Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Data Used in This Study
2.2. De novo Detection of Transposable Elements Consensus Family Sequences
2.3. Phylogenetic Analysis
2.4. Distribution Analysis of Repetitive Elements in Apis Genomes
3. Results
3.1. Detection of Transposable Elements in Apis Genomes
3.2. Sequence Analysis of TcMar-Mariner Consensus Sequences
3.3. Distribution Analysis of Transposable Elements in Apis Genome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourque, G.; Burns, K.H.; Gehring, M.; Gorbunova, V.; Seluanov, A.; Hammell, M.; Imbeault, M.; Izsvák, Z.; Levin, H.L.; Macfarlan, T.S.; et al. Ten Things You Should Know about Transposable Elements. Genome Biol. 2018, 19, 199. [Google Scholar] [CrossRef]
- Storer, J.; Hubley, R.; Rosen, J.; Wheeler, T.J.; Smit, A.F. The Dfam Community Resource of Transposable Element Families, Sequence Models, and Genome Annotations. Mob. DNA 2021, 12, 2. [Google Scholar] [CrossRef]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A Unified Classification System for Eukaryotic Transposable Elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- Greenblatt, I.M.; Alexander Brink, R. Transpositions of Modulator in Maize into Divided and Undivided Chromosome Segments. Nature 1963, 197, 412–413. [Google Scholar] [CrossRef]
- Rubin, G.M.; Kidwell, M.G.; Bingham, P.M. The Molecular Basis of P-M Hybrid Dysgenesis: The Nature of Induced Mutations. Cell 1982, 29, 987–994. [Google Scholar] [CrossRef]
- Grabundzija, I.; Messing, S.A.; Thomas, J.; Cosby, R.L.; Bilic, I.; Miskey, C.; Gogol-Döring, A.; Kapitonov, V.; Diem, T.; Dalda, A.; et al. A Helitron Transposon Reconstructed from Bats Reveals a Novel Mechanism of Genome Shuffling in Eukaryotes. Nat. Commun. 2016, 7, 10716. [Google Scholar] [CrossRef] [PubMed]
- Winston, M. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Weinstock, G.M.; Robinson, G.E.; Gibbs, R.A.; Worley, K.C.; Evans, J.D.; Maleszka, R.; Robertson, H.M.; Weaver, D.B.; Beye, M.; Bork, P. Insights into Social Insects from the Genome of the Honeybee Apis Mellifera. Nature 2006, 443, 931–949. [Google Scholar]
- Yokoi, K.; Uchiyama, H.; Wakamiya, T.; Yoshiyama, M.; Takahashi, J.-I.; Nomura, T.; Furukawa, T.; Yajima, S.; Kimura, K. The Draft Genome Sequence of the Japanese Honey Bee, Apis Cerana Japonica (Hymenoptera: Apidae). Eur. J. Entomol. 2018, 115, 650–657. [Google Scholar] [CrossRef]
- Park, D.; Jung, J.W.; Choi, B.-S.; Jayakodi, M.; Lee, J.; Lim, J.; Yu, Y.; Choi, Y.-S.; Lee, M.-L.; Park, Y. Uncovering the Novel Characteristics of Asian Honey Bee, Apis Cerana, by Whole Genome Sequencing. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef]
- Diao, Q.; Sun, L.; Zheng, H.; Zeng, Z.; Wang, S.; Xu, S.; Zheng, H.; Chen, Y.; Shi, Y.; Wang, Y.; et al. Genomic and Transcriptomic Analysis of the Asian Honeybee Apis Cerana Provides Novel Insights into Honeybee Biology. Sci. Rep. 2018, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, S.; Cao, X.; Rueppel, O.; Krongdang, S.; Phokasem, P.; DeSalle, R.; Goodwin, S.; Xing, J.; Chantawannakul, P.; Rosenfeld, J.A. Whole Genome Sequencing and Assembly of the Asian Honey Bee Apis Dorsata. Genome Biol. Evol. 2020, 12, 3677–3683. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Lan, L.; Zheng, T.; Shi, P.; Xu, J.; Li, J. Comparative Genomics Reveals Recent Adaptive Evolution in Himalayan Giant Honeybee Apis Laboriosa. Genome Biol. Evol. 2021, 13, evab227. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.J.; Loucif-Ayad, W.; Adjlane, N.; Saini, D.; Manchiganti, R.; Krishnamurthy, V.; AlShagoor, B.; Batainh, A.M.; Mugasimangalam, R. Draft Genome Sequence of the Algerian Bee Apis Mellifera Intermissa. Genom. Data 2015, 4, 24–25. [Google Scholar] [CrossRef]
- Wallberg, A.; Bunikis, I.; Pettersson, O.V.; Mosbech, M.-B.; Childers, A.K.; Evans, J.D.; Mikheyev, A.S.; Robertson, H.M.; Robinson, G.E.; Webster, M.T. A Hybrid de Novo Genome Assembly of the Honeybee, Apis Mellifera, with Chromosome-Length Scaffolds. BMC Genom. 2019, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-L.; Zhu, Y.-Q.; Yan, Q.; Yan, W.-Y.; Zheng, H.-J.; Zeng, Z.-J. A Chromosome-Scale Assembly of the Asian Honeybee Apis Cerana Genome. Front. Genet. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, M.; Jouraku, A.; Toyoda, A.; Yokoi, K.; Minakuchi, Y.; Katsuma, S.; Fujiyama, A.; Kiuchi, T.; Yamamoto, K.; Shimada, T. High-Quality Genome Assembly of the Silkworm, Bombyx Mori. Insect Biochem. Mol. Biol. 2019, 107, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.J.; Dudchenko, O.; Kingan, S.B.; Koren, S.; Antoshechkin, I.; Crawford, J.E.; Glassford, W.J.; Herre, M.; Redmond, S.N.; Rose, N.H. Improved Reference Genome of Aedes Aegypti Informs Arbovirus Vector Control. Nature 2018, 563, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Tribolium Genome Sequencing Consortium; Richards, S.; Gibbs, R.A.; Weinstock, G.M.; Brown, S.J.; Denell, R.; Beeman, R.W.; Gibbs, R.; Beeman, R.W.; Brown, S.J.; et al. The Genome of the Model Beetle and Pest Tribolium Castaneum. Nature 2008, 452, 949–955. [Google Scholar] [CrossRef]
- Bouallègue, M.; Filée, J.; Kharrat, I.; Mezghani-Khemakhem, M.; Rouault, J.-D.; Makni, M.; Capy, P. Diversity and Evolution of Mariner-like Elements in Aphid Genomes. BMC Genom. 2017, 18, 494. [Google Scholar] [CrossRef] [PubMed]
- Carey, K.M.; Patterson, G.; Wheeler, T.J. Transposable Element Subfamily Annotation Has a Reproducibility Problem. Mob. DNA 2021, 12, 4. [Google Scholar] [CrossRef]
- Petersen, M.; Armisén, D.; Gibbs, R.A.; Hering, L.; Khila, A.; Mayer, G.; Richards, S.; Niehuis, O.; Misof, B. Diversity and Evolution of the Transposable Element Repertoire in Arthropods with Particular Reference to Insects. BMC Ecol. Evol. 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zong, W.; Diaby, M.; Lin, Z.; Wang, S.; Gao, B.; Ji, T.; Song, C. Diversity and Evolution of Pogo and Tc1/Mariner Transposons in the Apoidea Genomes. Biology 2021, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. The Clustal Omega Multiple Alignment Package. Methods Mol. Biol. 2021, 2231, 3–16. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Smit, A.; Hubley, R.; Green, P. RepeatMasker Open-4.0, 2013–2015. Available online: http://www.repeatmasker.org (accessed on 1 June 2022).
- Bao, Z.; Eddy, S.R. Automated de Novo Identification of Repeat Sequence Families in Sequenced Genomes. Genome Res. 2002, 12, 1269–1276. [Google Scholar] [CrossRef]
- Price, A.L.; Jones, N.C.; Pevzner, P.A. De Novo Identification of Repeat Families in Large Genomes. Bioinformatics 2005, 21 (Suppl. 1), i351–i358. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, D.; Kurtz, S.; Willhoeft, U. LTRharvest, an Efficient and Flexible Software for de Novo Detection of LTR Retrotransposons. BMC Bioinform. 2008, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons. Plant Physiol. 2018, 176, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Su, W.; Liao, Y.; Chougule, K.; Agda, J.R.A.; Hellinga, A.J.; Lugo, C.S.B.; Elliott, T.A.; Ware, D.; Peterson, T.; et al. Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. Genome Biol. 2019, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Flutre, T.; Duprat, E.; Feuillet, C.; Quesneville, H. Considering Transposable Element Diversification in de Novo Annotation Approaches. PLoS ONE 2011, 6, e16526. [Google Scholar] [CrossRef]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory Activities of Transposable Elements: From Conflicts to Benefits. Nat. Rev. Genet. 2017, 18, 71–86. [Google Scholar] [CrossRef]
- Goerner-Potvin, P.; Bourque, G. Computational Tools to Unmask Transposable Elements. Nat. Rev. Genet. 2018, 19, 688–704. [Google Scholar] [CrossRef]
- Ghanim, G.E.; Rio, D.C.; Teixeira, F.K. Mechanism and Regulation of P Element Transposition. Open Biol. 2020, 10, 200244. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.M. The Tcl-Mariner Superfamily of Transposons in Animals. J. Insect Physiol. 1995, 41, 99–105. [Google Scholar] [CrossRef]
- Plasterk, R.H.; Izsvák, Z.; Ivics, Z. Resident Aliens: The Tc1/Mariner Superfamily of Transposable Elements. Trends Genet. 1999, 15, 326–332. [Google Scholar] [CrossRef]
- Elsik, C.G.; Worley, K.C.; Bennett, A.K.; Beye, M.; Camara, F.; Childers, C.P.; de Graaf, D.C.; Debyser, G.; Deng, J.; Devreese, B.; et al. Finding the Missing Honey Bee Genes: Lessons Learned from a Genome Upgrade. BMC Genom. 2014, 15, 86. [Google Scholar] [CrossRef]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a Database of Repetitive Elements in Eukaryotic Genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Miskey, C.; Izsvák, Z.; Kawakami, K.; Ivics, Z. DNA Transposons in Vertebrate Functional Genomics. Cell. Mol. Life Sci. 2005, 62, 629. [Google Scholar] [CrossRef]
Organism Name [Reference] | GenBank Assembly Accession ID | Genome Size (bp) | Contig N50 | Abbreviation in This Study |
---|---|---|---|---|
A. mellifera [15] * | GCA_003254395.2 | 225,250,884 | 5,382,476 | Am |
A. cerana japonica [9] | GCA_002217905.1 | 211,200,590 | 179,487 | Acj |
A. cerana Korea native [10] | GCA_001442555.1 | 228,331,812 | 43,751 | Ack |
A. cerana China native [16] * | GCA_011100585.1 | 215,670,033 | 3,898,192 | Acc |
A. dorsata [12] | GCA_009792835.1 | 223,527,749 | 30,868 | Ad |
A. florea | GCA_000184785.2 | 229,015,090 | 24,915 | Af |
A. laboriosa [13] | GCF_014066325.1 | 226,078,798 | 303,790 | Al |
A. mellifera intermissa [14] | GCA_000819425.1 | 243,566,977 | 504 | Ami |
A. mellifera (German honey bee) * | GCA_003314205.1 | 227,036,473 | 5,131,172 | Amm |
A. mellifera carnica (Carniolan honey bee) * | GCA_013841245.1 | 226,044,179 | 2,692,667 | Amcar |
A. mellifera caucasica (Caucasian honey bee) | GCA_013841205.1 | 224,766,697 | 3,303,520 | Amcau |
Family Name | Acc | Acj | Ack | Ad | Af | Al | Am | Ami | Amm | Amcar | Amcau |
---|---|---|---|---|---|---|---|---|---|---|---|
DNA/CMC-EnSpm | 2 | 3 | 4 | 1 | 2 | 1 | 7 | 1 | 6 | 2 | 2 |
DNA/IS3EU | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 |
DNA/MULE-MuDR | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
DNA/Maverick | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
DNA/Merlin | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
DNA/PIF-Harbinger | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
DNA/PiggyBac | 1 | 0 | 3 | 4 | 3 | 5 | 2 | 2 | 3 | 2 | 2 |
DNA/TcMar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
DNA/TcMar-Mariner | 11 | 5 | 6 | 4 | 6 | 11 | 11 | 13 | 14 | 11 | 11 |
DNA/TcMar-Tc1 | 2 | 1 | 1 | 0 | 5 | 1 | 7 | 11 | 13 | 8 | 7 |
DNA/TcMar-Tigger | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
DNA/hAT | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
DNA/hAT-Ac | 5 | 3 | 4 | 4 | 4 | 2 | 7 | 2 | 4 | 2 | 5 |
DNA/hAT-Charlie | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 1 |
RC/Heliton | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
LINE/Dong-R4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
LINE/I | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
LINE/L1 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 1 | 0 | 2 |
LINE/R1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
LINE/R2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
LTR/Copia | 3 | 1 | 1 | 3 | 2 | 2 | 1 | 3 | 1 | 1 | 1 |
LTR/ERV1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
LTR/ERVK | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 |
LTR/ERVL | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
LTR/Gypsy | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | 1 |
LTR/Ngaro | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |
LTR/Pao | 1 | 0 | 1 | 1 | 7 | 2 | 1 | 1 | 0 | 3 | 2 |
SINE/ID | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Total (per species) | 34 | 17 | 24 | 21 | 35 | 33 | 48 | 39 | 51 | 34 | 38 |
Acc | Acj | Ack | Ad | Af | Al | Am | Ami | Amm | Amcar | Amcau |
---|---|---|---|---|---|---|---|---|---|---|
9.97% | 7.87% | 6.83% | 10.09% | 8.20% | 10.26% | 11.02% | 8.01% | 12.09% | 11.61% | 11.41% |
Family Name | Acc | Acj | Ack | Ad | Af | Al | Am | Ami | Amm | Amcar | Amcau |
---|---|---|---|---|---|---|---|---|---|---|---|
DNA/CMC-EnSpm | 1387 | 1684 | 1797 | 880 | 1060 | 692 | 2761 | 538 | 2200 | 1305 | 1518 |
DNA/IS3EU | 0 | 0 | 0 | 0 | 0 | 107 | 0 | 0 | 169 | 0 | 0 |
DNA/MULE-MuDR | 0 | 0 | 0 | 0 | 477 | 0 | 0 | 0 | 0 | 0 | 0 |
DNA/Maverick | 0 | 0 | 0 | 165 | 0 | 0 | 0 | 0 | 59 | 0 | 193 |
DNA/Merlin | 0 | 0 | 107 | 0 | 0 | 0 | 0 | 0 | 335 | 0 | 0 |
DNA/PIF-Harbinger | 0 | 0 | 0 | 0 | 0 | 0 | 406 | 59 | 698 | 0 | 0 |
DNA/PiggyBac | 138 | 0 | 316 | 845 | 474 | 826 | 456 | 318 | 848 | 797 | 678 |
DNA/TcMar | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 364 |
DNA/TcMar-Mariner | 1254 | 630 | 798 | 631 | 903 | 1343 | 1892 | 1495 | 2641 | 2478 | 3475 |
DNA/TcMar-Tc1 | 618 | 159 | 110 | 0 | 313 | 608 | 1010 | 1507 | 1656 | 1461 | 2300 |
DNA/TcMar-Tigger | 230 | 0 | 0 | 0 | 118 | 0 | 0 | 0 | 0 | 0 | 0 |
DNA/hAT | 0 | 0 | 0 | 0 | 98 | 201 | 0 | 0 | 0 | 0 | 0 |
DNA/hAT-Ac | 657 | 510 | 233 | 821 | 673 | 409 | 1702 | 404 | 974 | 351 | 1736 |
DNA/hAT-Charlie | 0 | 0 | 188 | 0 | 0 | 642 | 0 | 0 | 466 | 0 | 447 |
RC/Heliton | 0 | 0 | 38 | 0 | 0 | 0 | 2852 | 0 | 0 | 0 | 0 |
Total (per species) | 4284 | 2983 | 3587 | 3342 | 4116 | 4828 | 11,079 | 4321 | 10,046 | 6392 | 10,711 |
Family Name | Acc | Acj | Ack | Ad | Af | Al | Am | Ami | Amm | Amcar | Amcau |
---|---|---|---|---|---|---|---|---|---|---|---|
LINE/Dong-R4 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
LINE/I | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 0 |
LINE/L1 | 26 | 0 | 0 | 121 | 341 | 0 | 654 | 0 | 480 | 0 | 261 |
LINE/R1 | 74 | 57 | 0 | 81 | 0 | 161 | 0 | 0 | 0 | 75 | 0 |
LINE/R2 | 332 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 249 |
LTR/Copia | 829 | 82 | 101 | 749 | 354 | 466 | 257 | 321 | 318 | 109 | 268 |
LTR/ERV1 | 0 | 0 | 0 | 0 | 0 | 217 | 419 | 0 | 0 | 350 | 75 |
LTR/ERVK | 0 | 356 | 0 | 0 | 0 | 0 | 326 | 0 | 0 | 1316 | 0 |
LTR/ERVL | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 0 |
LTR/Gypsy | 574 | 46 | 44 | 0 | 147 | 233 | 1000 | 426 | 417 | 203 | 499 |
LTR/Ngaro | 153 | 0 | 0 | 91 | 0 | 0 | 0 | 48 | 483 | 0 | 0 |
LTR/Pao | 44 | 0 | 228 | 416 | 730 | 213 | 677 | 57 | 0 | 300 | 1237 |
SINE/ID | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 |
Total (per species) | 2032 | 592 | 373 | 1458 | 1672 | 1314 | 3385 | 876 | 1698 | 2353 | 2589 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokoi, K.; Kimura, K.; Bono, H. Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis. Insects 2022, 13, 698. https://doi.org/10.3390/insects13080698
Yokoi K, Kimura K, Bono H. Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis. Insects. 2022; 13(8):698. https://doi.org/10.3390/insects13080698
Chicago/Turabian StyleYokoi, Kakeru, Kiyoshi Kimura, and Hidemasa Bono. 2022. "Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis" Insects 13, no. 8: 698. https://doi.org/10.3390/insects13080698
APA StyleYokoi, K., Kimura, K., & Bono, H. (2022). Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis. Insects, 13(8), 698. https://doi.org/10.3390/insects13080698