Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of MITEs in H. zea
2.2. MITE Sequences Comparison in the H. armigera and H. zea Genomes
2.3. Search for MITEs in Defensome Genes
3. Results
3.1. MITEs Identification in the H. armigera and H. zea Genomes
3.2. Characterization of MITE Families in H. armigera and H. zea Genomes
3.3. MITE Insertions Analysis in Relation with Defensome Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roquis, D.; Robertson, M.; Yu, L.; Thieme, M.; Julkowska, M.; Bucher, E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res. 2021, 49, 10431–10447. [Google Scholar] [CrossRef] [PubMed]
- Chénais, B.; Caruso, A.; Hiard, S.; Casse, N. The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene 2012, 509, 7–15. [Google Scholar] [CrossRef]
- Castanera, R.; Vendrell-Mir, P.; Bardil, A.; Carpentier, M.C.; Panaud, O.; Casacuberta, J.M. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability. Plant J. 2021, 107, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.; Peccoud, J.; Cordaux, R. Transposable elements and the evolution of insects. Annu. Rev. Entomol. 2021, 66, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2001, 98, 1699–1704. [Google Scholar] [CrossRef]
- Crescente, J.M.; Zavallo, D.; Helguera, M.; Vanzetti, L.S. MITE Tracker: An accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinform. 2018, 19, 348. [Google Scholar] [CrossRef]
- Bennetzen, J.L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 2000, 42, 251–269. [Google Scholar] [CrossRef]
- Han, Y.; Wessler, S.R. MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010, 38, e199. [Google Scholar] [CrossRef] [Green Version]
- Han, M.J.; Zhou, Q.Z.; Zhang, H.H.; Tong, X.; Lu, C.; Zhang, Z.; Dai, F. iMITEdb: The genome-wide landscape of miniature inverted-repeat transposable elements in insects. Database 2016, 2016, baw148. [Google Scholar] [CrossRef] [Green Version]
- Sabot, F.; Schulman, A.H. Parasitism and the retrotransposon life cycle in plants: A hitchhiker’s guide to the genome. Heredity 2006, 97, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Fattash, I.; Rooke, R.; Wong, A.; Hui, C.; Luu, T.; Bhardwaj, P.; Yang, G. Miniature inverted-repeat transposable elements: Discovery, distribution, and activity. Genome 2013, 56, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Drongitis, D.; Aniello, F.; Fucci, L.; Donizetti, A. Roles of transposable elements in the different layers of gene expression regulation. Int. J. Mol. Sci. 2019, 20, 5755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itokawa, K.; Komagata, O.; Kasai, S.; Okamura, Y.; Masada, M.; Tomita, T. Genomic structures of Cyp9m10 in pyrethroid resistant and susceptible strains of Culex quinquefasciatus. Insect Biochem. Mol. Biol. 2010, 40, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Nomura, M. Re-examination of morphological variations in the female internal genitalia of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) for identification and pest management. Fla. Entomol. 2021, 104, 218–221. [Google Scholar] [CrossRef]
- Pearce, S.L.; Clarke, D.F.; East, P.D.; Elfekih, S.; Gordon, K.H.J.; Jermiin, L.S.; McGaughran, A.; Oakeshott, J.G.; Papanikolaou, A.; Perera, O.P.; et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 2017, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, E.M.; Pantoja-Gomez, L.M.; de Paiva, J.B.; Nascimento, A.R.; Omoto, C.; Michel, A.P.; Correa, A.S. Hybridization and introgression between Helicoverpa armigera and H. zea: An adaptational bridge. BMC Evol. Biol. 2020, 20, 61. [Google Scholar] [CrossRef]
- Murùa, M.G.; Fogliata, S.V.; Herrero, M.I.; Vera, M.A.; Casmuz, A.S.; Sosa-Gomez, D.R. Biological and reproductive parameters of Helicoverpa armigera and Helicoverpa zea reared on artificial diet in Argentina. Bull. Insectol. 2021, 74, 55–64. [Google Scholar]
- Capinera, J.L. Corn earworm, Helicoverpa zea (Boddie)(Lepidoptera: Noctuidae). EDIS 2002, 7, 145. [Google Scholar] [CrossRef]
- da Silva, F.R.; Trujillo, D.; Bernardi, O.; Verle Rodrigues, J.C.; Bailey, W.D.; Gilligan, T.M.; Carrillo, D. Comparative toxicity of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) to selected insecticides. Insects 2020, 11, 431. [Google Scholar] [CrossRef]
- Valencia-Montoya, W.A.; Elfekih, S.; North, H.L.; Meier, J.I.; Warren, I.A.; Tay, W.T.; Gordon, K.H.J.; Specht, A.; Paula-Moraes, S.V.; Rane, R.; et al. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Mol. Biol. Evol. 2020, 37, 2568–2583. [Google Scholar] [CrossRef]
- Klai, K.; Chenais, B.; Zidi, M.; Djebbi, S.; Caruso, A.; Denis, F.; Confais, J.; Badawi, M.; Casse, N.; Mezghani Khemakhem, M. Screening of Helicoverpa armigera mobilome revealed transposable element insertions in insecticide resistance genes. Insects 2020, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evol. Biol. 2007, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open-source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2012, 41, D36–D42. [Google Scholar] [CrossRef] [Green Version]
- Kapitonov, V.V.; Jurka, J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 2008, 9, 411–412. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Dvorak, J.; Bennetzen, J.; Mueller, H.G.; Dai, M.X. Package ‘TE’. 2018. Available online: https://cran.r-project.org/ (accessed on 19 March 2022).
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- Demchak, B.; Hull, T.; Reich, M.; Liefeld, T.; Smoot, M.; Ideker, T.; Mesirov, J.P. Cytoscape: The network visualization tool for Genome Space. F1000Research 2014, 3, 151. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Behere, G.T.; Tay, W.T.; Russell, D.A.; Heckel, D.G.; Appleton, B.R.; Kranthi, K.R.; Batterham, P. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol. Biol. 2007, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Ben Amara, W.; Quesneville, H.; Khemakhem, M.M. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS ONE 2021, 16, e0257996. [Google Scholar] [CrossRef] [PubMed]
- Zidi, M.; Denis, F.; Klai, K.; Chénais, B.; Caruso, A.; Djebbi, S.; Mezghani, M.; Casse, N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 2021, 11, jkab287. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.; Walko, R.; Hake, S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 1994, 138, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, J.; Han, Q.; Zhang, Y.; Liu, Z. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 248, 109118. [Google Scholar] [CrossRef] [PubMed]
- Lien, N.T.K.; Ngoc, N.T.H.; Lan, N.N.; Hien, N.T.; Van Tung, N.; Ngan, N.T.T.; Hoang, N.H.; Binh, N.T.H. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am. J. Trop. Med. Hyg. 2019, 100, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoraki, L.; Pipini, D.; Labbe, P.; Chaskopoulou, A.; Weill, M.; Vontas, J. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin. PLoS Negl. Trop. Dis. 2017, 11, e0005533. [Google Scholar] [CrossRef] [Green Version]
- Perera, O.P.; Little, N.S.; Abdelgaffar, H.; Jurat-Fuentes, J.L.; Reddy, G.V. Genetic knockouts indicate that the ABCC2 protein in the bollworm Helicoverpa zea is not a major receptor for the Cry1Ac insecticidal protein. Genes 2021, 12, 1522. [Google Scholar] [CrossRef]
H. armigera * | H. zea | ||||||||
---|---|---|---|---|---|---|---|---|---|
Superfamilies | TSD | MITEs Length (pb) | TIR Length (pb) | MITE Sequences | Families | MITEs Length (pb) | TIR Length (pb) | MITE Sequences | Families |
Tc1/mariner | TA | 50–360 | 10–21 | 1817 | 142 | 85–794 | 10–71 | 2328 | 188 |
PIF/Harbinger | TWA, AT or AWT | 55–685 | 15–32 | 1368 | 111 | 60–720 | 13–84 | 4587 | 154 |
CACTA | 2–4 bp | 78–775 | 10–26 | 250 | 70 | 51–796 | 17–49 | 450 | 86 |
PiggyBac | TTAA | 50–800 | 15–31 | 93 | 2 | 256–775 | 21–69 | 25 | 4 |
hAT | 8 bp | 56–260 | 17–29 | 20 | 3 | 120–550 | 28–63 | 15 | 1 |
Transib | 5 pb | 83–386 | 13–27 | 16 | 2 | 75–564 | 36–57 | 5 | 1 |
Maverick | 6 pb | 50–800 | 10–24 | 6 | 3 | 306–654 | 18–42 | 5 | 1 |
Total | 3570 | 333 | 7415 | 435 |
H. armigera | H. zea | ||||||
---|---|---|---|---|---|---|---|
Families | MITE Length (bp) | TIR Length (bp) | Sequences Number | Copies Number | MITE Sequences | Copies Number | |
1 | HelPIF-1 | 155–234 | 25–65 | 25 | 210 | 13 | 174 |
2 | HelPIF-2 | 121–160 | 22–38 | 17 | 469 | 11 | 324 |
3 | HelPIF-3 | 213–229 | 58–72 | 9 | 161 | 21 | 323 |
4 | HelPIF-4 | 374–439 | 30–43 | 2 | 27 | 11 | 53 |
5 | HelPIF-5 | 111–140 | 35–44 | 5 | 73 | 5 | 81 |
6 | HelPIF-6 | 198–256 | 53–69 | 2 | 15 | 5 | 31 |
7 | HelPIF-7 | 163–174 | 39–47 | 4 | 47 | 2 | 39 |
8 | HelPIF-8 | 367–385 | 26–36 | 1 | 7 | 5 | 21 |
9 | HelPIF-9 | 290–339 | 22–37 | 2 | 21 | 2 | 15 |
Total PIF/Harbinger | 111–439 | 22–72 | 67 | 1030 | 75 | 1061 | |
10 | HelTc1mar-1 | 129–164 | 21–57 | 23 | 114 | 27 | 173 |
11 | HelTc1mar-2 | 98–125 | 28–38 | 14 | 103 | 20 | 205 |
12 | HelTc1mar-3 | 255–295 | 16–24 | 5 | 55 | 2 | 76 |
13 | HelTc1mar-4 | 195–212 | 21–34 | 3 | 18 | 2 | 10 |
14 | HelTc1mar-5 | 260–283 | 37–59 | 1 | 8 | 4 | 48 |
15 | HelTc1mar-6 | 457–679 | 10–29 | 1 | 6 | 3 | 36 |
Total Tc1/mariner | 98–679 | 10–59 | 47 | 304 | 58 | 548 | |
16 | HelCac-1 | 348–469 | 16–25 | 13 | 76 | 13 | 81 |
17 | HelCac-2 | 352–486 | 16–46 | 7 | 40 | 8 | 67 |
18 | HelCac-3 | 260–274 | 15–20 | 6 | 51 | 7 | 75 |
Total CACTA | 260–486 | 15–46 | 26 | 167 | 28 | 223 | |
Total MITEs | 140 | 1501 | 161 | 1832 |
Gene Families | Gene Name | Gene Length | MITE Inserted Name | MITE Length (bp) | TIR Length (bp) | Insertion Position | Exon/Intron Position | |
---|---|---|---|---|---|---|---|---|
Helicoverpa armigera | Cytochrome P450 | CYP450 4V2-like (LOC110375933) | 14,709 | MITE_armg_527 | 390 | 18 | 9793–10,182 | Intron 11 |
CYP450 4V2-like (LOC110375407) | 8843 | MITE_armg_2987 | 189 | 57 | 8301–8489 | Intron 11 | ||
CYP450 4C1-like (LOC110375947) | 10,768 | MITE_armg_4229 | 202 | 56 | 3478–3651 | Intron 4 | ||
CYP450 6B5-like (LOC110371743) | 15,792 | MITE_armg_5115 | 129 | 27 | 3727–3855 | Intron 1 | ||
Probable CYP450 49a1 (LOC110372238) | 38,869 | MITE_armg_6331 | 107 | 17 | 8631–8737 | Intron 2 | ||
Probable CYP450 6d2 (LOC110383081) | 4170 | MITE_armg_6757 | 96 | 26 | 1309–1404 | Intron 1 | ||
ABC | ABCG 49-like (LOC110377844) | 48,302 | MITE_armg_7483 | 486 | 21 | 25,885–26,370 | Intron 1 | |
ABCG 49-like (LOC110374586) | 55,698 | MITE_armg_5600 | 136 | 21 | 30,248–30,383 | Intron 23 | ||
ABCG 20 (LOC110376033) | 96,146 | MITE_armg_1805 | 246 | 10 | 89,853–90,098 | Intron 12 | ||
ABCG 23 (LOC110373590) | 60,734 | MITE_armg_5758 | 124 | 32 | 855–978 | Intron 1 | ||
Esterase | Esterase FE4 like (LOC110380254) | 9333 | MITE_armg_1387 | 287 | 13 | 3323–3609 | Intron 4 | |
Esterase FE4 like (LOC110384365) | 8458 | MITE_armg_6918 | 641 | 17 | 2829–3469 | Intron 1 | ||
Carboxylesterase 1C (LOC110375169) | 6830 | MITE_armg_5488 | 140 | 144 | 6127–6266 | Intron 10 | ||
Carboxylesterase 1E (LOC110379202) | 27,073 | MITE_armg_1116 | 334 | 50 | 18,270–18,603 | Intron 3 | ||
Venom carboxylesterase-6 (LOC110373494) | 27,998 | MITE_armg_335 | 393 | 40 | 9211–9603 | Intron 1 | ||
Helicoverpa zea | ABC transporter | ABC C2 (KY701524.1) | 11560 | MITE_zea_8125 | 137 | 15 | 2663–2799 | Intron 5 |
Cytochrome P450 | CYP9A14 (KZ117493.1) | 2400 | MITE_zea_5100 | 130 | 10 | - | Upstream |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klai, K.; Zidi, M.; Chénais, B.; Denis, F.; Caruso, A.; Casse, N.; Mezghani Khemakhem, M. Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea. Insects 2022, 13, 313. https://doi.org/10.3390/insects13040313
Klai K, Zidi M, Chénais B, Denis F, Caruso A, Casse N, Mezghani Khemakhem M. Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea. Insects. 2022; 13(4):313. https://doi.org/10.3390/insects13040313
Chicago/Turabian StyleKlai, Khouloud, Marwa Zidi, Benoît Chénais, Françoise Denis, Aurore Caruso, Nathalie Casse, and Maha Mezghani Khemakhem. 2022. "Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea" Insects 13, no. 4: 313. https://doi.org/10.3390/insects13040313
APA StyleKlai, K., Zidi, M., Chénais, B., Denis, F., Caruso, A., Casse, N., & Mezghani Khemakhem, M. (2022). Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea. Insects, 13(4), 313. https://doi.org/10.3390/insects13040313