [Google Scholar]
- Lewis, D.J. Mosquitoes in relation to yellow fever in the Nuba Mountains, Anglo-Egyptian Sudan. Ann. Trop. Med. Parasitol. 1943, 37, 65–76. [Google Scholar] [CrossRef]
- Captain-Esoah, M.; Baidoo, P.K.; Frempong, K.K.; Adabie-Gomez, D.; Chabi, J.; Obuobi, D.; Amlalo, G.K.; Veriegh, F.B.; Donkor, M.; Asoala, V.; et al. Biting behavior and molecular identification of Aedes aegypti (Diptera: Culicidae) subspecies in some selected recent yellow fever outbreak communities in Northern Ghana. J. Med. EÈntomol. 2020, 57, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Gloria-Soria, A.; Ayala, D.; Bheecarry, A.; Calderon-Arguedas, O.; Chadee, D.D.; Chiappero, M.; Coetzee, M.; Bin Elahee, K.; Fernandez-Salas, I.; Kamal, H.A.; et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 2016, 25, 5377–5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.R.; Gloria-Soria, A.; Kotsakiozi, P. Recent History of Aedes aegypti: Vector Genomics and Epidemiology Records. Bioscience 2018, 68, 854–860. [Google Scholar] [CrossRef]
Population/Code | Year | State | Form | NO | Coordinates |
---|---|---|---|---|---|
Port Sudan (P) | 2014 | Red Sea | Aaa | 7 | 19.617°37′0″ N, 37.217°13′0″ E |
Tokar (T) | 2016 | Red Sea | Aaa | 8 | 18.425°25′31″ N, 37.729°43′45″ E |
Kassala (K) | 2014 | Kassala | Aaa | 14 | 15.45°27′0″ N, 36.4°24′0″ E |
Barakat (G) | 2014 | Gezira | Aaa | 10 | 14.314°18′50.84″ N, 33.534°32′3.74″ E |
Kadugli (D) | 2015 | South Kordofan | Aaf | 23 | 11.017°1′0″ N, 29.717°43′0″ E |
Nyala (N) | 2016–2017 | South Darfur | Aaf | 8 | 12.036°2′11″ N, 24.878°52′37″ E |
Al Fasher (F) | 2017 | North Darfur | Aaf | 7 | 13.631°37′50″ N, 25.35°21′0″ E |
Al Junaynah (J) | 2014 | West Darfur | Aaf | 15 | 13.45°27′ 0″ N, 22.45°27′0″ E |
Site (Subspecies) | N | S | H | Hd | Π | Tajima’s D | FS |
---|---|---|---|---|---|---|---|
Port Sudan (Aaa) | 7 | 7 | 2 | 0.286 | 0.012 | −1.55311 | 3.29584 |
Tokar (Aaa) | 10 | 7 | 8 | 0.956 | 0.019 | 1.28010 | −3.31369 |
Kassala (Aaa) | 14 | 8 | 5 | 0.539 | 0.014 | 0.29050 | 0.36807 |
Barakat (Aaa) | 10 | 6 | 2 | 0.200 | 0.007 | −1.79631 | 2.60670 |
Kadugli (Aaf) | 23 | 7 | 5 | 0.510 | 0.012 | 0.14600 | 0.89004 |
Nyala (Aaf) | 8 | 7 | 4 | 0.75 | 0.019 | 0.84405 | 1.12851 |
Al Fasher (Aaf) | 7 | 0 | 1 | 0.000 | 0.000 | 0.000 | 0.00000 |
Al Junaynah (Aaf) | 15 | 6 | 4 | 0.371 | 0.007 | −1.36873 | −0.07744 |
Site | Port Sudan | Tokar | Kassala | Barakat | Nyala | Al Fasher | Al Junaynah |
---|---|---|---|---|---|---|---|
Port Sudan | |||||||
Tokar | 0.210 * | ||||||
Kassala | 0.532 * | 0.406 * | |||||
Barakat | 0.740 * | 0.442 * | 0.521 * | ||||
Nyala | 0.378 | 0.000 | 0.440 * | 0.323 * | |||
Al Fasher | 0.811 * | 0.423 * | 0.650 * | 0.518 * | 0.228 | ||
Al Junaynah | 0.713 * | 0.325 * | 0.592 * | 0.388 * | 0.116 | 0.009 | |
Kadugli | 0.572 * | 0.190 * | 0.515 * | 0.309 * | 0.000 | 0.073 | 0.002 |
Source of Variation | df | Sum of Squares | Variance Components | Variation Percentage |
---|---|---|---|---|
Among Groups | 1 | 7.433 | 0.12794 | 26.64 |
Among Individuals within Groups | 6 | 8.694 | 0.11785 | 24.54 |
Within Populations | 81 | 18.997 | 0.23453 | 48.83 |
Total | 88 | 35.124 | 0.48031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuelmaali, S.A.; Jamaluddin, J.A.F.; Allam, M.; Abushama, H.M.; Elnaiem, D.E.; Noaman, K.; Avicor, S.W.; Ishak, I.H.; Wajidi, M.F.F.; Jaal, Z.; et al. Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations. Insects 2022, 13, 1144. https://doi.org/10.3390/insects13121144
Abuelmaali SA, Jamaluddin JAF, Allam M, Abushama HM, Elnaiem DE, Noaman K, Avicor SW, Ishak IH, Wajidi MFF, Jaal Z, et al. Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations. Insects. 2022; 13(12):1144. https://doi.org/10.3390/insects13121144
Chicago/Turabian StyleAbuelmaali, Sara Abdelrahman, Jamsari Amirul Firdaus Jamaluddin, Mushal Allam, Hind Mohamed Abushama, Dia Eldin Elnaiem, Kheder Noaman, Silas Wintuma Avicor, Intan Haslina Ishak, Mustafa Fadzil Farid Wajidi, Zairi Jaal, and et al. 2022. "Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations" Insects 13, no. 12: 1144. https://doi.org/10.3390/insects13121144
APA StyleAbuelmaali, S. A., Jamaluddin, J. A. F., Allam, M., Abushama, H. M., Elnaiem, D. E., Noaman, K., Avicor, S. W., Ishak, I. H., Wajidi, M. F. F., Jaal, Z., & Abu Kassim, N. F. (2022). Genetic Polymorphism and Phylogenetics of Aedes aegypti from Sudan Based on ND4 Mitochondrial Gene Variations. Insects, 13(12), 1144. https://doi.org/10.3390/insects13121144