Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bed Bugs Samples
2.2. RNA Isolation, Library Preparation and Sequencing
2.3. Initial Sequence Processing and Analysis of Reads
2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Validation
3. Results
3.1. De Novo Assembly of the C. hemipterus Transcriptome
3.2. Functional Annotation of Unigenes
3.3. Differential Expression Analysis of Blood-Fed and Starved C. hemipterus
3.4. KEGG Pathway Enrichment Analysis
3.5. qRT-PCR Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cannet, A.; Akhoundi, M.; Berenger, J.M.; Michel, G.; Marty, P.; Delaunay, P. A review of data on laboratory colonies of bed bugs (Cimicidae), an insect of emerging medical relevance. Parasite 2015, 22, 21. [Google Scholar] [CrossRef] [Green Version]
- Benoit, J.B. Physiology. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.Y., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Benoit, J.B.; del Grosso, N.A.; Yoder, J.A.; Denlinger, D.L. Resistance to dehydration between bouts of blood feeding in the bed bug, Cimex lectularius, is enhanced by water conservation, aggregation, and quiescence. Am. J. Trop. Med. Hyg. 2007, 76, 987–993. [Google Scholar] [CrossRef] [Green Version]
- DeVries, Z.C.; Kells, S.A.; Appel, A.G. Effects of starvation and molting on the metabolic rate of the bed bug (Cimex lectularius L.). Physiolo. Biochem. Zool. 2015, 88, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.J.; Tang, X.D.; Xu, L.; Yan, W.; Li, Q.L.; Xiao, S.Y.; Fu, X.L.; Wang, W.; Li, N.; Shen, Z.Y. Early responses of silkworm midgut to microsporidium infection—A Digital Gene Expression analysis. J. Invertebr. Pathol. 2015, 124, 6–14. [Google Scholar] [CrossRef]
- Niu, D.; Zhao, Y.; Yang, Y.; Yang, R.; Gong, X.; Hu, L. De novo RNA-seq and functional annotation of Haemaphysalis longicornis. Acta Parasitol. 2019, 64, 807–820. [Google Scholar] [CrossRef]
- Zulaikha, Z.; Hassan, A.A. A survey on the infestation levels of tropical bed bugs in Peninsular Malaysia: Current updates and status on resurgence of Cimex hemipterus (Hemiptera: Cimicidae). Asian Pacific J. Trop. Dis. 2016, 6, 40–45. [Google Scholar] [CrossRef]
- FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 January 2022).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, G.; Tang, J.; Luo, R.; Patterson, J.; Liu, S.; Huang, W.; He, G.; Gu, S.; Li, S. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014, 30, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Guo, L.; Gu, S.; Wang, O.; Zhang, R.; Peters, B.A.; Fan, G.; Liu, X.; Xu, X.; Deng, L.; et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Bushmanova, E.; Antipov, D.; Lapidus, A.; Suvorov, V.; Prjibelski, A.D. rnaQUAST: A quality assessment tool for de novo transcriptome assemblies. Bioinformatics 2016, 32, 2210–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotech. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jacinto, V.; Sanchez-Flores, A.; Vega-Alvarado, L. Integrative differential expression analysis for multiple experiments (IDEAMEX): A web server tool for integrated RNA-Seq data analysis. Front. Genet. 2019, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007, 36, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamidala, P.; Rajarapu, S.P.; Jones, S.C.; Mittapalli, O. Identification and validation of reference genes for quantitative real-time polymerase chain reaction in Cimex lectularius. J. Med. Entomol. 2011, 48, 947–951. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Benoit, J.B.; Lopez-Martinez, G.; Patrick, K.R.; Phillips, Z.P.; Krause, T.B.; Denlinger, D.L. Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc. Natl. Acad. Sci. USA 2011, 108, 8026–8029. [Google Scholar] [CrossRef] [Green Version]
- Paim, R.M.; Araujo, R.N.; Leis, M.; Sant’Anna, M.R.; Gontijo, N.F.; Lazzari, C.R.; Pereira, M.H. Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation. Insect Biochem. Mol. Biol. 2016, 77, 10–20. [Google Scholar] [CrossRef]
- Benoit, J.B.; Adelman, Z.N.; Reinhardt, K.; Dolan, A.; Poelchau, M.; Jennings, E.C.; Szuter, E.M.; Hagan, R.W.; Gujar, H.; Richards, S.; et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 2016, 7, 10165. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.A.; Douglas, A.; Houlihan, D.F.; Secombes, C.J. Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genom. 2010, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Rani, J.; Chauhan, C.; Kumari, S.; Tevatiya, S.; das De, T.; Savargaonkar, D.; Pandey, K.C.; Dixit, R. Altered gut microbiota and immunity defines Plasmodium vivax survival in Anopheles stephensi. Front. Immunol. 2020, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Marron, M.T.; Markow, T.A.; Kain, K.J.; Gibbs, A.G. Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. J. Insect Physiol. 2003, 49, 261–270. [Google Scholar] [CrossRef]
- Zhang, D.W.; Xiao, Z.J.; Zeng, B.P.; Li, K.; Tang, Y.L. Insect behavior and physiological adaptation mechanisms under starvation stress. Front. Physiol. 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Monika, L.Z. Pyrimidine biosynthesis. In Encyclopedia of Biological Chemistry; Hudmon, A., Schulman, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Riddell, C.E.; Mallon, E.B. Insect psychoneuroimmunology: Immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav. Immun. 2006, 20, 135–138. [Google Scholar] [CrossRef]
- Merrill Jr, A.H.; Nikolova-Karakashian, M.; Schmelz, E.M.; Morgan, E.T.; Stewart, J. Regulation of cytochrome P450 expression by sphingolipids. Chem. Phys. Lipids. 1999, 102, 131–139. [Google Scholar] [CrossRef]
- Moore, C.A.; Frazier, J.L. Partial characterization of acid phosphatases of the boll weevil Anthonomus grandis. Insect Biochem. 1976, 6, 525–527. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annual Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, B.J.; Bretman, A.; Tregenza, T.O.M.; Tomkins, J.L.; Hosken, D.J. Metabolic rate does not decrease with starvation in Gryllus bimaculatus when changing fuel use is taken into account. Physiol. Entomol. 2011, 36, 84–89. [Google Scholar] [CrossRef]
- Chichi, L.I.; Liqun, L.I.; Huang, C.; Zhang, D. Autophagy promotes survival of adipose cells by inhibiting apoptosis under in vitro starvation. Chi. J. Pathophysiol. 2015, 12, 2228–2232. [Google Scholar]
- Santos-Araujo, S.; Bomfim, L.; Araripe, L.O.; Bruno, R.; Ramos, I.; Gondim, K.C. Silencing of ATG6 and ATG8 promotes increased levels of triacylglycerol (TAG) in the fat body during prolonged starvation periods in the Chagas disease vector Rhodnius prolixus. Insect Biochem. Mol. Biol. 2020, 127, 103484. [Google Scholar] [CrossRef] [PubMed]
- Vickery, H.B. The histidine content of the hemoglobin of man and of the horse and sheep, determined with the aid of 3, 4-dichlorobenzenesulfonic acid. J. Biol. Chem. 1942, 144, 719–730. [Google Scholar] [CrossRef]
- Barisón, M.J.; Damasceno, F.S.; Mantilla, B.S.; Silber, A.M. The active transport of histidine and its role in ATP production in Trypanosoma cruzi. J. Bioenerg. Biomembr. 2016, 48, 437–449. [Google Scholar] [CrossRef]
- Vera-Aviles, M.; Vantana, E.; Kardinasari, E.; Koh, N.L.; Latunde-Dada, G.O. Protective role of histidine supplementation against oxidative stress damage in the management of anemia of chronic kidney disease. Pharmaceuticals 2018, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Stanley-Samuelson, D.W.; Jurenka, R.A.; Cripps, C.; Blomquist, G.J.; de Renobales, M. Fatty acids in insects: Composition, metabolism, and biological significance. Archives Insect Biochem. Physiol. 1988, 9, 1–33. [Google Scholar] [CrossRef]
- Niwa, R.; Niwa, Y.S. Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and beyond. Biosci. Biotech. Biochem. 2014, 78, 1283–1292. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, T.; Koga, R.; Kikuchi, Y.; Meng, X.Y.; Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 2010, 107, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, M.; Nikoh, N.; Hosokawa, T.; Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. MBio 2015, 6, e01732-15. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.S.; Arnold, H.; Sun, X.X.; Sears, R.; Lu, H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J. 2007, 26, 3332–3345. [Google Scholar] [CrossRef]
- Korzekwa, K.R.; Jones, J.P. Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 1993, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Anzenbacher, P.; Anzenbacherova, E. Cytochromes P450 and metabolism of xenobiotics. Cellular Mol. Life Sci. CMLS 2001, 58, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Mittapelly, P.; Bansal, R.; Michel, A. Differential expression of cytochrome P450 CYP6 genes in the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J. Econo. Entomol. 2019, 112, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
Target Gene Name | Primer Sequence (5′–3′) | Description |
---|---|---|
RPL18 (housekeeping gene) | ATCGGCCTCCTATCTCTCTATC | 60S ribosomal protein L18 |
TACGCAAGGCACAGATCTTC | ||
PRSS1 | ATGTATGAAGGCACGGTTGTCAC | Trypsin-1 |
CAGTTACGGCCAAGTTGATTTCG | ||
ppk28 | TCAACAGGCTCAAACGAGAGC | Pickpocket protein 28 |
GGGTTCACTTGACTCGGGAAAG |
Number of contigs | 24,609 |
Largest contig (bp) | 22,971 |
Total length (bp) | 39,981,897 |
N50 | 2175 |
N75 | 1208 |
GC% | 38.75 |
DE | Gene | Description | log2 Fold Change | p-Value | Function |
---|---|---|---|---|---|
Upregulated in blood-fed and downregulated in starved bed bugs | HBA2 | Hemoglobin subunit alpha 2 | 14.29 | 7.5295 × 10−15 | Heme binding |
HBB | Hemoglobin subunit beta | 13.97 | 1.2125 × 10−13 | Heme binding | |
Oacyl | O-acyltransferase-like protein | 2.95 | 0.0008 | Acyltransferase activity | |
EEF1A1 | Translation elongation factor EF-1 alpha/Tu | 9.69 | 0.00004 | Deliver aminoacyl tRNAs to the ribosome | |
RAB37 | ras-related protein Rab-37 | 8.51 | 0.0011 | Protein transport | |
N/A | Coiled-coil protein TPD52 | 1.55 | 0.0039 | Protein homodimerization activity | |
DAN4 | Cell wall protein DAN4 | 5.57 | 0.0119 | Anchored component of membrane | |
Miga | Mitoguardin | 1.63 | 0.0342 | Mitochondrial fusion, protein heterodimerization and homodimerization activities | |
EHD3 | EH domain-containing protein 3 | 3.10 | 0.0006 | Cilium biogenesis/degradation, protein transport | |
N/A | Dyneins, heavy chain | 4.84 | 0.0128 | Cilium biogenesis/degradation | |
GOLGA6L1 | Golgin subfamily A member 6-like protein 1 | Have roles in membrane traffic and Golgi structure | |||
N/A | Transmembrane protein | 3.91 | 0.0008 | Transport | |
MFSD14A | Hippocampus abundant transcript 1 protein | 3.53 | 0.0273 | Transport | |
N/A | Nuclear pore complex | 3.43 | 0.0285 | Protein transport | |
FTH1 | Ferritin heavy chain 1 | 7.88 | 0.0103 | Iron storage | |
FTL | Ferritin light chain | 7.53 | 0.0345 | Iron storage | |
N/A | Thymosin beta 4 X-linked | 8.22 | 0.0043 | Actin monomer binding | |
Hsp70Ba | Major heat shock 70 kDa protein Ba | 4.53 | 0.0180 | Stress response | |
PKM | Pyruvate kinase | 4.22 | 0.0299 | Translation regulation | |
MARF1 | Meiosis regulator and mRNA stability factor 1 | 2.11 | 0.0363 | Meiosis regulator and mRNA stability factor 1 | |
Upregulated in starved and downregulated in blood fed bed bugs | ACP7 | Acid phosphatase type 7 | −3.87 | 5.1334 × 10−15 | Acid phosphatase activity |
PCP36 | Pupal cuticle protein 36 | −2.10 | 0.0011 | Structural constituent of cuticle | |
FBXL16 | F-box/LRR-repeat protein 16 | −1.85 | 0.0081 | Ubl conjugation pathway | |
N/A | E3 ubiquitin ligase interacting with arginine methyltransferase | −1.82 | 0.0093 | Ubiquitin-mediated protein degradation | |
N/A | Ankyrin repeat protein | −1.78 | 0.0269 | Mediate protein-protein interactions | |
N/A | UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit | −1.77 | 0.0341 | Ubl conjugation pathway | |
CYP | Cytochrome P450 | −1.37 | 0.0128 | Detoxification | |
PRG4 | Proteoglycan 4 | −1.79 | 0.0175 | Immune response | |
ALPK1 | Alpha-protein kinase 1 | −1.86 | 0.0200 | Innate immunity | |
ABCC | Multidrug resistance-associated protein | −8.86 | 0.00004 | Lipid transport | |
GMPR | GMP reductase 1 | −1.33 | 0.0275 | Purine metabolism | |
TER94 | Transitional endoplasmic reticulum ATPase TER94 | −3.63 | 0.0043 | ATP hydrolysis activity | |
SBK1 | Serine/threonine-protein kinase SBK1 | −1.84 | 0.0103 | ATP binding | |
SNRNP70 | U1 small nuclear ribonucleoprotein 70 kDa | −2.43 | 0.0025 | mRNA processing | |
Twk-18 | TWiK family of potassium channels protein 18 | −1.81 | 0.0059 | Locomotion | |
N/A | General odorant-binding protein | −3.02 | 0.00005 | Sensory perception of smell | |
FGFR3 | Fibroblast growth factor receptor 3 | −1.56 | 0.0345 | Apoptosis | |
PYRE-F | Uridine 5′-monophosphate synthase | −2.64 | 0.0418 | Pyrimidine biosynthesis |
Status | Pathway |
---|---|
Blood-fed | Histidine metabolism, sulfur relay system, steroid biosynthesis, synthesis and degradation of ketone bodies, caffeine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, butanoate metabolism, autophagy, glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan sulfate |
Starved | Steroid biosynthesis, glycosaminoglycan biosynthesis—chondroitin sulfate/dermatan sulfate, butanoate metabolism, apoptosis, nicotinate and nicotinamide metabolism, fatty acid elongation, terpenoid backbone biosynthesis, autophagy, protein export, metabolism of xenobiotics by cytochrome P450, drug metabolism—cytochrome P450, riboflavin metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, L.; Ab Majid, A.H. Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). Insects 2022, 13, 387. https://doi.org/10.3390/insects13040387
Lim L, Ab Majid AH. Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). Insects. 2022; 13(4):387. https://doi.org/10.3390/insects13040387
Chicago/Turabian StyleLim, Li, and Abdul Hafiz Ab Majid. 2022. "Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae)" Insects 13, no. 4: 387. https://doi.org/10.3390/insects13040387
APA StyleLim, L., & Ab Majid, A. H. (2022). Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). Insects, 13(4), 387. https://doi.org/10.3390/insects13040387