Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Commodity
2.3. Insect Species
2.4. Essential Oil Isolation and Analysis
2.5. Bioassays
2.6. Data Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Insecticidal Activity against T. castaneum
3.3. Insecticidal Activity against T. granarium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security: A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Arora, N.K. Agricultural sustainability and food security. Environ. Sustain. 2018, 1, 217–219. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, K.; Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- European Commission. EU Agricultural Outlook for Markets, Income and Environment, 2020–2030; European Commission, DG Agriculture and Rural Development: Brussels, Belgium, 2020. [Google Scholar]
- Mason, L.J.; McDonough, M. Biology, behavior, and ecology of stored grain and legume insects. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 7–20. [Google Scholar]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Buckland, P.C. The early dispersal of insect pests of stored products as indicated by archaeological records. J. Stored Prod. Res. 1981, 17, 1–12. [Google Scholar] [CrossRef]
- Panagiotakopulu, E.; Buckland, P.C. Insect pests of stored product from late bronze age Santorini, Greece. J. Stored Prod. Res. 1991, 27, 179–184. [Google Scholar] [CrossRef]
- King, G.A.; Kenward, H.; Schmidt, E.; Smith, D. Six-legged Hitchhikers: An archaeobiogeographical account of the early dispersal of grain beetles. J. North Atlant. 2014, 23, 1–18. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main groups of microorganisms of relevance for food safety and stability: General aspects and overall description. In Innovative Technologies for Food Preservation; Barba, F.J., Sant’Ana, A.S., Orlien, V., Koubaa, M., Eds.; Academic Press: London, UK, 2018; pp. 53–107. [Google Scholar]
- Hagstrum, D.W.; Phillips, T.W. Evaluation of stored-product entomology: Protecting the world food supply. Annu. Rev. Entomol. 2017, 62, 379–397. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Zannini, E.A.; Lynch, K.M.A.; Arendt, E.K. Novel approaches for chemical and microbiological shelf life extension of cereal crops. Crit. Rev. Food Sci. Nutr. 2019, 59, 3395–3419. [Google Scholar] [CrossRef]
- Navarro, S.; Navarro, H. Insect pest management of oilseed crops, tree nuts and dried fruits. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, C.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 99–141. [Google Scholar]
- Hill, D.S. Pests of Stored Foodstuffs and Their Control; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- Phillips, T.W.; Thoms, E.M.; DeMark, J.; Walse, S. Fumigation. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 157–177. [Google Scholar]
- Wijayaratne, L.K.W.; Rajapakse, R.H.S. Effects of spinosad on the heat tolerance and cold tolerance of Sitophilus oryzae L. (Coleoptera: Curculionidae) and Rhyzopertha dominica F. (Coleoptera: Bostrichidae). J. Stored Prod. Res. 2018, 77, 84–88. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.D.A.; Tótola, M.R.; Guedes, R.N.C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag. Sci. 2007, 63, 876–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, E.; Cosimi, S.; Loni, A. Insecticide resistance in Italian populations of Tribolium flour beetles. Bull. Insectol. 2010, 63, 251–285. [Google Scholar]
- Daglish, G.J.; Nayak, M.K. Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in eastern Australia. J. Stored Prod. Res. 2018, 78, 45–49. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Van Veen, T.S. Agricultural policy and sustainable livestock development. Int. J. Parasitol. 1999, 29, 7–15. [Google Scholar] [CrossRef]
- Ntalli, N.; Skourti, A.; Nika, E.P.; Boukouvala, M.C.; Kavallieratos, N.G. Five natural compounds of botanical origin as wheat protectants against adults and larvae of Tenebrio molitor L. and Trogoderma granarium Everts. Environ. Sci. Poll. Res. 2021, 28, 42763–42775. [Google Scholar] [CrossRef]
- Kaur, M.; Hüberli, D.; Bayliss, K.L. Cold plasma: Exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop Pasture Sci. 2020, 71, 715–724. [Google Scholar] [CrossRef]
- Mendez, F.; Maier, D.E.; Mason, L.J.; Woloshuk, C.P. Penetration of ozone into columns of stored grains and effects on chemical composition and processing performance. J. Stored Prod. Res. 2002, 39, 33–44. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides: For richer, for poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; Aragão, C.E.D.C.; Araújo, P.J.P.D.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; Amaral, W.D.; Cipriano, R.R.; Zawadneak, M.A.C. Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- López, V.; Pavela, R.; Gómez-Rincón, C.; Les, F.; Bartolucci, F.; Galiffa, V.; Petrelli, R.; Cappellacci, L.; Maggi, F.; Canale, A.; et al. Efficacy of Origanum syriacum Essential Oil against the mosquito vector Culex quinquefasciatus and the gastrointestinal parasite Anisakis simplex, with insights on acetylcholinesterase inhibition. Molecules 2019, 24, 2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021, 94, 899–915. [Google Scholar] [CrossRef]
- Shaaya, E.; Ravid, U.; Paster, N.; Juven, B.; Zisman, U.; Pissarev, V. Fumigant toxicity of essential oils against four major stored-product insects. J. Chem. Ecol. 1991, 17, 499–504. [Google Scholar] [CrossRef]
- Lee, B.H.; Annis, P.C.; Tumaalii, F.; Choi, W.S. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. J. Stored Prod. Res. 2004, 40, 553–564. [Google Scholar] [CrossRef]
- Koutsaviti, A.; Antonopoulou, V.; Vlassi, A.; Antonatos, S.; Michaelakis, A.; Papachristos, D.P.; Tzakou, O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col.: Curculionidae). J. Pest Sci. 2018, 91, 873–886. [Google Scholar] [CrossRef]
- Bett, P.K.; Deng, A.L.; Ogendo, J.O.; Kariuki, S.T.; Kamatenesi-Mugisha, M.; Mihale, J.M.; Torto, B. Residual contact toxicity and repellence of Cupressus lusitanica Miller and Eucalyptus saligna Smith essential oils against major stored product insect pests. Ind. Crops Prod. 2017, 110, 65–74. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Patiño-Bayona, W.R.; Nagles Galeano, L.J.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Herrera Daza, E.; Suárez, L.E.C.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O.J. Effects of essential oils from 24 plant species on Sitophilus zeamais Motsch (Coleoptera: Curculionidae). Insects 2021, 12, 532. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Jamshidian, M.; Lacroix, M. Perspectives on essential oil-loaded nanodelivery packaging technology for controlling stored cereal and grain pests. In Green Pesticides Handbook: Essential Oils for Pest Control; Nollet, L.M.L., Rathore, H.S., Eds.; CRC Press: New York, NY, USA, 2017; pp. 487–507. [Google Scholar]
- Golden, G.; Quinn, E.; Shaaya, E.; Kostyukovsky, M.; Poverenov, E. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection. Pest Manag. Sci. 2018, 74, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Giunti, G.; Campolo, O.; Laudani, F.; Zappalà, L.; Palmeri, V. Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Ind. Crops Prod. 2021, 162, 113257. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Ntalli, N.; Boukouvala, M.C.; Ntalaka, C.T.; Maggi, F.; Rakotosaona, R.; Cespi, M.; Perinelli, D.R.; et al. Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat. Molecules 2021, 26, 1812. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.A.; Ferreira-Sá, P.S.; Garcia, M.D., Jr.; Pereira, V.L.P.; Carvalho, J.C.T.; Rocha, L.; Fernandes, C.P.; Souto, R.N.P.; Araújo, R.S.; Botas, G.; et al. Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Ind. Crops Prod. 2021, 162, 113282. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.P.; Bonacucina, G.; Cespi, M.; Palmieri, G.P. An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation, and stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Kavallieratos, N.G.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Benelli, G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019, 92, 909–921. [Google Scholar] [CrossRef]
- Shao, H.; Xi, N.; Zhang, Y. Microemulsion formulation of a new biopesticide to control the diamondblack moth (Lepidoptera: Plutellidae). Sci. Rep. 2018, 8, 10565. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.; Akgül, A. Essential oil composition of Turkish pickling herb (Echinophora tenuifolia L. subsp. sibthorpiana (Guss.) Tutin). Acta Bot. Hung. 2003, 45, 163–167. [Google Scholar] [CrossRef]
- El-Sawi, S.A.; Motawae, H.M.; Sleem, M.A.; El-Shabrawy, A.R.O.; Sleem, A.; Ismail, A. Phytochemical screening, investigation of carbohydrate contents, and antiviral activity of Juniperus phoenicea L. growing in Egypt. J. Herbs Spices Med. Plants 2014, 20, 83–91. [Google Scholar] [CrossRef]
- Węglarz, Z.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Bączek, K. The quality of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare) cultivated in the temperate climate of central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef]
- Cala, A.; Salcedo, J.R.; Torres, A.; Varela, R.M.; Molinillo, J.M.G.; Macías, F.A. A study on the phytotoxic potential of the seasoning herb marjoram (Origanum majorana L.) leaves. Molecules 2021, 26, 3356. [Google Scholar] [CrossRef] [PubMed]
- Gras, A.; Garnatje, T.; Marín, J.; Parada, M.; Sala, E.; Talavera, M.; Vallès, J. The power of wild plants in feeding humanity: A meta-analytic ethnobotanical approach in the Catalan linguistic area. Foods 2021, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Noshad, M.; Behbahani, B.A.; Jooyandeh, H.; Rahmati-Joneidabad, M.; Kaykha, M.E.H.; Sheikhjan, M.G. Utilization of Plantago major seed mucilage containing Citrus limon essential oil as an edible coating to improve shelf-life of buffalo meat under refrigeration conditions. Food Sci. Nutr. 2020, 9, 1625–1639. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.H.; Whitman, R.C. Field Guide to Structural Pests; National Pest Management Association: Dunn Loring, VA, USA, 1992. [Google Scholar]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- Lindgren, D.L.; Vincent, L.E.; Krohne, H.E. The khapra beetle, Trogoderma granarium Everts. Hilgardia 1955, 24, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.K.; Pant, N.C. Dietary efficiency of natural, semi-synthetic and synthetic diets with special reference to qualitative amino acid requirements of the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 1968, 4, 249–257. [Google Scholar] [CrossRef]
- Viljoen, J.H. The occurrence of Trogoderma (Coleoptera: Dermestidae) and related species in southern Africa with special reference to T. granarium and its potential to become established). J. Stored Prod. Res. 1990, 26, 43–51. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Klejdysz, T.; Subramanyam, B.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- Myers, S.W.; Hgstrum, D.W. Quarantine. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 297–304. [Google Scholar]
- Lowe, S.; Brone, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species. A Selection from the Global Invasive Species Database; Hollands Printing Ltd.: Auckland, New Zealand, 2000. [Google Scholar]
- Kavallieratos, N.G.; Boukouvala, M.C. Efficacy of d-tetramethrin and acetamiprid for control of Trogoderma granarium Everts (Coleoptera: Dermestidae) adults and larvae on concrete). J. Stored Prod. Res. 2019, 80, 79–84. [Google Scholar] [CrossRef]
- Evergetis, E.; Michaelakis, A.; Papachristos, D.P.; Badieritakis, E.; Kapsaski-Kanelli, V.N.; Haroutounian, S.A. Seasonal variation and bioactivity fluctuation of two Juniperus sp. essential oils against Aedes (Stegomyia) albopictus (Skuse 1894). Parasitol. Res. 2016, 6, 2175–2183. [Google Scholar] [CrossRef]
- Shaaban, H.A.; Edris, A.E. Factors affecting the phase behavior and antimicrobial activity of carvacrol microemulsions. J. Oleo Sci. 2015, 64, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Ricciutelli, M.; Benelli, G.; Maggi, F. Efficacy of the furanosesquiterpene isofuranodiene against the stored-product insects Prostephanus truncatus (Coleoptera: Bostrychidae) and Trogoderma granarium (Coleoptera: Dermestidae). J. Stored Prod. Res. 2020, 86, 101553. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Karagianni, E.S.; Papanikolaou, N.E. Life history of Trogoderma granarium Everts (Coleoptera: Dermestidae) on peeled barley, peeled oats and triticale. J. Stored Prod. Res. 2019, 84, 101515. [Google Scholar] [CrossRef]
- Buxton, M.; Wasserman, R.J.; Nyamukondiwa, C. Spatial Anopheles arabiensis (Diptera: Culicidae) insecticide resistance patterns across malaria-endemic regions of Botswana. Malar. J. 2020, 19, 415. [Google Scholar] [CrossRef] [PubMed]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- SigmaPlot for Windows; Version 14; Systat Software: Chicago, IL, USA, 2017.
- Raina, A.P.; Negi, K.S. Essential oil composition of Origanum majorana and Origanum vulgare ssp. hirtum growing in India. Chem. Nat. Compd. 2012, 47, 1015–1017. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Kirimer, N.; Tümen, G. Composition of the essential oil of Origanum majorana L. from Turkey. J. Ess. Oil Res. 1993, 5, 577–579. [Google Scholar] [CrossRef]
- Komaitis, M.E.; Ifanti-Papotragianmi, N.; Melissaari-Panagiotou, E. Composition of the essential oil of marjoram (Origanum majorana L.). Food Chem. 1992, 45, 117–118. [Google Scholar] [CrossRef]
- Hokwerda, H.; Bos, R.; Tattje, D.H.E.; Malingre, T.M. Composition of essential oils of Laurus nobilis, L. nobilis var. angustifolia and Laurus azorica. Planta Med. 1982, 44, 116–119. [Google Scholar] [CrossRef]
- Mohammadreza, V.R. Chemical composition and larvicidal activity of the essential oil of Iranian Laurus nobilis L. J. Appl. Hortic. 2010, 12, 155–157. [Google Scholar] [CrossRef]
- Evergetis, E.; Bellini, R.; Balatsos, G.; Michaelakis, A.; Carrieri, M.; Veronesi, R.; Papachristos, D.P.; Puggioli, A.; Kapsaski-Kanelli, V.N.; Haroutounian, S.A. From bio-prospecting to filed assessment: The case of carvacrol rich essential oil as a potent mosquito larvicidal and repellent agent. Front. Ecol. Evol. 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kapsaski-Kanelli, V.N.; Evergetis, E.; Michaelakis, A.; Papachristos, D.P.; Myrtsi, E.I.; Koulocheri, S.D.; Haroutounian, S.A. “Gold” pressed essential oil: An essay on the volatile fragment from Citrus juice industry by-products chemistry and bioactivity. Biomed Res. Int. 2017, 2017, 2761461. [Google Scholar] [CrossRef] [Green Version]
- Evergetis, E.; Haroutounian, S.A. Exploitation of Apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals. Ind. Crops Prod. 2014, 54, 70–77. [Google Scholar] [CrossRef]
- Papanastasiou, S.A.; Bali, E.M.D.; Ioannou, C.S.; Papachristos, D.P.; Zarpas, K.D.; Papadopoulos, N.T. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata). PLoS ONE 2017, 12, e0177837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, R.; Morshedloo, M.R.; Lupidi, G.; Carolla, G.; Barboni, L.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Kavallieratos, N.G.; et al. The volatile oils from the oleo-gum-resins of Ferula assa-foetida and Ferula gummosa: A comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem. Toxicol. 2020, 140, 111312. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Lee, S.E.; Annis, P.C.; Pratt, S.J.; Park, B.S.; Tumaalii, F. Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, Tribolium castaneum Herbst. J. Asia Pacific Entomol. 2002, 5, 237–240. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Badawy, M.E.I.; Shawir, M.S.; Mohamed, M.I.E. Chemical composition, fumigant and contact toxicities of essential oils isolated from Egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt. J. Biol. Pest Control 2015, 25, 639–647. [Google Scholar]
- Teke, M.A.; Mutlu, Ç. Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). J. Plant Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- Kim, S.I.; Yoon, J.S.; Jung, J.W.; Hong, K.B.; Ahn, Y.J.; Kwon, H.W. Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J. Asia Pacific Entomol. 2010, 13, 369–373. [Google Scholar] [CrossRef]
- Lee, H.E.; Hong, S.J.; Hasan, N.; Baek, E.J.; Kim, J.T.; Kim, Y.D.; Park, M.K. Repellent efficacy of essential oils and plant extracts against Tribolium castaneum and Plodia interpunctella. Entomol. Res. 2020, 50, 450–459. [Google Scholar] [CrossRef]
- Haouel-Hamdi, S.; Hamedou, M.B.; Bachrouch, O.; Boushih, E.; Zarroug, Y.; Sriti, J.; Messaoud, C.; Hammami, M.; Abderraba, M.; Limam, F.; et al. Susceptibility of Tribolium castaneum to Laurus nobilis essential oil and assessment on semolina quality. Int. J. Trop. Insect Sci. 2020, 40, 667–675. [Google Scholar] [CrossRef]
- Demirel, N.; Sener, O.; Arslant, M.; Uremis, I.; Uluc, F.T.; Cabuk, F. Toxicological responses of confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) to various plant essential oils. Asian J. Chem. 2009, 8, 6403–6410. [Google Scholar]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Cianfaglione, K.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Athanassiou, C.G.; Diamantis, G.C.; Gioukari, H.G.; Boukouvala, M.C. Evaluation of six insecticides against adults and larvae of Trogoderma granarium Everts (Coleoptera: Dermestidae) on wheat, barley, maize and rough rice. J. Stored Prod. Res. 2017, 71, 81–92. [Google Scholar] [CrossRef]
- Peterson, A. Larvae of Insects. An Introduction to Nearctic Species; Edwards Brothers Inc.: Columbus, OH, USA, 1951. [Google Scholar]
- Vayias, B.J.; Athanassiou, C.G. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Gao, S.S.; Xue, S.; An, S.H.; Zhang, K.P. Disruption of the cytochrome P450 CYP6BQ7 gene reduces tolerance to plant toxicants in the red flour beetle, Tribolium castaneum. Int. J. Biol. Macromol. 2021, 172, 263–269. [Google Scholar] [CrossRef]
- Abrol, D.P.; Shankar, U. Pesticides, food safety and integrated pest management. In Integrated Pest Management. Pesticide Problems; Pimentel, D., Peshin, R., Eds.; Springer: New York, NY, USA, 2014; Volume 3, pp. 167–199. [Google Scholar]
- Losic, D.; Korunic, Z. Diatomaceous earth, a natural insecticide for stored grain protection: Recent progress and perspectives. In Diatom Nanotechnology: Progress and Emerging Applications; Losic, D., Ed.; Royal Society of Chemistry: Croydon, UK, 2018; pp. 219–247. [Google Scholar]
- Wakil, W.; Schmitt, T.; Kavallieratos, N.G. Persistence and efficacy of enhanced diatomaceous earth, imidacloprid, and Beauveria bassiana against three coleopteran and one psocid stored-grain insects. Environ. Sci. Pollut. Res. 2021, 28, 23459–23472. [Google Scholar] [CrossRef]
- EUR Lex. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJEU 2009, 309, 1–50. [Google Scholar]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef] [Green Version]
- Abdelli, W.; Bahri, F.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical composition, antimicrobial and anti-inflammatory activity of Algerian Juniperus phoenicea essential oils. Nat. Prod. Commun. 2018, 13, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Cinbilgel, I.; Kurt, Y. Oregano and/or marjoram: Traditional oil production and ethnomedical utilization of Origanum species in southern Turkey. J. Herb. Med. 2019, 16, 100257. [Google Scholar] [CrossRef]
Taxon | Source | Stock Solution | ||
---|---|---|---|---|
EO | TWEEN® 20 | Water | ||
Citrus limon | Industrial byproduct | 20% | 20% | 60% |
Juniperus phoenicea | Wild gathered | 20% | 20% | 60% |
Laurus nobilis | Cultivated | 20% | 20% | 60% |
Echinophora tenuifolia ssp. sibthorpiana | Wild gathered | 20% | 20% | 60% |
Origanum majorana | Cultivated | 20% | 20% | 60% |
Origanum vulgare ssp. hirtum | Cultivated | 20% | 20% | 60% |
Compounds | RI | C. limon | J. phoenicea | L. nobilis | E. tenuifolia ssp. sibthorpiana | O. majorana | O. vulgare ssp. hirtum | Identification |
---|---|---|---|---|---|---|---|---|
α-thujene | 930 | 0.6 | 0.2 | 1.5 | 0.1 | a, b, c | ||
α-pinene | 939 | 2.3 | 73.9 | 3.9 | 0.6 | 0.9 | a, b, c | |
camphene | 954 | 0.5 | 0.3 | a, b, c | ||||
sabinene | 975 | 0.3 | 10.2 | 0.1 | a, b, c | |||
β-pinene | 980 | 10.5 | 1.9 | 3.6 | 0.1 | 0.3 | a, b | |
1-octen-3-ol | 981 | 0.3 | a, b | |||||
myrcene | 991 | 2.0 | 3.3 | 0.9 | 0.2 | 1.5 | 0.2 | a, b, c |
α-phellandrene | 1003 | 3.1 | 0.5 | 32.5 | 0.2 | a, b | ||
α-terpinene | 1017 | 0.7 | 0.9 | 2.0 | 0.2 | a, b | ||
para-cymene | 1025 | 10.3 | 0.1 | 1.0 | a, b | |||
ortho-Cymene | 1027 | 0.8 | 8.1 | a, b | ||||
limonene | 1029 | 37.2 | a, b, c | |||||
β-phellandrene | 1031 | 6.5 | a, b | |||||
eucalyptol | 1032 | 45.7 | t | a, b | ||||
trans-β-ocimene | 1051 | 0.2 | a, b | |||||
γ-terpinene | 1060 | 10.4 | 0.2 | 0.7 | 0.6 | 14.1 | 0.9 | a, b, c |
α-terpinolene | 1089 | 0.7 | 0.7 | 0.5 | 0.4 | a, b | ||
linalool | 1098 | 1.7 | 0.2 | a, b | ||||
nonanal | 1101 | 0.2 | a, b | |||||
camphor | 1145 | 0.5 | a, b | |||||
citronelal | 1153 | 0.3 | a, b | |||||
borneol | 1168 | 0.5 | 0.2 | a, b | ||||
4-terpineol | 1178 | 0.2 | 2.4 | 0.5 | 0.1 | a, b | ||
α-terpineol | 1189 | 0.3 | 0.4 | 3.0 | a, b | |||
neral | 1238 | 1.2 | a, b | |||||
carvacrol methyl ether | 1245 | 0.7 | a, b | |||||
piperitone | 1253 | 0.1 | a, b | |||||
bornyl acetate | 1287 | 0.9 | a, b | |||||
lavandulyl acetate | 1290 | 0.9 | a, b | |||||
thymol | 1293 | 0.1 | 18.3 | 0.6 | a, b | |||
carvacrol | 1299 | 0.5 | 43.7 | 95.3 | a, b, c | |||
citral | 1320 | 2.0 | a, b | |||||
δ-eIemene | 1338 | 0.1 | a, b | |||||
a-terpinelyl acetate | 1351 | 1.1 | 14.0 | a, b | ||||
eugenol | 1359 | 2.5 | a, b | |||||
neryl acetate | 1362 | 1.2 | a, b | |||||
β-elemene | 1391 | 0.2 | a, b | |||||
methyl eugenol | 1406 | 1.2 | 43.8 | a, b | ||||
β-caryophyllene | 1419 | 0.6 | 1.3 | 1.9 | 0.4 | a, b, c | ||
α-bergamotene | 1435 | 1.0 | a, b | |||||
γ-elemene | 1437 | 0.2 | a, b | |||||
α-humulene | 1455 | 0.6 | a, b | |||||
germacrene D | 1485 | 4.2 | a, b, c | |||||
valencene | 1496 | 0.2 | a, b | |||||
bicyclogermacrene | 1500 | 0.1 | a, b | |||||
β-bisabolene | 1506 | 1.5 | 0.3 | 0.2 | a, b | |||
δ-cadinene | 1523 | 0.2 | a, b | |||||
germacrene B | 1561 | 1.2 | a, b | |||||
Total | 72.4 | 95.3 | 92.7 | 96.8 | 95.4 | 99.8 |
Plant Species | Developmental Stage | Days after the Treatment | DF | F | p | |||
---|---|---|---|---|---|---|---|---|
1 Day | 3 Days | 7 Days | 14 Days | |||||
C. limon | Larvae | 8.9 ± 2.0 Aa | 40.0 ± 7.1 Bab | 72.2 ± 6.0 Cad | 93.3 ± 2.4 Da | 3 | 59.772 | <0.001 |
Adults | 0.0 ± 0.0 Aa | 0.0 ± 0.0 Aa | 3.3 ± 2.4 Aa | 16.7 ± 6.9 Ba | 3 | 5.095 | 0.005 | |
J. phoenicea | Larvae | 13.3 ± 5.3 Aa | 32.2 ± 6.8 Bab | 54.4 ± 8.2 Cbc | 67.8 ± 8.5 Cb | 3 | 11.801 | <0.001 |
Adults | 2.2 ± 1.5 Aa | 7.78 ± 4.0 Aa | 13.3 ± 5.3 ABa | 26.7 ± 6.5 Ba | 3 | 4.960 | 0.006 | |
L. nobilis | Larvae | 14.4 ± 4.1 Aa | 33.3 ± 5.3 Bab | 57.8 ± 5.7 Ccd | 77.8 ± 8.0 Cbcd | 3 | 22.470 | <0.001 |
Adults | 5.6 ± 4.4 Aa | 8.9 ± 5.6 Aa | 15.6 ± 5.8 Aa | 34.4 ± 6.0 Ba | 3 | 5.555 | 0.003 | |
E. tenuifolia ssp. sibthorpiana | Larvae | 13.3 ± 4.4 Aa | 40.0 ± 4.1 Bbc | 77.8 ± 2.2 Ca | 90.0 ± 2.9 Cad | 3 | 83.773 | <0.001 |
Adults | 0.0 ± 0.0 Aa | 2.2 ± 1.5 Aa | 5.6 ± 1.8 Aa | 17.8 ± 3.6 Ba | 3 | 13.814 | <0.001 | |
O. majorana | Larvae | 15.6 ± 1.8 Aa | 57.8 ± 5.5 Bc | 80.0 ± 4.7 Ca | 91.1 ± 3.5 Cac | 3 | 80.600 | <0.001 |
Adults | 7.8 ± 4.7 Aa | 14.4 ± 5.3 Aa | 17.8 ± 7.2 Aa | 24.4 ± 6.5 Aa | 3 | 1.386 | 0.265 | |
O. vulgare ssp. hirtum | Larvae | 11.1 ± 4.2 Aa | 44.4 ± 6.5 Bbc | 72.2 ± 4.9 Cad | 87.8 ± 3.2 Cad | 3 | 50.233 | <0.001 |
Adults | 0.0 ± 0.0 Aa | 2.2 ± 1.5 Aa | 4.4 ± 1.8 Aa | 25.6 ± 4.8 Ba | 3 | 22.016 | <0.001 | |
DF | Larvae | 5 | 5 | 5 | 5 | |||
Adults | 5 | 5 | 5 | 5 | ||||
F | Larvae | 0.411 | 2.409 | 3.796 | 3.431 | |||
Adults | 1.605 | 2.296 | 1.844 | 1.232 | ||||
p | Larvae | 0.839 | 0.050 | 0.005 | 0.010 | |||
Adults | 0.177 | 0.060 | 0.122 | 0.309 |
Plant Species | Developmental Stage | Days after the Treatment | DF | F | p | |||
---|---|---|---|---|---|---|---|---|
1 Day | 3 Days | 7 Days | 14 Days | |||||
C. limon | Larvae | 3.3 ± 1.7 Aa | 4.4 ± 2.4 Aab | 10.0 ± 4.1 Aac | 13.3 ± 3.7 Aab | 3 | 2.282 | 0.098 |
Adults | 8.9 ± 2.6 Aa | 26.7 ± 2.4 Ba | 72.2 ± 4.0 Ca | N/A | 2 | 111.285 | <0.001 | |
J. phoenicea | Larvae | 3.3 ± 1.7 Aa | 16.7 ± 2.3 Bc | 26.7 ± 4.4 BCb | 34.4 ± 4.4 Cc | 3 | 16.049 | <0.001 |
Adults | 14.4 ± 2.9 Aa | 27.8 ± 2.8 Ba | 83.3 ± 5.3 Ca | N/A | 2 | 90.937 | <0.001 | |
L. nobilis | Larvae | 3.3 ± 1.7 Aa | 4.4 ± 1.8 Aab | 8.9 ± 2.6 Aac | 8.9 ± 2.6 Aa | 3 | 1.719 | 0.183 |
Adults | 11.1 ± 2.0 Aa | 25.6 ± 2.4 Ba | 84.4 ± 2.9 Ca | N/A | 2 | 214.397 | <0.001 | |
E. tenuifolia ssp. sibthorpiana | Larvae | 1.1 ± 1.1 Aa | 8.9 ± 2.6 Bbc | 16.7 ± 3.7 BCbc | 20.0 ± 3.3 Cbd | 3 | 9.122 | <0.001 |
Adults | 8.9 ± 2.6 Aa | 17.8 ± 2.8 Aa | 70.0 ± 7.5 Ba | N/A | 2 | 52.800 | <0.001 | |
O. majorana | Larvae | 2.2 ± 1.5 Aa | 16.7 ± 4.4 Bc | 23.3 ± 6.0 BCbc | 30.0 ± 6.0 Ccd | 3 | 6.232 | 0.002 |
Adults | 6.7 ± 3.3 Aa | 21.1 ± 3.5 Ba | 87.8 ± 5.7 Ca | N/A | 2 | 90.808 | <0.001 | |
O. vulgare ssp. hirtum | Larvae | 2.2 ± 1.5 Aa | 5.6 ± 2.4 Aab | 12.2 ± 1.5 BCac | 14.4 ± 1.8 Cab | 3 | 10.171 | <0.001 |
Adults | 12.2 ± 2.2 Aa | 23.3 ± 1.7 Ba | 82.2 ± 1.5 Ca | N/A | 2 | 310.817 | <0.001 | |
DF | Larvae | 5 | 5 | 5 | 5 | |||
Adults | 5 | 5 | 5 | N/A | ||||
F | Larvae | 0.356 | 4.143 | 3.310 | 7 | |||
Adults | 1.142 | 2.040 | 2.157 | N/A | ||||
p | Larvae | 0.876 | 0.003 | 0.012 | <0.001 | |||
Adults | 0.351 | 0.090 | 0.075 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolaou, N.E.; Kavallieratos, N.G.; Iliopoulos, V.; Evergetis, E.; Skourti, A.; Nika, E.P.; Haroutounian, S.A. Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. Insects 2022, 13, 165. https://doi.org/10.3390/insects13020165
Papanikolaou NE, Kavallieratos NG, Iliopoulos V, Evergetis E, Skourti A, Nika EP, Haroutounian SA. Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. Insects. 2022; 13(2):165. https://doi.org/10.3390/insects13020165
Chicago/Turabian StylePapanikolaou, Nikos E., Nickolas G. Kavallieratos, Vassilios Iliopoulos, Epameinondas Evergetis, Anna Skourti, Erifili P. Nika, and Serkos A. Haroutounian. 2022. "Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium" Insects 13, no. 2: 165. https://doi.org/10.3390/insects13020165
APA StylePapanikolaou, N. E., Kavallieratos, N. G., Iliopoulos, V., Evergetis, E., Skourti, A., Nika, E. P., & Haroutounian, S. A. (2022). Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. Insects, 13(2), 165. https://doi.org/10.3390/insects13020165