Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Citrus Sinensis EO Extraction and Chemical Characterization
2.2. Oil in Water Nano-Emulsion Preparation and Characterization
2.3. Aphis Gossypii Rearing
2.4. EO-NE Toxicity against A. Gossypii
2.4.1. Laboratory Trials
2.4.2. Field Trials
2.5. Phytotoxicity Analysis
2.6. Data Analysis
3. Results
3.1. Citrus Sinensis EO Chemical Characterization and Nano-Emulsion Characterization
3.2. Aphicidal Activity
3.3. Phytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isman, M.B. Bridging the Gap: Moving Botanical Insecticides from the Laboratory to the Farm. Ind. Crops Prod. 2017, 110, 10–14. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-Target Effects of Essential Oil-Based Biopesticides for Crop Protection: Impact on Natural Enemies, Pollinators, and Soil Invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G.M.; Campolo, O.; Palmeri, V. Repellence and Acute Toxicity of a Nano-Emulsion of Sweet Orange Essential Oil toward Two Major Stored Grain Insect Pests. Ind. Crops Prod. 2019, 142, 111869. [Google Scholar] [CrossRef]
- Campolo, O.; Puglisi, I.; Barbagallo, R.N.; Cherif, A.; Ricupero, M.; Biondi, A.; Palmeri, V.; Baglieri, A.; Zappalà, L. Side Effects of Two Citrus Essential Oil Formulations on a Generalist Insect Predator, Plant and Soil Enzymatic Activities. Chemosphere 2020, 257, 127252. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Desneux, N.; Gao, X.; Song, D. Imidacloprid-Induced Hormesis Effects on Demographic Traits of the Melon Aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 325–337. [Google Scholar] [CrossRef]
- Yokomi, R. CTV Vectors and Interactions with the Virus and Host Plants. Methods Mol. Biol. 2019, 2015, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Vanlerberghe-Masutti, F.; Wilson, L.J.; Barchia, I.; Mcloon, M.O.; Smith, T.; Herron, G.A. Evidence of Superclones in Australian Cotton Aphid Aphis gossypii Glover (Aphididae: Hemiptera). Pest Manag. Sci. 2013, 69, 938–948. [Google Scholar] [CrossRef]
- Herron, G.A.; Wilson, L.J. Can Resistance Management Strategies Recover Insecticide Susceptibility in Pests?: A Case Study with Cotton Aphid Aphis gossypii (Aphididae: Hemiptera) in Australian Cotton. Austral Entomol. 2017, 56, 1–13. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2022, 1, 1–26. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Laigle, M.; Michel, T.; Palmeri, V. Essential Oil-Based Nano-Emulsions: Effect of Different Surfactants, Sonication and Plant Species on Physicochemical Characteristics. Ind. Crops Prod. 2020, 157, 112935. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2017; Volume 456, pp. 544–545. [Google Scholar]
- Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.G.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: Cambridge, MA, USA, 1980; ISBN 9780123842503. [Google Scholar]
- Masada, Y. Analysis of Essential Oils, by Gas Chromatography and Mass Spectrometry; Wiley: New York, NY, USA, 1976; ISBN 047015019x. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F. Registry of Mass Spectral Data; Wiley: New York, NY, USA, 1974. [Google Scholar]
- van Den Dool, H.; Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, E.; Rauseo, J.; Patrolecco, L.; Barra Caracciolo, A.; Spataro, F.; Fusaro, L.; Manes, F. Germination, Root Elongation, and Photosynthetic Performance of Plants Exposed to Sodium Lauryl Ether Sulfate (SLES): An Emerging Contaminant. Environ. Sci. Pollut. Res. 2021, 28, 27900–27913. [Google Scholar] [CrossRef]
- Petersen, S.; Kusk, K.O. Photosynthesis Tests as an Alternative to Growth Tests for Hazard Assessment of Toxicant. Arch. Environ. Contam. Toxicol. 2000, 38, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. 1925. J. Am. Mosq. Control Assoc. 1987, 3, 302–303. [Google Scholar]
- NIST/EPA/NIH Mass Spectral Library (NIST 05) ASCII Version NIST/EPA/NIH Mass Spectral Library (NIST 05) ASCII Version; National Institute of Standards and Technology, Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2008.
- Verzera, A.; Mondello, L.; Trozzi, A.; Dugo, P. On the Genuineness of Citrus Essential Oils. Part LII. Chemical Characterization of Essential Oil of Three Cultivars of Citrus Clementine Hort. Flavour Fragr. J. 1997, 12, 163–172. [Google Scholar] [CrossRef]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Zeni, V.; Benelli, G.; Campolo, O.; Giunti, G.; Palmeri, V.; Maggi, F.; Rizzo, R.; Lo Verde, G.; Lucchi, A.; Canale, A. Toxics or Lures? Biological and Behavioral Effects of Plant Essential Oils on Tephritidae Fruit Flies. Molecules 2021, 26, 5898. [Google Scholar] [CrossRef]
- Upadhyay, N.; Dwivedy, A.K.; Kumar, M.; Prakash, B.; Dubey, N.K. Essential Oils as Eco-Friendly Alternatives to Synthetic Pesticides for the Control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Essent. Oil Bear. Plants 2018, 21, 282–297. [Google Scholar] [CrossRef]
- Passos, L.C.; Ricupero, M.; Gugliuzzo, A.; Soares, M.A.; Desneux, N.; Campolo, O.; Carvalho, G.A.; Biondi, A.; Zappalá, L. Sublethal Effects of Plant Essential Oils toward the Zoophytophagous Mirid Nesidiocoris tenuis. J. Pest Sci. 2022, 95, 1609–1619. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, L.; Valizadegan, O.; Mahdavi, V. Fumigant Toxicity of Carum copticum (Apiaceae) Essential Oil against Greenhouse Aphids (Aphis gossypii)(Hemiptera: Aphididae) and an Analysis of Its Constituents. Acta Entomol. Sin. 2015, 58, 147–153. [Google Scholar]
- Albouchi, F.; Ghazouani, N.; Souissi, R.; Abderrabba, M.; Boukhris-Bouhachem, S. Aphidicidal Activities of Melaleuca styphelioides Sm. Essential Oils on Three Citrus Aphids: Aphis gossypii Glover; Aphis spiraecola Patch and Myzus persicae (Sulzer). S. Afr. J. Bot. 2018, 117, 149–154. [Google Scholar] [CrossRef]
- Zhou, S.; Han, C.; Zhang, C.; Kuchkarova, N.; Wei, C.; Zhang, C.; Shao, H. Allelopathic, Phytotoxic, and Insecticidal Effects of Thymus proximus Serg. Essential Oil and Its Major Constituents. Front. Plant Sci. 2021, 12, 1144. [Google Scholar] [CrossRef]
- Papanikolaou, N.E.; Kalaitzaki, A.; Karamaouna, F.; Michaelakis, A.; Papadimitriou, V.; Dourtoglou, V.; Papachristos, D.P. Nano-Formulation Enhances Insecticidal Activity of Natural Pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and Retains Their Harmless Effect to Non-Target Predators. Environ. Sci. Pollut. Res. Int. 2018, 25, 10243–10249. [Google Scholar] [CrossRef]
- EPPO. Phytotoxicity Assessment PP 1/135 (4). EPPO Bull. 2014, 44, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.A.; Felsot, A.S.; Parker, R.; Mink, G. Leaf Photosynthesis, Stomatal Resistance, and Growth of Wine Grapes (Vitis vinifera L.) after Exposure to Simulated Chlorsulfuron Drift. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 1998, 33, 67–81. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef]
- Kerchev, P.I.; Fenton, B.; Foyer, C.H.; Hancock, R.D. Plant Responses to Insect Herbivory: Interactions between Photosynthesis, Reactive Oxygen Species and Hormonal Signalling Pathways. Plant. Cell Environ. 2012, 35, 441–453. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Chemical Profiling, Cytotoxicity and Phytotoxicity of Foliar Volatiles of Hyptis suaveolens. Ecotoxicol. Environ. Saf. 2019, 171, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaeil, M.; Nojadeh, M.S.; Movafeghi, A.; Maggi, F. Exploring the Bio-Control Efficacy of Artemisia fragrans Essential Oil on the Perennial Weed Convolvulus arvensis: Inhibitory Effects on the Photosynthetic Machinery and Induction of Oxidative Stress. Ind. Crops Prod. 2020, 155, 112785. [Google Scholar] [CrossRef]
Compound a | LRI Exp b | LRI Literature c | Retention Time (min) | Relative Peak Area (%) |
---|---|---|---|---|
α-thujene | 928 | 931 | 6.52 | 0.01 |
α-pinene | 935 | 939 | 6.70 | 1.14 |
Camphene | 950 | 953 | 7.11 | 0.01 |
Sabinene | 975 | 976 | 7.77 | 0.50 |
β-pinene | 979 | 980 | 7.89 | 0.03 |
β-myrcene | 993 | 991 | 8.24 | 3.38 |
Octanal | 1007 | 1001 | 8.68 | 0.33 |
δ-3-Carene | 1013 | 1011 | 8.90 | 0.18 |
D-limonene | 1033 | 1031 | 9.64 | 93.35 |
Terpinolene | 1090 | 1088 | 11.68 | 0.02 |
Linalool | 1102 | 1098 | 12.11 | 0.54 |
Trans-p-mentha-2,8-dienol | 1123 | 1118 | 13.05 | 0.02 |
Cis-limonene oxide | 1133 | 1134 | 13.46 | 0.04 |
Trans-limonene oxide | 1138 | 1139 | 13.66 | 0.04 |
Citronellal | 1155 | 1153 | 14.42 | 0.03 |
α-terpineol | 1192 | 1189 | 16.01 | 0.07 |
Decanal | 1212 | 1208 | 16.85 | 0.10 |
α-cubebene | 1356 | 1351 | 23.11 | tr d |
α-copaene | 1367 | 1376 | 23.57 | 0.04 |
β-cubebene | 1381 | 1390 | 24.17 | 0.04 |
Z-β-caryophyllene | 1410 | 1406 | 25.38 | 0.02 |
E-β-caryophyllene | 1420 | 1418 | 25.78 | 0.04 |
α-caryophyllene | 1444 | 1454 | 26.78 | 0.01 |
γ-muurolene | 1468 | 1477 | 27.73 | tr |
Germacrene D | 1473 | 1481 | 27.92 | 0.02 |
Valencene | 1484 | 1491 | 28.40 | 0.02 |
α-muurolene | 1492 | 1499 | 28.71 | 0.01 |
δ-cadinene | 1515 | 1524 | 29.61 | 0.04 |
Caryophyllene oxide | 1578 | 1581 | 32.02 | tr |
Class compound | Relative abundance | |||
Monoterpene hydrocarbons | 98.59 | |||
Oxygenated monoterpenes | 0.73 | |||
Aldehydes | 0.43 | |||
Sesquiterpene hydrocarbons | 0.24 | |||
Oxygenated sesquiterpenes | 0.01 |
Time (h after Treatment) | LC50 a (g hg−1–95%FL b) | LC90 a (g hg−1–95%FL) | Χ2 c | Significance |
---|---|---|---|---|
24 | 2.27 (1.92–2.65) | 4.35 (3.61–5.76) | 0.364 | ns d |
36 | 1.88 (1.59–2.21) | 3.56 (2.94–4.79) | 1.478 | ns |
48 | 1.48 (1.22–1.74) | 2.86 (2.34–4.03) | 1.607 | ns |
Significance | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudani, F.; Campolo, O.; Caridi, R.; Latella, I.; Modafferi, A.; Palmeri, V.; Sorgonà, A.; Zoccali, P.; Giunti, G. Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. Insects 2022, 13, 1150. https://doi.org/10.3390/insects13121150
Laudani F, Campolo O, Caridi R, Latella I, Modafferi A, Palmeri V, Sorgonà A, Zoccali P, Giunti G. Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. Insects. 2022; 13(12):1150. https://doi.org/10.3390/insects13121150
Chicago/Turabian StyleLaudani, Francesca, Orlando Campolo, Roberta Caridi, Ilaria Latella, Antonino Modafferi, Vincenzo Palmeri, Agostino Sorgonà, Paolo Zoccali, and Giulia Giunti. 2022. "Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide" Insects 13, no. 12: 1150. https://doi.org/10.3390/insects13121150
APA StyleLaudani, F., Campolo, O., Caridi, R., Latella, I., Modafferi, A., Palmeri, V., Sorgonà, A., Zoccali, P., & Giunti, G. (2022). Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. Insects, 13(12), 1150. https://doi.org/10.3390/insects13121150