A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators’ Gut Content
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Detection of S. frugiperda and Predator Collection
2.2. Molecular Analysis of Gut Contents
2.2.1. DNA Extraction
2.2.2. Primer Design and Optimization
2.2.3. Feeding Studies
3. Results
3.1. Primer Specificity and Half-Life for S. frugiperda DNA
3.2. Insect Field Collection and Predator Gut-Content Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalleshwaraswamy, C.M.; Asokan, R.; Mahadeva Swamv, H.M.; Maruthi, M.S.; Pavithra, H.B.; Hegbe, K.; Navi, S.; Prabhu, S.T.; Goergen, G.E. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Fall Armyworm: Map of the Worldwide Spread of Fall Armyworm Since 2016 (as of May 2021), Compiled Using Information from a Range of Sources, Including FAO, International Plant Protection Convention, CABI, the European and Mediterranean Plant Protection Organization, and National Governments. 2020. Available online: http://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/ (accessed on 16 February 2022).
- Da Silva, D.M.; Bueno, A.D.F.; Andrade, K.; Stecca, C.D.S.; Neves, P.M.O.J.; De Oliveira, M.C.N. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 2017, 74, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Nagoshi, R.N.; Rosas-García, N.M.; Meagher, R.L.; Fleischer, S.; Westbrook, J.K.; Sappington, T.W.; Hay-Roe, M.; Thomas, J.M.; Murúa, G.M. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. Ecol. Behav. 2015, 10, 135–144. [Google Scholar] [CrossRef]
- Farias, J.R.; Andow, D.A.; Horikoshi, R.J.; Sorgatto, R.J.; Fresia, P.; dos Santos, A.C.; Omoto, C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014, 64, 150–158. [Google Scholar] [CrossRef]
- Horikoshi, R.J.; Dourado, P.M.; Berger, G.U.; Fernandes, D.d.S.; Omoto, C.; Willse, A.; Martinelli, S.; Head, G.P.; Corrêa, A.S. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci. Rep. 2021, 11, 15956. [Google Scholar] [CrossRef]
- Paredes-Sánchez, F.A.; Rivera, G.; Bocanegra-García, V.; Martínez-Padrón, H.Y.; Berrones-Morales, M.; Niño-García, N.; Herrera-Mayorga, V. Advances in control strategies against Spodoptera frugiperda. A review. Molecules 2021, 26, 5587. [Google Scholar] [CrossRef]
- Boaventura, D.; Buer, B.; Hamaekers, N.; Maiwald, F.; Nauen, R. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Manag. Sci. 2021, 77, 3713–3726. [Google Scholar] [CrossRef]
- Gimenez, S.; Abdelgaffar, H.; Goff, G.L.; Hilliou, F.; Blanco, C.A.; Hänniger, S.; Bretaudeau, A.; Legeai, F.; Nègre, N.; Jurat-Fuentes, J.L.; et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 2020, 3, 664. [Google Scholar] [CrossRef]
- Bolzan, A.; Padovez, F.E.; Nascimento, A.R.; Kaiser, I.S.; Lira, E.C.; Amaral, F.S.; Kanno, R.H.; Malaquias, J.B.; Omoto, C. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 2019, 75, 2682–2689. [Google Scholar] [CrossRef]
- Carvalho, R.A.; Omoto, C.; Field, L.M.; Williamson, M.S.; Bass, C. Investigating the Molecular Mechanisms of Organophosphate and Pyrethroid Resistance in the Fall Armyworm Spodoptera frugiperda. PLoS ONE 2013, 8, e62268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storer, N.P.; Kubiszak, M.E.; King, J.E.; Thompson, G.D.; Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 2012, 110, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Huang, F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: Lessons and implications for Bt corn IRM in China. Insect Sci. 2021, 28, 574–589. [Google Scholar] [CrossRef]
- Horikoshi, R.J.; Bernardi, D.; Bernardi, O.; Malaquias, J.B.; Okuma, D.M.; Miraldo, L.L.; Amaral, F.S.D.A.E.; Omoto, C. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: Implications for resistance management. Sci. Rep. 2016, 6, 34864. [Google Scholar] [CrossRef] [Green Version]
- Reis, L.L.; Oliveira, L.J.; Cruz, I. Biologia e potencial de Doru luteipes no controle de Spodoptera frugiperda. Pesq. Agropecuária Bras. 1988, 23, 33–342. [Google Scholar]
- Figueiredo, M.D.L.C.; Martins-Dias, A.M.P.; Cruz, I. Relação entre a lagarta-do-cartucho e seus agentes de controle biológico natural na produção de milho. Pesq. Agropecuária Bras. 2006, 41, 1693–1698. [Google Scholar] [CrossRef] [Green Version]
- Dutra, C.C.; Koch, R.L.; Burkness, E.C.; Meissle, M.; Romeis, J.; Hutchison, W.D.; Fernandes, M.G. Harmonia axyridis (Coleoptera: Coccinellidae) Exhibits No Preference between Bt and Non-Bt Maize Fed Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2012, 7, e44867. [Google Scholar] [CrossRef]
- Sisay, B.; Simiyu, J.; Malusi, P.; Likhayo, P.; Mendesil, E.; Elibariki, N.; Wakgari, M.; Ayalew, G.; Tefera, T. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 2018, 142, 800–804. [Google Scholar] [CrossRef]
- Wengrat, A.P.; Coelho Junior, A.; Parra, J.R.; Takahashi, T.A.; Foerster, L.A.; Corrêa, A.S.; Polaszek, A.; Johnson, N.F.; Costa, V.A.; Zucchi, R.A. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Sci. Rep. 2021, 11, 14110. [Google Scholar] [CrossRef]
- Cruz, I.; Alvarenga, C.D.; Figueiredo, P.E.F. Biologia de Doru luteipes (Scudder) e sua capacidade predatória de ovos de Helicoverpa zea (Boddie). An. Soc. Entomol. Bras. 1995, 24, 273–278. [Google Scholar] [CrossRef]
- Zanuncio, J.C.; Silva, C.A.D.; Lima, E.R.; Pereira, F.F.; Ramalho, F.S.; Serrão, J.E. Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Braz. Arch. Biol. Technol. 2008, 51, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Bolzan, F.T.; Follmann, D.N.; Meneghetti, C.B.; Picon, L.C.; Ribeiro, A.L.P. Biological pest control in maize crop in Brazil: A review. J. Agric. Sci. 2019, 11, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Greenstone, M.H.; Rowley, D.L.; Weber, D.C.; Payton, M.E.; Hawthorne, D.J. Feeding mode and prey detectability half-life in molecular gut content analysis: An example with two predators of the Colorado potato beetle. Bull. Entomol. Res. 2007, 97, 201–209. [Google Scholar] [CrossRef] [Green Version]
- González-Chang, M.; Wratten, S.D.; Lefort, M.A.; Boyer, S. Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 2016, 9, 4–11. [Google Scholar] [CrossRef]
- Krehenwinkel, H.; Kennedy, S.; Pekár, S.; Gillespie, R.G. A cost-efficient and simple protocol to enrich prey DNA from extractions of predatory arthropods for large-scale gut content analysis by Illumina sequencing. Methods Ecol. Evol. 2017, 8, 126–134. [Google Scholar] [CrossRef]
- Greenstone, M.H.; Payton, M.E.; Weber, D.C.; Simmons, A.M. The detectability half-life in arthropod predator-prey research: What it is, why we need it, how to measure it, and how to use it. Mol. Ecol. 2014, 23, 3799–3813. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Giles, K.L.; Payton, M.E.; Greenstone, M.H. Identifying key cereal aphid predators by molecular gut analysis. Mol. Ecol. 2000, 9, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, A.S.; Tomé, H.V.V.; Braga, L.S.; Martins, G.F.; Oliveira, L.O.; Guedes, R.N.C. Are mitochondrial lineages, mitochondrial lysis and respiration rate associated with phosphine susceptibility in the maize weevil Sitophilus zeamais? Ann. Appl. Biol. 2014, 165, 137–146. [Google Scholar] [CrossRef]
- Fellet, M.; Da Silva, R.B.; Figueiredo, M.; Cruz, I. Avanços na metodologia e criação de Doru luteipes (Scudder, 1876) (Dermaptera: Forficulidae). In Embrapa Milho e Sorgo-Artigo em Anais de Congresso (ALICE); In Congresso Nacional de Milho e Sorgo, 26; Simpósio Brasileiro Sobre a Lagarta-do-Cartucho, Spodoptera Frugiperda, 2; Simpósio Sobre Colletotrichum Graminicola, 1, 2006, Belo Horizonte; Inovação para Sistemas Integrados de Produção: Trabalhos Apresentados; ABMS: Sete Lagoas, Brazil, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 21 March 2022).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 2003, 207, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Jinbo, U.; Kato, T.; Ito, M. Current progress in DNA barcoding and future implications for entomology. Entomol. Sci. 2011, 14, 107–124. [Google Scholar] [CrossRef]
- Jalali, S.; Ojha, R.; Venkatesan, T. DNA Barcoding for Identification of Agriculturally Important Insects. In New Horizons in Insect Science: Towards Sustainable Pest Management; Chakravarthy, A., Ed.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Marullo, R.; Mercati, F.; Vono, G. DNA Barcoding: A Reliable Method for the Identification of Thrips Species (Thysanoptera, Thripidae) Collected on Sticky Traps in Onion Fields. Insects 2020, 11, 489. [Google Scholar] [CrossRef] [PubMed]
- Sint, D.; Raso, L.; Kaufmann, R.; Traugott, M. Optimizing methods for PCR-based analysis of predation. Mol. Ecol. Resour. 2011, 11, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Nanini, F.; Maggio, D.H.; Ferronato, P.; Rugno, G.; Yamamoto, P.T.; Corrêa, A.S. Molecular marker to identify Diaphorina citri (Hemiptera: Liviidae) DNA in gut content of predators. Neotrop. Entomol. 2019, 48, 927–933. [Google Scholar] [CrossRef]
- Greenstone, M.H.; Szendrei, Z.; Payton, M.E.; Rowley, D.L.; Coudron, T.C.; Weber, D.C. Choosing natural enemies for conservation biological control: Use of the prey detectability half-life to rank key predators of Colorado potato beetle. Entomol. Exp. Appl. 2010, 136, 97–107. [Google Scholar] [CrossRef]
- Hosseini, R.; Schmidt, O.; Keller, M.A. Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: A polymerase chain reaction-based method. Entomol. Exp. Appl. 2008, 126, 194–202. [Google Scholar] [CrossRef]
- von Berg, K.; Traugott, M.; Symondson, W.O.C.; Scheu, S. The effects of temperature on detection of prey DNA in two species of carabid beetle. Bull. Entomol. Res. 2008, 98, 263–269. [Google Scholar] [CrossRef]
- Gontijo, L.M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control. 2019, 130, 155–163. [Google Scholar] [CrossRef]
- Roubinet, E.; Birkhofer, K.; Malsher, G.; Staudacher, K.; Ekbokm, B.; Traugott, M.; Jonsson, M. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 2017, 27, 1167–1177. [Google Scholar] [CrossRef]
- Koch, R.L. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 2003, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Gallo, D.; Nakano, O.; Silveira Neto, S.; Carvalho, R.P.L.; Baptista, G.C.de.; Berti Filho, E.; Parra, J.R.P.; Zucchi, R.A.; Alves, S.B.; Vendramim, J.D.; et al. Entomologia Agrícola; FEALQ: Piracicaba, Brazil, 2002; Volume 10. [Google Scholar]
- Langellotto, G.A.; Denno, R.F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 2014, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.S.S.L.; Venzon, M.; Duarte, M.V.A.; Sousa, F.F.; Pallini, A.; Hardwood, J.D. Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biol. Control 2013, 64, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.D.; Lampman, R.L. Olfactory responses of Orius insidiosus (Hemiptera: Anthocoridae) to volatiles of corn silks. J. Chem. Ecol. 1989, 15, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.J.; Jeanbourquin, P.M.; Held, M.; Degen, T. Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps. Transgenic Res. 2005, 14, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Wondwosen, B.; Hil, S.R.; Birgersson, G.; Seyoum, E.; Tekie, H.; Ignell, R. A(maize)ing attraction: Gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malar. J. 2017, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, A.V.; Gontijo, L.M.; Carvalho, R.M.; Vasconcelos, C.J.; Corrêa, A.S.; Gandra, R.L. Companion planting enhances pest suppression despite reducing parasitoid emergence. Basic Appl. Ecol. 2019, 41, 45–55. [Google Scholar] [CrossRef]
- Silva, J.H.C.; Saldanha, A.V.; Carvalho, R.M.; Machado, C.F.; Flausino, B.F.; Antonio, A.C.; Gontijo, L.M. The interspecific variation of plant traits in brassicas engenders stronger aphid suppression than the intraspecific variation of single plant trait. J. Pest Sci. 2022, 95, 723–734. [Google Scholar] [CrossRef]
Winter Crop | Summer Crop | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week 8 | Week 9 | Week 10 | Week 4 | Week 5 | Week 6 | Week 7 | ||||||||
Predator | Ab 1 | P.R 2 | Ab | P.R | Ab | P.R | Ab | P.R | Ab | P.R | Ab | P.R | Ab | P.R |
Hippodamia convergens | 39 | 5.1± 0.06 | 38 | 42.1 ± 0.156 | 30 | 26.7± 0.158 | 1 | - | 5 | - | 1 | - | - | - |
Harmonia axyridis | 17 | 11.8 ± 0.153 | 11 | 36.4± 0.284 | 4 | - | 21 | - | 22 | - | 6 | - | 11 | - |
Cycloneda sanguinea | 22 | 18.2± 0.161 | 16 | - | 19 | - | 2 | - | 6 | - | 3 | - | 3 | - |
Eriopis connexa | - | - | 4 | - | 8 | 25± 0.3 | 7 | - | 1 | - | 1 | - | 1 | - |
Doru luteipes | - | - | - | - | - | - | 22 | 4.5± 0.087 | 15 | 6.7± 0.126 | 64 | 1.6± 0.088 | 109 | 9.2± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggio, D.H.; Rossetti, V.Z.; Santos, L.M.A.; Carmezini, F.L.; Corrêa, A.S. A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators’ Gut Content. Insects 2022, 13, 635. https://doi.org/10.3390/insects13070635
Maggio DH, Rossetti VZ, Santos LMA, Carmezini FL, Corrêa AS. A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators’ Gut Content. Insects. 2022; 13(7):635. https://doi.org/10.3390/insects13070635
Chicago/Turabian StyleMaggio, Daniela Hipolito, Victória Zannuzzi Rossetti, Larissa Muniz Amaral Santos, Felipe Levorato Carmezini, and Alberto Soares Corrêa. 2022. "A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators’ Gut Content" Insects 13, no. 7: 635. https://doi.org/10.3390/insects13070635
APA StyleMaggio, D. H., Rossetti, V. Z., Santos, L. M. A., Carmezini, F. L., & Corrêa, A. S. (2022). A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators’ Gut Content. Insects, 13(7), 635. https://doi.org/10.3390/insects13070635