The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Sequencing
2.2. Genome Assembly and Assessment
2.3. Genome Annotation
2.4. Comparative Genomics
2.5. Population Genomics
3. Results
3.1. Genome Sequencing and Analyses
3.2. Genome Annotation
3.3. Comparative Genomics
3.4. Population Genomics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suckling, D.M.; Brockerhoff, E.G. Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). Annu. Rev. Entomol. 2010, 55, 285–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockerhoff, E.G.; Suckling, D.M.; Ecroyd, C.E.; Wagstaff, S.J.; Raabe, M.C.; Dowell, R.V.; Wearing, C.H. Worldwide host plants of the highly polyphagous, invasive Epiphyas postvittana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2011, 104, 1514–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christeller, J.T.; Poulton, J.; Markwick, N.M.; Simpson, R.M. The effect of diet on the expression of lipase genes in the midgut of the lightbrown apple moth (Epiphyas postvittana Walker; Tortricidae). Insect Mol. Biol. 2010, 19, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.M.; Newcomb, R.D.; Gatehouse, H.S.; Crowhurst, R.N.; Chagné, D.; Gatehouse, L.N.; Markwick, N.P.; Beuning, L.L.; Murray, C.; Marshall, S.D.; et al. Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Insect Mol. Biol. 2007, 16, 675–690. [Google Scholar] [CrossRef]
- Brown, J.W.; Epstein, M.E.; Gilligan, T.M.; Passoa, S.C.; Powell, J.A. Biology, identification, and history of the light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae: Archipini) in California: An example of the importance of local faunal surveys to document the establishment of exotic insects. Am. Entomol. 2010, 56, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Rubinoff, D.; Holland, B.S.; Jose, M.S.; Powell, J.A. Geographic proximity not a prerequisite for invasion: Hawaii not the source of california invasion by light brown apple moth (Epiphyas postvittana). PLoS ONE 2011, 6, e16361. [Google Scholar] [CrossRef] [Green Version]
- Tooman, L.K.; Rose, C.J.; Carraher, C.; Suckling, D.M.; Paquette, S.R.; Ledezma, L.A.; Gilligan, T.M.; Epstein, M.; Barr, N.B.; Newcomb, R.D. Patterns of mitochondrial haplotype diversity in the invasive pest Epiphyas postvittana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2011, 104, 920–932. [Google Scholar] [CrossRef]
- Kean, J.M.; Suckling, D.M.; Stringer, L.D.; Woods, B. Modeling the sterile insect technique for suppression of light brown apple moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 2011, 104, 1462–1475. [Google Scholar] [CrossRef]
- Turner, C.T.; Davy, M.W.; MacDiarmid, R.M.; Plummer, K.M.; Birch, N.P.; Newcomb, R.D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 2006, 15, 383–391. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef]
- Richardson, E.B.; Troczka, B.J.; Gutbrod, O.; Davies, T.G.E.; Nauen, R. Diamide resistance: 10 years of lessons from lepidopteran pests. J. Pest Sci. 2020, 93, 911–928. [Google Scholar] [CrossRef] [Green Version]
- Tay, W.T.; Gordon, K.H.J. Going global—genomic insights into insect invasions. Curr. Opin. Insect Sci. 2019, 31, 123–130. [Google Scholar] [CrossRef]
- Huang, C.; Wang, S.; Fan, X.; Pian, C.; Luo, J.; Li, X.; Lang, K.; Xing, L.; Jiang, M.; Liu, W.; et al. Predicting insect invasiveness with whole-genome sequencing data. BMC Genom. 2020. underreview. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.; Tetreau, G.; Song, X.; Coutu, C.; Hegedus, D.; Blissard, G.; Fei, Z.; Wang, P. A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Mol. Ecol. Resour. 2019, 19, 485–496. [Google Scholar] [CrossRef]
- Jouraku, A.; Yamamoto, K.; Kuwazaki, S.; Urio, M.; Suetsugu, Y.; Narukawa, J.; Miyamoto, K.; Kurita, K.; Kanamori, H.; Katayose, Y.; et al. KONAGAbase: A genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genom. 2013, 14, 464. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.L.; Clarke, D.F.; East, P.D.; Elfekih, S.; Gordon, K.H.J.; Jermiin, L.S.; McGaughran, A.; Oakeshott, J.G.; Papanikolaou, A.; Perera, O.P.; et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 2017, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Wan, F.; Yin, C.; Tang, R.; Chen, M.; Wu, Q.; Huang, C.; Qian, W.; Rota-Stabelli, O.; Yang, N.; Wang, S.; et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 2019, 10, 4237. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Ye, X.; Xu, H.; Mei, Y.; Yang, Y.; Chen, X.; Yang, Y.; Liu, T.; Yu, Y.; Yang, W.; et al. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 2020, 20, 1050–1068. [Google Scholar] [CrossRef]
- Cheng, T.; Wu, J.; Wu, Y.; Chilukuri, R.V.; Huang, L.; Yamamoto, K.; Feng, L.; Li, W.; Chen, Z.; Guo, H.; et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017, 1, 1747–1756. [Google Scholar] [CrossRef]
- Gouin, A.; Bretaudeau, A.; Nam, K.; Gimenez, S.; Aury, J.-M.; Duvic, B.; Hilliou, F.; Durand, N.; Montagné, N.; Darboux, I.; et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 2017, 7, 11816. [Google Scholar] [CrossRef]
- Regier, J.C.; Brown, J.W.; Mitter, C.; Baixeras, J.; Cho, S.; Cummings, M.P.; Zwick, A. A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution. PLoS ONE 2012, 7, e35574. [Google Scholar] [CrossRef]
- Regier, J.C.; Mitter, C.; Zwick, A.; Bazinet, A.L.; Cummings, M.P.; Kawahara, A.Y.; Sohn, J.-C.; Zwickl, D.J.; Cho, S.; Davis, D.R.; et al. A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies). PLoS ONE 2013, 8, e58568. [Google Scholar] [CrossRef]
- Uchibori-Asano, M.; Jouraku, A.; Uchiyama, T.; Yokoi, K.; Akiduki, G.; Suetsugu, Y.; Kobayashi, T.; Ozawa, A.; Minami, S.; Ishizuka, C.; et al. Genome-wide identification of tebufenozide resistant genes in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Sci. Rep. 2019, 9, 4203. [Google Scholar] [CrossRef]
- Singh, P. A general purpose laboratory diet mixture for rearing insects. Int. J. Trop. Insect Sci. 1983, 4, 357–362. [Google Scholar] [CrossRef]
- Naim, F.; Nakasugi, K.; Crowhurst, R.N.; Hilario, E.; Zwart, A.B.; Hellens, R.P.; Taylor, J.M.; Waterhouse, P.M.; Wood, C.C. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE 2012, 7, e52717. [Google Scholar] [CrossRef]
- Aronesty, E. Comparison of sequencing utility programs. Open Bioinform. J. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Leggett, R.M.; Clavijo, B.J.; Clissold, L.; Clark, M.D.; Caccamo, M. NextClip: An analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 2014, 30, 566–568. [Google Scholar] [CrossRef] [Green Version]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef] [Green Version]
- Gnerre, S.; MacCallum, I.; Przybylski, D.; Ribeiro, F.J.; Burton, J.N.; Walker, B.J.; Sharpe, T.; Hall, G.; Shea, T.P.; Sykes, S.; et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 2011, 108, 1513–1518. [Google Scholar] [CrossRef] [Green Version]
- Kajitani, R.; Toshimoto, K.; Noguchi, H.; Toyoda, A.; Ogura, Y.; Okuno, M.; Yabana, M.; Harada, M.; Nagayasu, E.; Maruyama, H.; et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014, 24, 1384–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boetzer, M.; Henkel, C.V.; Jansen, H.J.; Butler, D.; Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011, 27, 578–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [Green Version]
- Wences, A.H.; Schatz, M.C. Metassembler: Merging and optimizing de novo genome assemblies. Genome Biol. 2015, 16, 207. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. Using BUSCO to assess insect genomic resources. In Insect Genomics; Brown, S., Pfrender, M., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1858, pp. 59–74. [Google Scholar]
- Corcoran, J.A.; Jordan, M.D.; Thrimawithana, A.H.; Crowhurst, R.N.; Newcomb, R.D. The peripheral olfactory repertoire of the lightbrown apple moth, Epiphyas postvittana. PLoS ONE 2015, 10, e0128596. [Google Scholar] [CrossRef] [Green Version]
- Grapputo, A.; Thrimawithana, A.H.; Steinwender, B.; Newcomb, R.D. Differential gene expression in the evolution of sex pheromone communication in New Zealand’s endemic leafroller moths of the genera Ctenopseustis and Planotortrix. BMC Genom. 2018, 19, 94. [Google Scholar] [CrossRef]
- Boratyn, G.M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinform. 2019, 20, 405. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Laetsch, D.R.; Blaxter, M.L. BlobTools: Interrogation of genome assemblies. F1000Research 2017, 6, 1287. [Google Scholar] [CrossRef]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Kofler, R.; Orozco-terWengel, P.; Maio, N.D.; Pandey, R.V.; Nolte, V.; Futschik, A.; Kosiol, C.; Schlötterer, C. PoPoolation: A toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 2011, 6, e15925. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Kofler, R.; Pandey, R.V.; Schlötterer, C. PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 2011, 27, 3435–3436. [Google Scholar] [CrossRef] [Green Version]
- Pickrell, J.K.; Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef] [Green Version]
- Fitak, R.R. OptM: Estimating the optimal number of migration edges on population trees using Treemix. Biol. Methods Protoc. 2021, 6, bpab017. [Google Scholar] [CrossRef]
- Milanesi, M.; Capomaccio, S.; Vajana, E.; Bomba, L.; Garcia, J.F.; Ajmone-Marsan, P.; Colli, L. BITE: An R package for biodiversity analyses. BioRxiv 2017, 181610. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Yue, Z.; He, W.; Yang, X.; Yang, G.; Xie, M.; Zhan, D.; Baxter, S.W.; Vasseur, L.; Gurr, G.M.; et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 2013, 45, 220–225. [Google Scholar] [CrossRef] [Green Version]
- The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1036–1045. [Google Scholar] [CrossRef]
- Harrison, M.C.; Jongepier, E.; Robertson, H.M.; Arning, N.; Bitard-Feildel, T.; Chao, H.; Childers, C.P.; Dinh, H.; Doddapaneni, H.; Dugan, S.; et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat. Ecol. Evol. 2018, 2, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Faddeeva-Vakhrusheva, A.; Kraaijeveld, K.; Derks, M.F.L.; Anvar, S.Y.; Agamennone, V.; Suring, W.; Kampfraath, A.A.; Ellers, J.; Le Ngoc, G.; van Gestel, C.A.M.; et al. Coping with living in the soil: The genome of the parthenogenetic springtail Folsomia candida. BMC Genom. 2017, 18, 493. [Google Scholar] [CrossRef] [Green Version]
- Davey, J.W.; Chouteau, M.; Barker, S.L.; Maroja, L.; Baxter, S.W.; Simpson, F.; Merrill, R.M.; Joron, M.; Mallet, J.; Dasmahapatra, K.K.; et al. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3 Genes Genomes Genet. 2016, 6, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.M.A.; Wade, C.; Allsopp, M.H.; Harpur, B.A.; Zayed, A.; Rose, S.A.; Engelstädter, J.; Chapman, N.C.; Yagound, B.; Oldroyd, B.P. Strikingly high levels of heterozygosity despite 20 years of inbreeding in a clonal honey bee. J. Evol. Biol. 2019, 32, 144–152. [Google Scholar] [CrossRef]
- Dermauw, W.; Wybouw, N.; Rombauts, S.; Menten, B.; Vontas, J.; Grbić, M.; Clark, R.M.; Feyereisen, R.; Van Leeuwen, T. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci. USA 2013, 110, E113–E122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Després, L.; David, J.-P.; Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007, 22, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Lu, C.; Li, B.; Fang, S.; Zuo, W.; Dai, F.; Zhang, Z.; Xiang, Z. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R.; Favret, C.; Schuler, M.A. On defining “Key Innovations” in an adaptive radiation: Cytochrome P450s and Papilionidae. Am. Nat. 1996, 148, S139–S155. [Google Scholar] [CrossRef]
- Cohen, M.B.; Schuler, M.A.; Berenbaum, M.R. A host-inducible cytochrome P-450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 1992, 89, 10920–10924. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Schuler, M.A.; Berenbaum, M.R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc. Natl. Acad. Sci. USA 2003, 100, 14593–14598. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.G.; Wen, Z. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 2001, 57, 958–967. [Google Scholar] [CrossRef]
- Lien, N.T.K.; Ngoc, N.T.H.; Lan, N.N.; Hien, N.T.; Tung, N.V.; Ngan, N.T.T.; Hoang, N.H.; Binh, N.T.H. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 2019, 100, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Sun, X.-H.; Liu, Z.-H.; Xu, Y.; Sun, Y.; Zhou, D.; Shen, B.; Zhu, C.-L. Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens. Mol. Genet. Genom. 2019, 294, 861–873. [Google Scholar] [CrossRef]
- Enayati, A.A.; Ranson, H.; Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 2005, 14, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef]
- Gawande, N.D.; Subashini, S.; Murugan, M.; Subbarayalu, M. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking. Bioinformation 2014, 10, 679–683. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.-J.; Vogel, H.; Heckel, D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012, 42, 133–147. [Google Scholar] [CrossRef]
- Bock, K.W. Vertebrate UDP-glucuronosyltransferases: Functional and evolutionary aspects. Biochem. Pharmacol. 2003, 66, 691–696. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Wang, X.; Li, G.; Liu, Z.; Wang, H.; Guo, X.; Xu, B. Molecular mechanism of the UDP-glucuronosyltransferase 2B20-like gene (AccUGT2B20-like) in pesticide resistance of Apis cerana cerana. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Li, X.; Shi, H.; Gao, X.; Liang, P. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.). Pest Manag. Sci. 2018, 74, 695–704. [Google Scholar] [CrossRef]
- Dunse, K.M.; Kaas, Q.; Guarino, R.F.; Barton, P.A.; Craik, D.J.; Anderson, M.A. Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proc. Natl. Acad. Sci. USA 2010, 107, 15016–15021. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.P.; Dias, R.O.; Castelhano, E.C.; Brandão, M.M.; Moura, D.S.; Silva-Filho, M.C. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 196–197, 67–73. [Google Scholar] [CrossRef]
- Hou, M.-Z.; Shen, G.-M.; Wei, D.; Li, Y.-L.; Dou, W.; Wang, J.-J. Characterization of Bactrocera dorsalis serine proteases and evidence for their indirect role in insecticide tolerance. Int. J. Mol. Sci. 2014, 15, 3272–3286. [Google Scholar] [CrossRef] [Green Version]
- Dugdale, J.S. Lepidoptera—Annotated Catalogue, and Keys to Family-Group Taxa; Fauna of New Zealand; Manaaki Whenua Press: Lincoln, New Zealand, 1988; ISBN 978-0-477-02518-8. [Google Scholar]
- Zimmerman, E.C. Insects of Hawaii. Volume 9, Microlepidoptera; University of Hawai’i Press: Honolulu, HI, USA, 1978. [Google Scholar]
- Danthanarayana, W. The bionomics, distribution and host range of the light brown apple moth, Epiphyas postvittana (Walk.) (Tortricidae). Aust. J. Zool. 1975, 23, 419–437. [Google Scholar] [CrossRef]
- Svensson, I. Anmärkningsvärda fynd av småfjärilar (Microlepidoptera) i Sverige 2008, Remarkable records of Microlepidoptera in Sweden during 2008. Entomol. Tidskr. 2009, 130, 61–72. [Google Scholar]
- Varela, L.G.; Johnson, M.W.; Strand, L.; Wilen, C.A.; Pickel, C. Light brown apple moth’s arrival in California worries commodity groups. Calif. Agric. 2008, 62, 57–61. [Google Scholar] [CrossRef]
- Lozier, J.D.; Mills, N.J. Predicting the potential invasive range of light brown apple moth (Epiphyas postvittana) using biologically informed and correlative species distribution models. Biol. Invasions 2011, 13, 2409. [Google Scholar] [CrossRef]
Species | Epiphyas postvittana | Cydia pomonella [17] | Trichoplusia ni [14] | Helicoverpa armigera | Plutella xylostella [56] | Spodoptera litura [19] | Bombyx mori [57] |
---|---|---|---|---|---|---|---|
Genome assembly: | |||||||
Assembly size (Mb) | 598.1 | 772.9 | 333.0 | 337.0 | 394.1 | 438.3 | 431.7 |
Number of scaffolds | 14,077 | 1717 | 1916 | 997 | 1819 | 3597 | 43,622 |
Max scaffold length (Mb) | 3.70 | 34.60 | 8.92 | 6.15 | 3.94 | 4.40 | 16.12 |
N50 scaffold size (kb) | 301.17 | 8915.45 | 4648.10 | 1000.40 | 737.18 | 915.40 | 3717.00 |
Number of contigs | 46,180 | 2221 | 7885 | 24,228 | 14,357 | 13,636 | 88,842 |
N50 contig length (kb) | 26.2 | 862.5 | 140.0 | 18.3 | 49.4 | 68.4 | 15.5 |
Genomic_features: | |||||||
Protein coding gene | 31,389 | 17,184 | 14,384 | 17,086 | 18,071 | 15,317 | 14,623 |
Repeats (%) | 33.8 | 42.9 | 16.7 | 14.6 | 34.0 | 31.8 | 43.6 |
GC (%) | 38.3 | 37.4 | 35.5 | 36.1 | 38.4 | 36.6 | 38.8 |
Mean CDS length (bp) | 1204.0 | 1461.0 | 1512.3 | 1330.9 | 1385.0 | 1565.2 | 1212.7 |
Mean exon length (bp) | 230.0 | 256.9 | 316.7 | 309.2 | 214.0 | 235.8 | 222.2 |
Mean intron length (bp) | 1254.0 | 1205.3 | 1603.3 | 1379.4 | 1224.0 | 1938.4 | 1084.1 |
Mean number of exons per gene | 5.20 | 5.68 | 7.04 | 6.20 | 6.47 | 6.64 | 5.45 |
Quality_assessment: BUSCO % present * (complete) | |||||||
Genome | 98.5 (97.9) | 98.5 (97.8) | 98.8 (98.4) | 98.5 (97.1) | 92.7 (89.9) | 99.0 (98.4) | 94.5 (92.1) |
Protein (OGS) | 95.7 (92.0) | 93.8 (90.6) | 97.8 (97.3) | 98.4 (96.0) | 80.1 (75.0) | 99.0 (97.9) | 96.3 (91.5) |
Species | Epiphyas postvittana | Cydia pomonella | Trichoplusia ni | Helicoverpa armigera | Plutella xylostella | Spodoptera litura | Bombyx mori | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Repeat Types | Length (Mb) | P% | Length (Mb) | P% | Length (Mb) | P% | Length (Mb) | P% | Length (Mb) | P% | Length (Mb) | P% | Length (Mb) | P% |
DNA elements | 14.07 | 2.35 | 26.95 | 3.49 | 21.92 | 6.58 | 0.22 | 0.45 | 7.50 | 1.90 | 8.4 | 1.96 | 69.07 | 10.44 |
LINE | 17.83 | 2.98 | 68.51 | 8.86 | 6.66 | 2.00 | 0.13 | 0.27 | 20.62 | 5.23 | 46.27 | 10.81 | 101.25 | 15.31 |
LTR | 4.59 | 0.77 | 11.39 | 1.47 | 1.51 | 0.45 | 0.06 | 0.12 | 9.86 | 2.5 | 2.41 | 0.56 | 4.55 | 0.69 |
SINE | 6.12 | 1.02 | 21.03 | 2.72 | 5.47 | 1.64 | - | - | 2.01 | 0.51 | 8.51 | 1.99 | 8.62 | 1.30 |
Simple repeat | 5.11 | 0.85 | 5.08 | 0.66 | 3.19 | 1.92 | - | - | - | - | 4.52 | 1.06 | 6.26 | 0.95 |
Other | 0.51 | 0.09 | 1.81 | 1.39 | 3.19 | 1.92 | - | - | 0.000057 | 0 | 0.67 | 0.16 | 0.93 | 0.14 |
Unclassified | 153.74 | 25.71 | - | - | 16.79 | 5.04 | 0.08 | 0.16 | 111.25 | 28.23 | 73.89 | 17.26 | 54.55 | 8.25 |
Total | 201.97 | 33.77 | 341.54 | 42.87 | 55.54 | 16.68 | 49.00 | 14.60 | 151.24 | 38.37 | 136.17 | 31.8 | 245.23 | 37.33 |
SNP Type | Genic | Intergenic | Total |
---|---|---|---|
Biallelic | 10,803 (57.56) | 5986 (31.9) | 16,789 (89.46) |
Triallelic | 1261 (6.72) | 585 (3.12) | 1846 (9.84) |
Tetraallelic | 96 (0.51) | 36 (0.19) | 132 (0.70) |
Total | 12,160 (64.79) | 6607 (35.21) | 18,767 (100.0) |
Country | Population | N | pi | Theta | D |
---|---|---|---|---|---|
AUS | Gumeracha (GUM) | 7052 | 0.0012 | 0.0015 | −0.0325 |
Wagga Wagga (NSW) | 5998 | 0.0012 | 0.0014 | −0.0423 | |
Tasmania (TAS) | 5006 | 0.0009 | 0.0010 | −0.0291 | |
Dalkeith (WAA) | 5890 | 0.0009 | 0.0012 | −0.0352 | |
USA | California (CA) | 7934 | 0.0009 | 0.0011 | −0.0282 |
NZ | Awatere (AWA) | 4325 | 0.0009 | 0.0010 | −0.0339 |
Clyde (CLY) | 4005 | 0.0007 | 0.0008 | −0.0259 | |
Hawke’s Bay (HB) | 4523 | 0.0009 | 0.0011 | −0.0373 | |
Motueka (MOT) | 5625 | 0.0009 | 0.0011 | −0.0299 | |
Te Puke (TPU) | 3669 | 0.0008 | 0.0009 | −0.0422 |
GUM | NSW | TAS | WAA | CA | AWA | CLY | HB | MOT | TPU | |
---|---|---|---|---|---|---|---|---|---|---|
GUM | - | 0.10611 | 0.1199 | 0.14067 | 0.12127 | 0.10816 | 0.15075 | 0.11949 | 0.11523 | 0.14398 |
NSW | - | 0.14548 | 0.1359 | 0.13567 | 0.12461 | 0.16092 | 0.12251 | 0.13378 | 0.14405 | |
TAS | - | 0.1885 | 0.16099 | 0.12862 | 0.18155 | 0.15695 | 0.13225 | 0.19199 | ||
WAA | - | 0.17158 | 0.16146 | 0.1973 | 0.1635 | 0.1703 | 0.18416 | |||
CA | - | 0.14844 | 0.19214 | 0.1566 | 0.15068 | 0.18032 | ||||
AWA | - | 0.14505 | 0.11311 | 0.09855 | 0.14918 | |||||
CLY | - | 0.12674 | 0.14836 | 0.15415 | ||||||
HB | - | 0.13135 | 0.08647 | |||||||
MOT | - | 0.16317 | ||||||||
TPU | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thrimawithana, A.H.; Wu, C.; Christeller, J.T.; Simpson, R.M.; Hilario, E.; Tooman, L.K.; Begum, D.; Jordan, M.D.; Crowhurst, R.; Newcomb, R.D.; et al. The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture. Insects 2022, 13, 264. https://doi.org/10.3390/insects13030264
Thrimawithana AH, Wu C, Christeller JT, Simpson RM, Hilario E, Tooman LK, Begum D, Jordan MD, Crowhurst R, Newcomb RD, et al. The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture. Insects. 2022; 13(3):264. https://doi.org/10.3390/insects13030264
Chicago/Turabian StyleThrimawithana, Amali H., Chen Wu, John T. Christeller, Robert M. Simpson, Elena Hilario, Leah K. Tooman, Doreen Begum, Melissa D. Jordan, Ross Crowhurst, Richard D. Newcomb, and et al. 2022. "The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture" Insects 13, no. 3: 264. https://doi.org/10.3390/insects13030264
APA StyleThrimawithana, A. H., Wu, C., Christeller, J. T., Simpson, R. M., Hilario, E., Tooman, L. K., Begum, D., Jordan, M. D., Crowhurst, R., Newcomb, R. D., & Grapputo, A. (2022). The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture. Insects, 13(3), 264. https://doi.org/10.3390/insects13030264