Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Research Design
2.2.1. Field Selection
2.2.2. Questionnaire Survey
2.3. Data Collection
2.3.1. Fall Armyworm and Stemborer Abundance and Maize Plant Infestation Levels
2.3.2. Level of Maize Plant Damage
2.4. Statistical Analysis
3. Results
3.1. Socio-Demographic Characteristics of Respondents
3.2. General Characteristics of the Maize Farms
3.3. Fall Armyworm Infestation
3.4. Fall Armyworm Damage
3.5. Fall Armyworm and Stemborer Co-Occurrence and Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Odendo, M.; De Groote, H.; Odongo, O.M. Assessment of farmers’ preferences and constraints to maize production in moist midaltitude zone of western Kenya. In Proceedings of the 5th International Conference of the African Crop Science Society, Lagos, Nigeria, 21–26 October 2001; pp. 21–26. [Google Scholar]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in Sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Kfir, R.; Overholt, W.A.; Khan, Z.R.; Polaszek, A. Biology and management of economically important lepidopteran cereal stemborers in Africa. Annu. Reveiw Entomol. 2002, 47, 701–731. [Google Scholar] [CrossRef] [PubMed]
- Huesing, J.E.; Prasanna, B.M.; McGrath, D.; Chinwada, P.; Jepson, P.; John, L.; Capinera, J.L. Integrated pest management of fall armyworm in Africa: An introduction. In Fall Armyworm in Africa: A Guide for Integrated Pest Management, 1st ed.; Prasanna, B.M., Huesing, J.E., Eddy, R., Peschke, V.M., Eds.; CIMMYT: Mexico City, Mexico, 2018. [Google Scholar]
- De Groote, H.; Kimenju, S.C.; Munyua, B.; Palmas, S.; Kassie, M.; Bruce, A. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 2020, 292, 106804. [Google Scholar] [CrossRef]
- Montezano, A.D.G.; Specht, A.; Montezano, D.G.; Specht, A. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Sarmento, R.; De Souza Aguiar, R.W.; Vieira, S.M.J.; De Oliveira, H.G.; Holtz, A.M. Biology review, occurence and control of Spodptera frugiperda (Lepidoptera: Noctuidae) in corn in Brazil. Biosci. J. 2002, 18, 41–48. [Google Scholar]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Van den Berg, J. Agro-ecological options for fall armyworm (Spodoptera frugiperda J.E. Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef]
- Rwomushana, I.; Batem, M.; Beale, T.; Beseh, P.; Cameron, K.; Chiluba, M.; Clottey, V.; Davis, T.; Day, R.; Early, R. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar]
- Sisay, B.; Simiyu, J.; Mendesil, E.; Likhayo, P.; Ayalew, G.; Mohamed, S.; Subramanian, S.; Tefera, T. Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects 2019, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Ntiri, E.S.; Calatayud, P.A.; Van Den Berg, J.; Le Ru, B.P. Spatio-temporal interactions between maize lepidopteran stemborer communities and possible implications from the recent invasion of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Sub-Saharan Africa. Environ. Entomol. 2019, 48, 573–582. [Google Scholar] [CrossRef]
- Sokame, M.; Rebaudo, F.; Malusi, P.; Subramanian, S.; Kilalo, D.C.; Juma, G.; Calatayud, P.A. Influence of temperature on the interaction for resource utilization between fall armyworm, Spodoptera frugiperda and a community of lepidopteran maize stemborers larvae. Insects 2020, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Pannuti, L.E.R.; Baldin, E.L.L.; Hunt, T.E.; Paula-Moraes, S.V. On-plant larval movement and feeding behavior of fall armyworm (Lepidoptera: Noctuidae) on reproductive corn stages. Environ. Entomol. 2016, 45, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Bentivenha, J.P.F.; Montezano, D.G.; Hunt, T.E.; Baldin, E.L.L.; Peterson, J.A.; Victor, V.S.; Pannuti, L.E.R.; Vélez, A.M.; Paula-Moraes, S.V. Intraguild interactions and behavior of Spodoptera frugiperda and Helicoverpa spp. on maize. Pest Manag. Sci. 2017, 73, 2244–2251. [Google Scholar] [CrossRef]
- Hailu, G.; Niassy, S.; Bässler, T.; Ochatum, N.; Studer, C.; Salifu, D.; Agbodzavu, M.K.; Khan, Z.R.; Midega, C.; Subramanian, S. Could fall armyworm, Spodoptera frugiperda (J.E. Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. Int. J. Trop. Insect Sci. 2021, 41, 1753–1762. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Hailu, G.; Niassy, S.; Zeyaur, K.R.; Ochatum, N.; Subramanian, S. Maize–legume intercropping and push–pull for management of fall armyworm, stemborers, and striga in Uganda. Agron. J. 2018, 110, 2513–2522. [Google Scholar] [CrossRef] [Green Version]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A Climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J.E. Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; O’Neil, R.J. Social and ecological facets of pest management in Honduran subsistence agriculture: Implications for ipm extension and natural resource management. Environ. Dev. Sustain. 2010, 12, 297–311. [Google Scholar] [CrossRef]
- Van Huis, A.; Meerman, F. Can we make ipm work for resource-poor farmers in sub-Saharan Africa? Int. J. Pest Manag. 1997, 43, 313–320. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.M.; Kassam, A.; Van Velthuizen, H. Agro-Ecological Land Resources Assessment for Agricultural Development Planning, a Case Study of Kenya Resources Data Base and Land Productivity. FAO. Report 71/7. 1993. Available online: http://pure.iiasa.ac.at/4026 (accessed on 12 January 2022).
- Wekesa, E.; Mwangi, W.; Verkuijl, H.; Danda, K.; De Groote, H. Adoption of Maize Production Technologies in the Coastal Lowlands of Kenya; CIMMYT: Mexico City, Mexico, 2003. [Google Scholar]
- Sombroek, W.; Braun, H.M.H.; Van der Pouw, B.J.A. Exploratory soil map and agro-climatic zone map of Kenya, 1980, scale 1:1,000,000. In Kenya Soil Survey; Ministry of Agriculture, National Agricultural Laborotories: Nairobi, Kenya, 1982. Available online: https://edepot.wur.nl/399397 (accessed on 12 January 2022).
- Infonet Biovision Home. 2018. Available online: Https://infonet-biovision.org/ (accessed on 12 November 2020).
- FAO. The Wetland Soils of Central Kenya-Characteristics Classification and Current Use; FAO: Rome, Italy, 1996. [Google Scholar]
- FAO; CABI. Community-Based Fall Armyworm Monitoring, Early Warning and Management: Training of Trainers Manual; FAO: Rome, Italy, 2019. [Google Scholar]
- Luginbill, P. The Fall Armyworm; United States Department of Agriculture: Washington, DC, USA, 1928.
- Davis, F.M.; Ng, S.; Williams, W. Visual Rating Scales for Screening Whorl-Stage Corn for Resistance to Fall Armyworm; Technical Bulletin 186; Mississippi Agricultural and Forestry Research Experiment Station, Mississippi State University: Starkville, MS, USA, 1992. Available online: http://www.nal.usda.gov/ (accessed on 11 October 2020).
- Warton, D.; Hui, F. R Reports. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Baudron, F.; Zaman-Allah, M.A.; Chaipa, I.; Chari, N.; Chinwada, P. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in eastern Zimbabwe. Crop Prot. 2019, 120, 141–150. [Google Scholar] [CrossRef]
- Sparks, A.N. A review of the biology of the fall armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Valdez-Torres, J.B.; Soto-Landeros, F.; Osuna-Enciso, T.; Báez-Sañudo, M.A. Modelos de predicción fenológica para maíz blanco (Zea mays L.) y Gusano Cogollero (Spodoptera frugiperda J.E. Smith). Agrociencia 2012, 46, 399–410. [Google Scholar]
- Nderitu, M.; Oludhe, C.; Ali, A.; Omondi, P.; Makui, P. Analysis of rainfall and temperature variability in Kieni; Nyeri County. Int. J. Innov. Res. Dev. 2016, 5, 67–76. [Google Scholar]
- Han-ming, H.; Li-na, L.; Munir, S.; Bashir, N.H.; Yi, W.; Jing, Y.; Cheng-yun, L. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Perrin, R.M. Pest management in multiple cropping systems. Agro-Ecosyst. 1977, 3, 93–118. [Google Scholar] [CrossRef]
- Guera, O.G.M.; Castrej, F.; Robledo, N.; Jim, A.; Georgina, S.; Salazar-marcial, L.; Elizabet, H.; Moctezuma, F. Effectiveness of push–pull systems to fall armyworm (Spodoptera frugiperda) management in maize crops. Insects 2021, 12, 298. [Google Scholar] [CrossRef]
- Khan, Z.R.; Ampong-Nyarko, K.; Chiliswa, P.; Hassanali, A.; Kimani, S.; Lwande, W.; Overholt, W.A.; Pickett, J.A.; Smart, L.E.; Wadhams, L.J.; et al. Intercropping increases parasitism of pests. Nature 1997, 388, 631–632. [Google Scholar] [CrossRef]
- Chuang, W.P.; Ray, S.; Acevedo, F.E.; Peiffer, M.; Felton, G.W.; Luthe, D.S. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. Mol. Plant-Microbe Interact. 2014, 27, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.P.; Buckley, P.M.; Davis, F.M.; Williams, W.P.; Buckley, P.M.; Davis, F.M. Vegetative phase change in maize and its association with resistance to fall armyworm. Maydica 2000, 45, 215–219. [Google Scholar]
- Mutyambai, D.M.; Bruce, T.J.A.; Midega, C.A.O.; Woodcock, C.M.; Caulfield, J.C.; Van Den Berg, J.; Pickett, J.A.; Khan, Z.R. Responses of parasitoids to volatiles induced by Chilo partellus oviposition on teosinte, a wild ancestor of maize. J. Chem. Ecol. 2015, 41, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Morales, X.C.; Tamiru, A.; Sobhy, I.S.; Bruce, T.J.A.; Midega, C.A.O.; Khan, Z. Evaluation of African maize cultivars for resistance to fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae. Plants 2021, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Snook, M.E.; Gueldner, R.C.; Widstrom, N.W.; Wiseman, B.R.; Himmelsbach, D.S.; Harwood, J.S.; Costello, C.E. Levels of maysin and maysin analogues in silks of maize germplasm. J. Agric. Food Chem. 1993, 41, 1481–1485. [Google Scholar] [CrossRef]
- Mutyambai, D.M.; Bass, E.; Luttermoser, T.; Poveda, K.; Midega, C.A.O.; Khan, Z.R.; Kessler, A. More than “Push” and “Pull”? Plant-soil feedbacks of maize companion cropping increase chemical plant defenses against herbivores. Front. Ecol. Evol. 2019, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Ndemah, R.; Gounou, S.; Schulthess, F. The role of wild grasses in the management of lepidopterous stem-borers on maize in the humid tropics of western africa. Bull. Entomol. Res. 2002, 92, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Sims, S.R. Influence of soil type and rainfall on pupal survival and adult emergence of the fall armyworm (Lepidoptera: Noctuidae) in southern Florida. J. Entomol. Sci. 2008, 43, 373–380. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; O’Neil, R.J. Local agro-ecological knowledge and its relationship to farmers’ pest management decision making in rural Honduras. Agric. Hum. Values 2007, 24, 307–321. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T.; Kardol, P.; Klironomos, J.N.; Kulmatiski, A.; Schweitzer, J.A.; et al. Plant-Soil Feedbacks: The past, the present and future challenges. J. Ecol. 2013, 101, 265–276. [Google Scholar] [CrossRef]
- Clark, M.S.; Luna, J.M.; Stone, N.D.; Youngman, R.R. Habitat preferences of generalist predators in reduced-tillage corn. J. Entomol. Sci. 1993, 28, 404–416. [Google Scholar] [CrossRef]
- Rivers, A.; Barbercheck, M.; Govaerts, B.; Verhulst, N. Conservation agriculture affects arthropod community composition in a rainfed maize-wheat system in central Mexico. Appl. Soil Ecol. 2016, 100, 81–90. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habaitat management to conserve natural enemies of artheopods pests in agriculture. Annu. Reveiw Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Moraes, T.; Ferreira Da Silva, A.; Leite, N.A.; Karam, D.; Mendes, S.M. Survival and development of fall armyworm (Lepidoptera: Noctuidae) in weeds during the off-season. Fla. Entomol. 2020, 103, 288–292. [Google Scholar] [CrossRef]
- Hay-Roe, M.M.; Meagher, R.L.; Nagoshi, R.N.; Newman, Y. Distributional patterns of fall armyworm parasitoids in a corn field and a pasture field in Florida. Biol. Control 2016, 96, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, J. Insect resistance management in bt maize: Wild host plants of stemborers do not serve as refuges in Africa. J. Econ. Entomol. 2017, 110, 221–229. [Google Scholar] [CrossRef]
- Moolman, J.; Van den Berg, J.; Conlong, D.; Cugala, D.; Siebert, S.; Le Ru, B. Species diversity and distribution of lepidopteran stem borers in South Africa and Mozambique. J. Appl. Entomol. 2014, 138, 52–66. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Mudavanhu, P.; Nyamukondiwa, C. Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Front. Ecol. Evol. 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Sokame, B.M.; Tonnang, H.E.Z.; Subramanian, S.; Bruce, A.Y.; Dubois, T.; Ekesi, S.; Calatayud, P.A. A system dynamics model for pests and natural enemies interactions. Sci. Rep. 2021, 11, 1404. [Google Scholar] [CrossRef]
- Ong’amo, G.O.; Le Ru, B.P.; Calatayud, P.A.; Silvain, J.F. Composition of stemborer communities in selected vegetation mosaics in Kenya. Arthropod Plant Interact. 2013, 7, 267–275. [Google Scholar] [CrossRef]
- Mwalusepo, S.; Tonnang, H.E.Z.; Massawe, E.S.; Okuku, G.O.; Khadioli, N.; Johansson, T.; Calatayud, P.A.; Le Ru, B.P. Predicting the impact of temperature change on the future distribution of maize stemborers and their natural enemies along East African mountain gradients using phenology models. PLoS ONE 2015, 10, e0130427. [Google Scholar] [CrossRef] [Green Version]
- Calatayud, P.A.; Njuguna, E.; Mwalusepo, S.; Gathara, M.; Okuku, G.; Kibe, A.; Musyoka, B.; Williamson, D.; Ong’amo, G.; Juma, G.; et al. Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stemborers in East Africa? Agric. Ecosyst. Environ. 2016, 224, 95–103. [Google Scholar] [CrossRef]
- Sokame, B.; Subramanian, S.; Kilalo, D.C.; Juma, G.; Calatayud, P.A. Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer Chilo partellus, and indigenous maize stemborers in Africa. Entomol. Exp. Appl. 2020, 168, 322–331. [Google Scholar] [CrossRef]
- Song, Y.; Yang, X.; Zhang, H.; Zhang, D.; He, W.; Wyckhyus, K.; Wu, K. Interference competition and predation between invasive and native herbivores in China’s maize crop. J. Pest Sci. 2021, 94, 1053–1063. [Google Scholar] [CrossRef]
- Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 1997, 90, 619–624. [Google Scholar] [CrossRef]
- Overholt, W.A.; Songa, J.M.; Ofomata, V.; Jeske, R. The spread and ecological consequencies of the invasion of Chilo Partellus (Swinhoe) (Lepidoptera: Crambidae) in Africa. In Proceedings of the Invasive Species in Eastern Africa: Proceedings of a Workshop Held at ICIPE, Nairobi, Kenya, 5–6 July 1999; Lyons, E.E., Miller, S.E., Eds.; ICIPE Science Press: Nairobi, Kenya, 2000. [Google Scholar]
Variable | Agro-Ecological Zone | Mean N = 180 | Significance | |||
---|---|---|---|---|---|---|
Coastal Lowlands | Midland | Highlands | χ2 | F-Test | ||
Gender (%) | 0.14 | |||||
Male | 75.0 | 60.0 | 46.7 | 60.6 | ||
Female | 25.0 | 40.0 | 53.3 | 39.4 | ||
Age (years) | 50.1 | 46.4 | 46.9 | 47.9 | 3.16 ns | |
Farming experience (years) | 19.1 | 13.3 | 11.8 | 14.5 | 3.16 ns | |
Education level (%) | 0.30 | |||||
Informal | 5.0 | 10.0 | 10.0 | 8.3 | ||
Primary | 65.0 | 50.0 | 36.7 | 48.3 | ||
Secondary | 30.0 | 20.0 | 43.3 | 31.7 | ||
Tertiary | 0.0 | 20.0 | 10.0 | 11.7 |
Plot Variable | Lowlands Zone | Midlands Zone | Highlands Zone | Mean |
---|---|---|---|---|
Plot size | 0.7 ± 0.07 | 0.5 ± 0.05 | 0.5 ± 0.04 | 0.6 ± 0.03 |
Crop stage | ||||
Vegetative | 61.1 | 61.8 | 83.3 | 68.8 ± 7.29 |
Tasselling | 24.1 | 25.5 | 9.7 | 19.8 ± 5.03 |
Maturity | 14.8 | 12.7 | 6.9 | 11.5 ± 2.35 |
Cropping system | ||||
Monoculture | 42.6 | 30.4 | 49.4 | 40.8 ± 0.05 |
Mixed cropping (No pattern) including pumpkins (MO) | 11.1 | 10.9 | 14.8 | 12.3 ± 0.01 |
Maize-legume intercropping (ML) | 14.8 | 43.5 | 23.5 | 27.2 ± 0.08 |
Push-pull (PP) | 1.9 | 0.0 | 11.1 | 4.3 ± 0.03 |
Maize-agroforestry (MA) | 5.6 | 0.0 | 0.0 | 1.9 ± 0.02 |
Maize-cassava intercrop (MC) | 3.7 | 2.2 | 0.0 | 2.0 ± 0.01 |
Maize-legume-cassava intercrops (MLC) | 16.7 | 8.7 | 0.0 | 8.5 ± 0.05 |
Maize-vegetable intercrops (MV) | 3.7 | 4.4 | 1.2 | 3.1 ± 0.01 |
Cropping pattern | ||||
Continuous cropping | 55.0 | 20.0 | 50.0 | 41.7 ± 0.11 |
Rotation | 15.0 | 60.0 | 43.3 | 39.4 ± 0.13 |
Fallow | 30.0 | 20.0 | 6.7 | 18.9 ± 0.07 |
Maize variety | ||||
OPVs | 14.8 | 2.3 | 3.3 | 6.8 ± 0.04 |
Hybrids | 46.3 | 77.3 | 90.0 | 71.2 ± 0.13 |
Recycled seeds | 38.9 | 20.5 | 6.7 | 22.8 ± 0.13 |
Tillage | ||||
Conventional | 60.0 | 20.0 | 50.0 | 43.3 ± 0.12 |
Conservation | 40.0 | 80.0 | 50.0 | 56.7 ± 0.12 |
Zero tillage | 0.0 | 0.0 | 0.0 | 0.0 ± 0.00 |
Production system | ||||
Irrigation | 5.0 | 80.0 | 5.0 | 30.0 ± 25.00 |
Rainfed | 95.0 | 20.0 | 95.0 | 70.0 ± 25.00 |
Fertilizer application | ||||
Yes | 70.0 | 80.0 | 83.3 | 77.8 ± 0.04 |
No | 30.0 | 20.0 | 16.7 | 22.2 ± 0.04 |
Manure/compost application | ||||
Yes | 15.0 | 10.0 | 6.7 | 10.6 ± 0.02 |
No | 85.0 | 90.0 | 93.3 | 89.4 ± 0.02 |
Weeding frequency | ||||
Two or more | 60.0 | 50.0 | 26.7 | 45.6 ± 0.10 |
Once | 40.0 | 50.0 | 73.3 | 54.4 ± 0.10 |
Herbicide use | ||||
Yes | 5.0 | 0.0 | 0.0 | 1.7 ± 0.02 |
No | 95.0 | 100.0 | 100.0 | 98.3 ± 0.02 |
Insecticide use | ||||
Yes | 47.2 | 42.9 | 10.0 | 33.3 ± 0.12 |
No | 52.8 | 57.1 | 90.0 | 66.7 ± 0.12 |
Insecticide frequency | ||||
Two or more | 24.1 | 14.6 | 4.2 | 14.3 ± 0.06 |
Once | 75.9 | 85.5 | 95.8 | 85.7 ± 0.06 |
Term | Incidence of Plants Infested by FAW | |||
---|---|---|---|---|
Estimate | Standard Error | Z Value | p Value | |
Crop stage | ||||
Tasseling | −0.8 | 0.1 | −12.3 | <0.001 |
Mature | 0.0 | 0.1 | −0.4 | 0.692 |
Cropping pattern | ||||
Fallow | 0.5 | 0.1 | 3.9 | <0.001 |
Rotation with legumes | 0.4 | 0.1 | 2.8 | 0.006 |
Rotation with potatoes | 0.5 | 0.2 | 2.5 | 0.012 |
Rotation with vegetables | −0.6 | 0.1 | −5.0 | <0.001 |
Cropping system | ||||
Maize-cassava intercrop | −2.6 | 0.3 | −9.3 | <0.001 |
Maize-legume intercrop | −1.1 | 0.1 | −13.0 | <0.001 |
Maize-legume-cassava intercrop | −0.9 | 0.1 | −9.0 | <0.001 |
Mixed cropping (no pattern) | −1.6 | 0.1 | −18.9 | <0.001 |
Maize-vegetable intercrop | −0.6 | 0.2 | −2.7 | 0.007 |
Push–pull | −2.4 | 0.1 | −19.0 | <0.001 |
Fertilizer application | 0.7 | 0.1 | 11.4 | <0.001 |
Maize variety | ||||
DHO4 | 0.6 | 0.2 | 3.9 | <0.001 |
DK777 | −0.1 | 0.1 | −0.6 | 0.519 |
DK3081 | 0.6 | 0.2 | 2.7 | 0.007 |
Duma43 | −0.6 | 0.2 | −3.4 | 0.001 |
HB600 series | −0.9 | 0.1 | −8.0 | <0.001 |
OPVs | −0.6 | 0.1 | −6.2 | <0.001 |
PH4 | −0.9 | 0.1 | −8.1 | <0.001 |
Pioneer | −1.4 | 0.1 | −9.6 | <0.001 |
Insecticide use | 1.1 | 0.1 | 20.6 | <0.001 |
Plot size | 0.1 | 0.0 | 2.4 | 0.016 |
Previous crop | ||||
Fallow | −1.7 | 0.2 | −7.2 | <0.001 |
Legumes | 0.3 | 0.1 | 2.5 | 0.015 |
Maize and cassava | 17.0 | 333.6 | 0.1 | 0.959 |
Potatoes | 1.4 | 0.2 | 6.2 | <0.001 |
Vegetables | 0.6 | 0.2 | 3.8 | <0.001 |
Production system | ||||
Irrigation | 2.3 | 0.2 | 10.5 | <0.001 |
Soil types | ||||
Ferrosols | −5.2 | 0.5 | −10.2 | <0.001 |
Luvisols | −3.4 | 0.6 | −5.7 | <0.001 |
Nitisols | −3.4 | 0.5 | −6.6 | <0.001 |
Vertisols | −4.0 | 0.5 | −7.8 | <0.001 |
Tillage | ||||
Conservation tillage | −0.8 | 0.1 | −7.2 | <0.001 |
Weeding | 1.3 | 0.1 | 14.7 | <0.001 |
Term | Incidence of Plants Infested by FAW | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lowlands | Midlands | Highlands | ||||||||||
Estimate | Standard Error | Z Value | p Value | Estimate | Standard Error | Z Value | p Value | Estimate | Standard Error | Z Value | p Value | |
Crop stage | ||||||||||||
Tasselling | −0.9 | 0.5 | −1.8 | 0.076 | −1.5 | 0.1 | −11.8 | <0.001 | −0.5 | 0.1 | −3.9 | <0.001 |
Mature | −2.0 | 0.3 | −5.9 | <0.001 | −0.7 | 0.1 | −5.7 | <0.001 | −0.3 | 0.1 | −2.0 | 0.042 |
Cropping pattern | ||||||||||||
Fallow | −0.7 | 0.3 | −2.3 | 0.022 | −1.4 | 1.1 | −1.3 | 0.209 | −0.9 | 0.2 | −4.0 | <0.001 |
Rotation with legumes | −0.7 | 0.4 | −1.9 | 0.062 | −0.7 | 1.4 | −0.5 | 0.622 | 0.7 | 0.2 | 4.4 | <0.001 |
Rotation with potatoes | - | - | - | - | −1.1 | 1.2 | −1.0 | 0.336 | 0.5 | 0.2 | 2.5 | 0.014 |
Rotation with vegetables | - | - | - | - | −1.0 | 1.1 | −0.9 | 0.375 | −1.7 | 0.2 | −7.1 | <0.001 |
Cropping system | ||||||||||||
Maize-cassava intercrop | - | - | - | - | −17.3 | 350.5 | 0.0 | 0.961 | - | - | - | - |
Maize-legume intercrop | - | - | - | - | −0.8 | 0.1 | −6.2 | <0.001 | 0.1 | 0.2 | 0.6 | 0.552 |
Maize-legume-cassava intercrop | 2.2 | 1.0 | 2.2 | 0.032 | −0.7 | 0.2 | −3.3 | 0.001 | - | - | - | - |
Mixed cropping (No pattern) | 18.5 | 4269.9 | 0.0 | 0.997 | −1.9 | 0.2 | −10.6 | <0.001 | −0.8 | 0.1 | −7.3 | <0.001 |
Maize-vegetable intercrop | −1.9 | 0.4 | −5.0 | <0.001 | −1.4 | 0.3 | −4.3 | <0.001 | −0.5 | 0.3 | −1.8 | 0.072 |
Push–pull | −2.7 | 0.4 | −7.7 | <0.001 | - | - | - | - | −2.0 | 0.2 | −13.2 | <0.001 |
Maize-agroforestry | 18.5 | 4269.9 | 0.0 | 0.997 | - | - | - | - | - | - | - | - |
Fertilizer application | −0.4 | 0.3 | −1.5 | 0.144 | 2.2 | 0.1 | 16.0 | <0.001 | 0.6 | 0.1 | 5.9 | <0.001 |
Maize variety | ||||||||||||
DHO4 | - | - | - | - | −4.3 | 0.7 | −5.9 | <0.001 | - | - | - | - |
DK777 | - | - | - | - | - | - | - | - | 0.4 | 0.2 | 2.1 | 0.032 |
DK3081 | −0.6 | 0.6 | −0.9 | 0.383 | - | - | - | - | - | - | - | - |
Duma43 | - | - | - | - | - | - | - | - | −0.1 | 0.2 | −0.6 | 0.564 |
HB600 series | - | - | - | - | −1.1 | 0.2 | −6.9 | <0.001 | −0.7 | 0.2 | −3.8 | <0.001 |
OPVs | −0.7 | 0.5 | −1.5 | 0.133 | −2.3 | 0.2 | −12.5 | <0.001 | 0.2 | 0.3 | 0.9 | 0.352 |
PH4 | −2.3 | 0.4 | −5.2 | <0.001 | −1.4 | 0.2 | −12.5 | <0.001 | −0.2 | 0.5 | −0.4 | <0.001 |
Pioneer | - | - | - | - | −2.0 | 0.3 | −7.9 | <0.001 | −0.8 | 0.2 | −3.8 | <0.001 |
Panner | - | - | - | - | −5.0 | 1.0 | −4.9 | <0.001 | −2.8 | 0.6 | −4.4 | <0.001 |
Insecticide use | −0.9 | 0.5 | −1.8 | 0.078 | 1.8 | 0.1 | 16.1 | <0.001 | −1.4 | 0.3 | −4.9 | <0.001 |
Plot size | 0.0 | 0.1 | −0.4 | 0.690 | −1.0 | 0.1 | −13.2 | <0.001 | 0.9 | 0.1 | 14.4 | <0.001 |
Previous crop | ||||||||||||
Fallow | - | - | - | - | - | - | - | - | −1.0 | 0.2 | −5.1 | <0.001 |
Beans | −0.3 | 0.5 | −0.6 | 0.541 | 1.2 | 1.1 | 1.1 | 0.266 | −1.1 | 0.2 | −4.5 | <0.001 |
Potatoes | - | - | - | - | 0.1 | 0.7 | 0.1 | 0.883 | 1.5 | 0.3 | 5.8 | <0.001 |
Tomatoes | - | - | - | - | −0.6 | 0.7 | −0.8 | 0.411 | - | - | - | - |
Cabbage | - | - | - | - | 1.2 | 1.1 | 1.1 | 0.266 | - | - | - | - |
Production system | ||||||||||||
Irrigation | 2.3 | 0.2 | 10.5 | <0.001 | 0.2 | 0.7 | 0.3 | 0.779 | - | - | - | - |
Soil types | ||||||||||||
Luvisols | −3.4 | 0.6 | −5.7 | <0.001 | - | - | - | - | - | - | - | - |
Nitisols | −2.1 | 0.5 | −4.0 | <0.001 | −0.3 | 1.1 | −0.2 | 0.809 | 1.0 | 0.1 | 8.6 | <0.001 |
Vertisols | - | - | - | - | −0.4 | 1.2 | −0.4 | 0.722 | 0.9 | 0.2 | 5.7 | <0.001 |
Tillage | ||||||||||||
Conservation tillage | −1.3 | 0.3 | −4.5 | <0.001 | 0.6 | 0.6 | 1.0 | 0.332 | −0.9 | 0.1 | −8.6 | <0.001 |
Weeding | −0.3 | 0.3 | −1.0 | 0.306 | −0.8 | 0.6 | −1.4 | 0.171 | 1.0 | 0.1 | 8.0 | <0.001 |
Term | Damage Score from the Davis Scale | ||||
---|---|---|---|---|---|
Degrees of Freedom | Sum of Squares | Mean Squares | F Value | p-Value | |
Crop stage | 2 | 9.0 | 4.5 | 0.7 | 0.514 |
Cropping pattern | 4 | 22.7 | 4.5 | 0.7 | 0.609 |
Cropping system | 6 | 221.2 | 31.6 | 9.7 | <0.001 |
Fertilizer application | 1 | 13.1 | 6.6 | 1.0 | 0.377 |
Maize variety | 8 | 122.2 | 17.5 | 3.8 | 0.003 |
Insecticide use | 1 | 100.2 | 100.2 | 20.1 | <0.001 |
Plot size | 3 | 17.0 | 4.2 | 0.6 | 0.646 |
Previous crop | 5 | 64.3 | 12.9 | 2.2 | 0.069 |
Production system | 1 | 28.2 | 28.2 | 4.5 | 0.038 |
Soil types | 4 | 144.3 | 36.1 | 8.1 | <0.001 |
Tillage | 1 | 18.0 | 9.0 | 1.4 | 0.260 |
Weeding | 1 | 45.8 | 45.8 | 7.7 | 0.007 |
Term | Damage Score from the Davis Scale | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lowlands | Midlands | Highlands | |||||||||||||
Degrees of Freedom | Sum of Squares | Mean Squares | F Value | p-Value | Degrees of Freedom | Sum of Squares | Mean Squares | F Value | p-Value | Degrees of Freedom | Sum of Squares | Mean Squares | F Value | p-Value | |
Crop stage | 2 | 17.3 | 8.6 | 4.0 | 0.038 | 2 | 14.0 | 7.0 | 4.5 | 0.056 | 1 | 0.4 | 0.4 | 0.1 | 0.747 |
Cropping pattern | 2 | 16.8 | 8.4 | 3.8 | 0.043 | 4 | 4.5 | 1.1 | 0.3 | 0.882 | 6 | 32.9 | 5.5 | 2.0 | 0.115 |
Cropping system | 1 | 6.6 | 6.6 | 2.4 | 0.141 | 2 | 1.4 | 0.7 | 0.2 | 0.822 | 5 | 59.2 | 19.7 | 13.5 | <0.001 |
Fertilizer application | 1 | 3.9 | 3.9 | 1.4 | 0.254 | 1 | 1.8 | 1.8 | 0.6 | 0.458 | 1 | 8.0 | 8.0 | 2.5 | 0.124 |
Maize variety | 3 | 33.0 | 11.0 | 13.4 | <0.001 | 3 | 0.3 | 0.1 | 0.0 | 0.995 | 6 | 18.5 | 3.1 | 0.7 | 0.622 |
Insecticide use | 1 | 9.0 | 9.0 | 3.6 | 0.074 | 1 | 3.5 | 3.5 | 1.3 | 0.287 | 1 | 9.7 | 9.7 | 3.1 | 0.089 |
Plot size | 2 | 18.6 | 9.3 | 4.4 | 0.028 | 1 | 0.3 | 0.3 | 0.1 | 0.781 | 2 | 46.6 | 23.3 | 12.4 | <0.001 |
Previous crop | 1 | 1.1 | 1.1 | 0.6 | 0.463 | 2 | 0.5 | 0.3 | 0.1 | 0.868 | 3 | 21.0 | 7.0 | 2.5 | 0.082 |
Production system | 1 | 0.2 | 0.2 | 0.1 | 0.800 | 1 | 1.1 | 1.1 | 0.4 | 0.563 | 1 | 30.1 | 30.1 | 12.6 | 0.001 |
Soil types | 2 | 12.5 | 12.4 | 5.1 | 0.037 | 2 | 10.1 | 5.1 | 2.4 | 0.163 | 1 | 8.6 | 4.3 | 1.3 | 0.287 |
Tillage | 1 | 0.2 | 0.2 | 0.1 | 0.807 | 1 | 6.4 | 6.4 | 2.8 | 0.136 | 1 | 11.4 | 11.4 | 3.7 | 0.064 |
Weeding | 1 | 1.2 | 1.2 | 0.4 | 0.539 | 1 | 4.5 | 4.5 | 1.8 | 0.222 | 1 | 10.7 | 10.7 | 3.5 | 0.073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutyambai, D.M.; Niassy, S.; Calatayud, P.-A.; Subramanian, S. Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya. Insects 2022, 13, 266. https://doi.org/10.3390/insects13030266
Mutyambai DM, Niassy S, Calatayud P-A, Subramanian S. Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya. Insects. 2022; 13(3):266. https://doi.org/10.3390/insects13030266
Chicago/Turabian StyleMutyambai, Daniel Munyao, Saliou Niassy, Paul-André Calatayud, and Sevgan Subramanian. 2022. "Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya" Insects 13, no. 3: 266. https://doi.org/10.3390/insects13030266
APA StyleMutyambai, D. M., Niassy, S., Calatayud, P. -A., & Subramanian, S. (2022). Agronomic Factors Influencing Fall Armyworm (Spodoptera frugiperda) Infestation and Damage and Its Co-Occurrence with Stemborers in Maize Cropping Systems in Kenya. Insects, 13(3), 266. https://doi.org/10.3390/insects13030266