Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Rearing Conditions
2.2. Mosquito Self-Marking
2.2.1. Evaluation of the Marking Effectiveness
2.2.2. Assessment of Fluorescent Powder Transfer to Female
2.2.3. Assessment of Males’ Survival and Fluorescent Powder Persistence
2.3. Statistical Analyses
3. Results
3.1. Effectiveness of the Self-Marking Method and Dust Contact-Transfer
3.2. Survival of Marked Males and Fluorescent Powder Persistence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Gaye, A.; Ndiaye, T.; Sy, M.; Deme, A.B.; Thiaw, A.B.; Sene, A.; Ndiaye, C.; Diedhiou, Y.; Mbaye, A.M.; Ndiaye, I. Genomic investigation of a dengue virus outbreak in Thiès, Senegal, in 2018. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Basso, C.; García da Rosa, E.; Romero, S.; González, C.; Lairihoy, R.; Roche, I.; Caffera, R.M.; da Rosa, R.; Calfani, M.; Alfonso-Sierra, E. Improved dengue fever prevention through innovative intervention methods in the city of Salto, Uruguay. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [Green Version]
- Brady, O.J.; Godfray, H.C.J.; Tatem, A.J.; Gething, P.W.; Cohen, J.M.; McKenzie, F.E.; Perkins, T.A.; Reiner, R.C.; Tusting, L.S.; Sinka, M.E. Vectorial capacity and vector control: Reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Şengül Demirak, M.Ş.; Canpolat, E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef]
- Dia, I.; Diagne, C.T.; Ba, Y.; Diallo, D.; Konate, L.; Diallo, M. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago. Parasite Vector 2012, 5, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Dusfour, I.; Thalmensy, V.; Gaborit, P.; Issaly, J.; Carinci, R.; Girod, R. Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana. Mem. Inst. Oswaldo Cruz 2011, 106, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Faucon, F.; Dusfour, I.; Gaude, T.; Navratil, V.; Boyer, F.; Chandre, F.; Sirisopa, P.; Thanispong, K.; Juntarajumnong, W.; Poupardin, R. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015, 25, 1347–1359. [Google Scholar] [CrossRef] [Green Version]
- Oliva, C.F.; Jacquet, M.; Gilles, J.; Lemperiere, G.; Maquart, P.-O.; Quilici, S.; Schooneman, F.; Vreysen, M.J.; Boyer, S. The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating vigour of sterilized males. PLoS ONE 2012, 7, e49414. [Google Scholar] [CrossRef] [Green Version]
- Bakri, A.; Heather, N.; Hendrichs, J.; Ferris, I. Fifty years of radiation biology in entomology: Lessons learned from IDIDAS. Ann. Entomol. Soc. Am. 2005, 98, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gato, R.; Menéndez, Z.; Prieto, E.; Argilés, R.; Rodríguez, M.; Baldoquín, W.; Hernández, Y.; Pérez, D.; Anaya, J.; Fuentes, I. Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba. Insects 2021, 12, 469. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S. La technique de l’insecte stérile: Une lutte ciblée sans insecticide. Med. Trop. 2012, 72, 60–62. [Google Scholar]
- Zhang, D.; Zheng, X.; Xi, Z.; Bourtzis, K.; Gilles, J.R. Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus. PLoS ONE 2015, 10, e0121126. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Gavotte, L.; Mercer, D.R.; Dobson, S.L. Artificial triple Wolbachia infection in Aedes albopictus yields a new pattern of unidirectional cytoplasmic incompatibility. Appl. Environ. Microbiol. 2010, 76, 5887–5891. [Google Scholar] [CrossRef] [Green Version]
- Calvitti, M.; Moretti, R.; Porretta, D.; Bellini, R.; Urbanelli, S. Effects on male fitness of removing Wolbachia infections from the mosquito Aedes albopictus. Med. Vet. Entomol. 2009, 23, 132–140. [Google Scholar] [CrossRef]
- James, S.; Collins, F.H.; Welkhoff, P.A.; Emerson, C.; Godfray, H.C.J.; Gottlieb, M.; Greenwood, B.; Lindsay, S.W.; Mbogo, C.M.; Okumu, F.O. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: Recommendations of a scientific working group. Am. J. Trop. Med. Hyg. 2018, 98, 1–49. [Google Scholar] [CrossRef]
- Silver, J.B. Mosquito Ecology: Field Sampling Methods; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; p. 1477. [Google Scholar]
- Culbert, N.J.; Kaiser, M.; Venter, N.; Vreysen, M.J.; Gilles, J.R.; Bouyer, J. A standardised method of marking male mosquitoes with fluorescent dust. Parasite Vector 2020, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Guerra, C.A.; Reiner, R.C.; Perkins, T.A.; Lindsay, S.W.; Midega, J.T.; Brady, O.J.; Barker, C.M.; Reisen, W.K.; Harrington, L.C.; Takken, W. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasite Vector 2014, 7, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Hagler, J.R.; Cohen, A.C.; Bradley-Dunlop, D.; Enriquez, F.J. New approach to mark insects for feeding and dispersal studies. Environ. Entomol. 1992, 21, 20–25. [Google Scholar] [CrossRef]
- Hagler, J.R.; Jackson, C.G. Methods for marking insects: Current techniques and future prospects. Annu. Rev. Entomol. 2001, 46, 511–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, S. Entomological Research in Malaria: Discussion, on thé relative Importance in transmitting Malaria of Anopheles quadrimaculatus, punctipennis and crucians and Advisability of differentiating between these Species in Applying Control Measures. South. Med. J. 1925, 18, 446–449. [Google Scholar] [CrossRef]
- Verhulst, N.O.; Loonen, J.A.; Takken, W. Advances in methods for colour marking of mosquitoes. Parasite Vector 2013, 6, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickens, B.L.; Brant, H.L. Effects of marking methods and fluorescent dusts on Aedes aegypti survival. Parasite Vector 2014, 7, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culbert, N.J.; Gilles, J.R.; Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 2019, 14, e0221822. [Google Scholar] [CrossRef]
- Vavassori, L.; Saddler, A.; Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasite Vector 2019, 12, 583. [Google Scholar] [CrossRef] [Green Version]
- Niebylski, M.; Craig, J.G. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J. Am. Mosq. Control Assoc. 1994, 10, 339–343. [Google Scholar]
- Niebylski, M.; Meek, C. A self-marking device for emergent adult mosquitoes. J. Am. Mosq. Control Assoc. 1989, 5, 86–90. [Google Scholar]
- Opiyo, M.A.; Hamer, G.L.; Lwetoijera, D.W.; Auckland, L.D.; Majambere, S.; Okumu, F.O. Using stable isotopes of carbon and nitrogen to mark wild populations of Anopheles and Aedes mosquitoes in South-Eastern Tanzania. PLoS ONE 2016, 11, e0159067. [Google Scholar] [CrossRef] [Green Version]
- Hamer, G.L.; Donovan, D.J.; Hood-Nowotny, R.; Kaufman, M.G.; Goldberg, T.L.; Walker, E.D. Evaluation of a stable isotope method to mark naturally-breeding larval mosquitoes for adult dispersal studies. J. Med. Entomol. 2012, 49, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.J.; Mitchell, S.N.; Paton, C.J.; Stevenson, J.; Staunton, K.M.; Snoad, N.; Beebe, N.; White, B.J.; Ritchie, S.A. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases. PLoS Negl. Trop. Dis. 2017, 11, e0005902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, D.; Muthukrishnan, S.; Sarkar, M. Fluorescent marked mosquito offer a method for tracking and study mosquito behaviour. Int. J. Mosq. Res. 2017, 4, 5–9. [Google Scholar]
- Welch, C.; Kline, D.; Allan, S.; Barnard, D. Laboratory evaluation of a dyed food marking technique for Culex quinquefasciatus (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 2006, 22, 626–629. [Google Scholar] [CrossRef]
- Joslyn, D.J.; Conrad, L.B.; Slavin, P.T. Development and preliminary field testing of the Giemsa self-marker for the salt marsh mosquito Aedes sollicitans (Walker)(Diptera: Culicidae). Ann. Entomol. Soc. Am. 1985, 78, 20–23. [Google Scholar] [CrossRef]
- Ciota, A.T.; Drummond, C.L.; Ruby, M.A.; Drobnack, J.; Ebel, G.D.; Kramer, L.D. Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility. J. Med. Entomol. 2012, 49, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vreysen, M.J.; Robinson, A.S.; Hendrichs, J. Area-Wide Control of Insect Pests: From Research to Field Implementation; Springer Science & Business Media: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Koul, O.; Cuperus, G.W.; Elliott, N. Areawide Pest Management: Theory and Implementation; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Pagabeleguem, S.; Gimonneau, G.; Seck, M.T.; Vreysen, M.J.; Sall, B.; Rayaissé, J.-B.; Sidibé, I.; Bouyer, J.; Ravel, S. A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component. PLoS Negl. Trop. Dis. 2016, 10, e0004491. [Google Scholar] [CrossRef] [Green Version]
- Seck, M.T.; Pagabeleguem, S.; Bassene, M.D.; Fall, A.G.; Diouf, T.A.; Sall, B.; Vreysen, M.J.; Rayaisse, J.-B.; Takac, P.; Sidibe, I. Quality of sterile male tsetse after long distance transport as chilled, irradiated pupae. PLoS Negl. Trop. Dis. 2015, 9, e0004229. [Google Scholar] [CrossRef] [Green Version]
- Gruvel, J. Vie pré-imaginale de Glossina tachinoides West., larve libre, pupaison, lieux de ponte.(II). Rev. D’élevage Méd. Vét. Pays Trop. 1975, 28, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Focks, D.A. An improved separator for the developmental stages, sexes and species of mosquitoes (Diptera, Culicidae). J. Med. Entomol. 1980, 17, 567–568. [Google Scholar] [CrossRef]
- Fay, R.; Morlan, H. A mechanical device for separating the developmental stages, sexes and species of mosquitoes. Mosquito News 1959, 19, 144–147. [Google Scholar]
- Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 1966, 50, 1623–1670. [Google Scholar]
- Therneau, T.; Grambsch, P. Modeling Survival Data. Extending the Cox Model; Dietz, K., Gail, M., Krickeberg, K., Samet, J., Tsiatis, A., Eds.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Zhou, Y.; Arifin, S.N.; Gentile, J.; Kurtz, S.J.; Davis, G.J.; Wendelberger, B.A. An agent-based model of the Anopheles gambiae mosquito life cycle. In Proceedings of the 2010 Summer Computer Simulation Multiconference, Ottawa, ON, Canada, 11–14 July 2010; Society for Computer Simulation International: San Diego, CA, USA, 2010; pp. 201–208. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 18 July 2021).
- Therneau, T. A Package for Survival Analysis in S. Version 2.38. 2019. Available online: https://cran.r-project.org/ (accessed on 18 July 2021).
- McMullen, L.; Safranyik, L.; Linton, D.; Betts, R. Survival of Self-marked Mountain Pine Beetles Emerged Form Logs Dusted with Fluorescent Powder. J. Entomol. Soc. Br. Columbia 1988, 85, 25–28. [Google Scholar]
- Saddler, A.; Kreppel, K.S.; Chitnis, N.; Smith, T.A.; Denz, A.; Moore, J.D.; Tambwe, M.M.; Moore, S.J. The development and evaluation of a self-marking unit to estimate malaria vector survival and dispersal distance. Malar. J. 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Sheppard, D.; Wilson, B.; Hawkins, J. A device for self-marking of Tabanidae. Environ. Entomol. 1973, 2, 960–961. [Google Scholar] [CrossRef]
- Singh, N.; Yasuno, M. A device for the self-marking of mosquitos. Bull. World Health Organ. 1972, 47, 677–679. [Google Scholar]
Quantity of Powder (mg) | Control | 1500 | 1000 | 500 | 400 | 300 | 200 | 100 | Mean |
---|---|---|---|---|---|---|---|---|---|
Emergence rate + SE | 98.13 ± 0.55 | 98.83 ± 0.35 | 98.86 ± 0.25 | 98.60 ± 0.61 | 98.53 ± 0.76 | 98.66 ± 0.21 | 98.17 ± 0.61 | 98.07 ± 1.04 | 98.45 ± 0.58 |
Rate of males marked + SE | 00 ± 0.00 | 99.33 ± 0.94 | 99.33 ± 0.47 | 98.67 ± 1.24 | 98 ± 1.41 | 97.67 ± 1.24 | 96.67 ± 1.24 | 96.33 ± 0.94 | 98 ± 1.61 |
Daily mortality rate | 0.0172 ± 0.0011 | 0.0213 ± 0.0044 | 0.0170 ± 0.0013 | 0.0238 ± 0.0072 | 0.0234 ± 0.0018 | 0.0165 ± 0.0018 | 0.0219 ± 0.0031 | 0.0234 ± 0.0002 | 0.0218 ± 0.28 |
Fluorescent Powder Quantity (mg) | Estimate | Std. Error | z Value | Pr (>|z|) |
---|---|---|---|---|
Control | 2.037 | 0.394 | 5.165 | 2.399 × 10−7 |
100 | −0.594 | 0.508 | −1.168 | 0.242 |
200 | −0.524 | 0.513 | −1.021 | 0.306 |
300 | −0.109 | 0.546 | −0.200 | 0.841 |
400 | −0.362 | 0.524 | −0.689 | 0.490 |
500 | −0.354 | 0.525 | −0.673 | 0.501 |
1000 | −0.254 | 0.533 | −0.476 | 0.634 |
1500 | −0.211 | 0.537 | −0.392 | 0.695 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diouf, G.; Seck, M.T.; Fall, A.G.; Bassène, M.D.; Biteye, B.; Bakhoum, M.T.; Ciss, M. Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions. Insects 2022, 13, 379. https://doi.org/10.3390/insects13040379
Diouf G, Seck MT, Fall AG, Bassène MD, Biteye B, Bakhoum MT, Ciss M. Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions. Insects. 2022; 13(4):379. https://doi.org/10.3390/insects13040379
Chicago/Turabian StyleDiouf, Gorgui, Momar Talla Seck, Assane Guèye Fall, Mireille Djimangali Bassène, Biram Biteye, Mame Thierno Bakhoum, and Mamadou Ciss. 2022. "Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions" Insects 13, no. 4: 379. https://doi.org/10.3390/insects13040379
APA StyleDiouf, G., Seck, M. T., Fall, A. G., Bassène, M. D., Biteye, B., Bakhoum, M. T., & Ciss, M. (2022). Effectiveness of a New Self-Marking Technique in Aedes aegypti under Laboratory Conditions. Insects, 13(4), 379. https://doi.org/10.3390/insects13040379