Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Insect
2.2. Tested Insecticide
2.3. Surfaces
2.4. Treatment of Surfaces and Insect Exposure
2.5. Experimental Design and Data Analysis
3. Results
3.1. Efficacy on Concrete Surface
3.2. Efficacy on Laminate Flooring Surface
3.3. Efficacy on Laminate Flooring Surface
3.4. Comparison of Tested Surfaces
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heuzé, V.; Tran, G.; Nozière, P.; Lebas, F. Common Bean (Phaseolus vulgaris). Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. Available online: https://www.feedipedia.org/node/266 (accessed on 20 October 2015).
- Mc Connell, M.; Mamidi, S.; Lee, R.; Chikara, S.; Rossi, M.; Papa, R.; Mc Clean, P. Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2010, 121, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics. 2022. Available online: http://www.fao.org/faostat/en/#data/ (accessed on 23 April 2022).
- Kingsolver, J.M. Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera); Vols. 1 and 2, USDA Technical Bulletin 1912; U.S. Dept. of Agriculture, Agricultural Research Service: Washington, DC, USA, November 2004; Volume 1, 198p. [Google Scholar]
- Romero-Napoles, J. A new species of Acanthoscelides Schilsky, 1905 (Coleoptera: Bruchidae) from Nuevo Leon, Mexico, with a key to the obtectus species-group. Coleopt. Bullet. 2010, 64, 125–128. [Google Scholar] [CrossRef]
- Bailey, P.T. Pests of Field Crops and Pastures: Identification and Control; CSIRO Publishing: Collingwood, Australia, 2007; p. 456, ISBN-13: 9780643099425. [Google Scholar]
- Nchimbi-Msolla, S.; Misangu, R.N. Seasonal distribution of common bean (Phaseolus vulgaris L.) bruchid species in selected areas in Tanzania. In Proceedings of the Bean Seed Workshop, Arusha, Tanzania, 12–14 January 2002. [Google Scholar]
- Paul, U.V.; Lossini, J.S.; Edwards, P.J.; Hilbeck, A. Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J. Stored Prod. Res. 2009, 45, 97–107. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Ribodeau, M.; Hamraoui, A.; Bareau, I.; Blanchard, P.; Gil-Munoza, M.I.; Barberan, F.T. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2004, 40, 395–408. [Google Scholar] [CrossRef]
- Ayvaz, A.; Sagdic, O.; Karaborklu, S.; Ozturk, I. Insecticidal activity of the essential oils from different plants against three stored-product insects. J. Insect Sci. 2010, 10, 1–13. [Google Scholar] [CrossRef]
- Alvarez, N.; Hossaert-McKey, M.; Rasplus, J.; McKey, Y.D.; Mercier, L.; Soldati, L.; Aebi, A.; Shani, T.; Benrey, B. Sibling species of bean bruchids: A morphological and phylogenetic study of Acanthoscelides obtectus Say and Acanthoscelides obvelatus Bridwell. J. Zool. Syst. Evol. Res. 2005, 43, 29–37. [Google Scholar] [CrossRef]
- Schmale, I.; Wackers, F.L.; Cardona, C.; Dorn, S. Field infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), parasitoid abundance and consequences for storage pest control. Environ. Entomol. 2002, 31, 859–863. [Google Scholar] [CrossRef]
- Tucic, N.; Gliksman, I.; Seslija, D.; Milanovic, D.; Mikuljanac, S.; Stojkovic, O. Laboratory evolution of longevity in the bean weevil (Acanthoscelides obtectus). J. Evol. Biol. 1996, 9, 485–503. [Google Scholar] [CrossRef]
- Mutungi, C.; Affognon, H.D.; Njoroge, A.W.; Manono, J.; Baributsa, D.; Murdock, L.L. Triple-layer plastic bags protect dry common beans (Phaseolus vulgaris) against damage by Acanthoscelides obtectus (Coleoptera: Chrysomelidae) during storage. J. Econ. Entomol. 2015, 108, 2479–2488. [Google Scholar] [CrossRef]
- Gatehouse, A.M.R.; Dobie, P.; Hodges, R.J.; Meik, J.; Pusztai, A.; Boulter, D. Role of carbohydrates in insect resistance in Phaseolus vulgaris. J. Insect Physiol. 1987, 33, 843–850. [Google Scholar] [CrossRef]
- Shade, E.; Pratt, R.C.; Pomeroy, M.A. Development and mortality of the bean weevil, Acanthoscelides obtectus (Coleoptera: Bruchidae), on mature seeds of tepary beans, Phaseolus acutifolius, and common beans, Phaseolus vulgaris. Environ. Entomol. 1987, 16, 1067–1070. [Google Scholar] [CrossRef]
- Dobie, P.; Dendy, J.; Sherman, C.; Padgham, J.; Wood, A.; Gatehouse, A.M.R. New sources of resistance to Acanthoscelides obtectus (Say) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae) in nature seeds of five species of Phaseolus. J. Stored Prod. Res. 1990, 26, 177–186. [Google Scholar] [CrossRef]
- Baier, A.H.; Webster, B.D. Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms—I. Evaluation of damage. J. Stored Prod. Res. 1992, 28, 289–293. [Google Scholar] [CrossRef]
- Ishimoto, M.; Chrispeels, M.J. Protective mechanism of the Mexican bean weevil against high levels of a-amylase inhibitor in the common bean. Plant Physiol. 1996, 111, 393–401. [Google Scholar] [CrossRef]
- Mbogo, K.P.; Davis, J.; Myers, J.R. Transfer of the arcelin-phytohaemagglutinin-a amylase inhibitor seed protein locus from tepary bean (Phaseolus acutifolius A. Gray) to common bean (P. vulgaris L.). Biotechnology 2009, 8, 285–295. [Google Scholar] [CrossRef]
- Daglish, G.J.; Hall, E.A.; Zorzetto, M.J.; Lambkin, T.M.; Erbacher, J.M. Evaluation of protectants for control of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) in navybeans (Phaseolus vulgaris (L.)). J. Stored Prod. Res. 1993, 29, 215–219. [Google Scholar] [CrossRef]
- Lorini, I. Controle Integrado de Pragas de Grãos Armazenados; Embrapa: Passo Fundo, Brasil, 1998; 119p. [Google Scholar]
- Weber, E. Armazenagem Agrícola; Livraria e Editora Agropecuária: Guaíba, Brazil, 2001; pp. 1–396. [Google Scholar]
- Oliveira, M.R.C.; Correa, A.S.; Souza, G.A.; Guedes, R.N.C.; Oliveira, L.O. Mesoamerican origin and pre- and Post-Columbian expansions of the ranges of Acanthoscelides obtectus Say, a cosmopolitan insect pest of the common bean. PLoS ONE 2013, 8, e70039. [Google Scholar] [CrossRef]
- Gusmâo, N.M.S.; Oliveira, J.V.; Navarro, D.M.; Dutra, K.A.; Silva, W.A.; Wanderley, M.J.A. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F.; Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (Fabr.) (Coleoptera: Chrysomelidae, Bruchinae). J. Stored Prod. Res. 2013, 54, 41–47. [Google Scholar] [CrossRef]
- Arthur, F.H. Grain protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996, 32, 293–302. [Google Scholar] [CrossRef]
- Römbke, J.; Moltman, J.F. Applied Ecotoxicology; CRC Press: Boca Raton, FL, USA, 2000; 340p. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Rose, M.T.; Rose, T.J.; Morris, S.G.; Zwieten, L.V. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biol. Biochem. 2016, 92, 50–57. [Google Scholar] [CrossRef]
- Mohandass, S.; Arthur, F.H.; Zhu, K.Y.; Throne, J.E. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 2007, 43, 302–311. [Google Scholar] [CrossRef]
- Heudorf, U.; Angerer, J. Metabolites of pyrethroid insecticides in urine specimens: Current exposure in an urban population in Germany. Environ. Health Persp. 2001, 109, 213–217. [Google Scholar] [CrossRef]
- Collins, P.J. A new resistance to pyrethroids in Tribolium castaneum (Herbst). Pesticide Sci. 1990, 28, 101–115. [Google Scholar] [CrossRef]
- Collins, P.J.; Lambkin, T.M.; Bridgeman, B.W.; Pulvirenti, C. Resistance to grain-protectant insecticides in coleopterous pests of stored cereals in Queensland, Australia. J. Econ. Entomol. 1993, 86, 239–245. [Google Scholar] [CrossRef]
- Lorini, I.; Galley, D.J. Deltamethrin resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), a pest of stored grain in Brazil. J. Stored Prod. Res. 1999, 35, 37–45. [Google Scholar] [CrossRef]
- Kljajić, P.; Andrić, G.; Perić, I. Impact of short-term heat pre-treatment at 50 °C on the toxicity of contact insecticides to adults of three Sitophilus granarius (L.) populations. J. Stored Prod. Res. 2009, 45, 272–278. [Google Scholar] [CrossRef]
- Kljajić, P.; Kavallieratos, N.G.; Athanassiou, C.G.; Andrić, G. Is combining different grain protectants a solution to problems caused by resistant populations of stored product insects? In Proceedings of the 11th International Working Conference on Stored Product Protection, Chiang Mai, Thailand, 24–28 November 2014; pp. 781–793. [Google Scholar]
- Thompson, G.D.; Michel, K.H.; Yao, R.C.; Mynderse, J.S.; Mosburg, C.T.; Worden, T.V.; Chio, E.H.; Sparks, T.C.; Hutchins, S.H. The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down Earth 1997, 52, 1–5. [Google Scholar]
- Hertlein, M.B.; Thompson, G.D.; Subramanyam, B.; Athanassiou, C.G. Spinosad: A new natural product for stored grain protection. J. Stored Prod. Res. 2011, 47, 131–146. [Google Scholar] [CrossRef]
- Bert, B.L.; Larson, L.L.; Schoonover, J.R.; Sparks, T.C.; Thompson, G.D. Biological properties of spinosad. Down Earth 1997, 52, 6–13. [Google Scholar]
- Thompson, G.D.; Dutton, R.; Sparks, T.C. Spinosad-a case study: An example from a natural products discovery programme. Pest Manag. Sci. 2000, 56, 696–702. [Google Scholar] [CrossRef]
- Toews, M.D.; Subramanyam, B.; Rowan, J.M. Knockdown and mortality of adults of eight species of stored product beetles exposed to four surfaces treated with spinosad. J. Econ. Entomol. 2003, 96, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.; Daglish, G.J.; Byrne, V.S. Effectiveness of spinosad as a grain protectant against resistant beetle and psocid pests of stored grain in Australia. J. Stored Prod. Res. 2005, 41, 455–467. [Google Scholar] [CrossRef]
- Maier, D.E.; Ileleji, K.E.; Szabela, D. Efficacy of spinosad for insect management in stored maize. In Proceedings of the 9th International Working Conference for Stored-Product Protection. Campinas, Sao Paulo, Brazil, 15–18 October 2006; pp. 789–796. [Google Scholar]
- Subramanyam, B. Performance of Spinosad as a Stored Grain Protectant. In Proceedings of the 9th International Working Conference on Stored Product Protection, Sao Paulo, Brazil, 15–18 October 2006; Campinas, I., Lorini, B., Bacaltchuk, H., Beckel, D., Deckers, E., Sundfeld, J.P., dos Santos, J.D., Biagi, J.C., Celaro, L.R., Faroni, L., et al., Eds.; Brazilian Post Harvest Association: Campinas, Brazil, 2006; pp. 250–257. [Google Scholar]
- Huang, F.; Subramanyam, B. Effectiveness of spinosad against seven major stored grain insects on corn. Insect Sci. 2007, 14, 225–230. [Google Scholar] [CrossRef]
- Huang, F.; Subramanyam, B.; Hou, X. Efficacy of spinosad against eight stored-product insect species on hard white winter wheat. Biopesticides Inter. 2007, 3, 117–125. [Google Scholar]
- Subramanyam, B.; Toews, M.D.; Ilelejic, K.E.; Maier, D.E.; Thompson, G.D.; Pitts, T.J. Evaluation of spinosad as a grain protectant on three Kansas farms. Crop Protect. 2007, 26, 1021–1030. [Google Scholar] [CrossRef]
- Daglish, G.J.; Head, M.B.; Hughes, P.B. Field evaluation of spinosad as a grain protectant for stored wheat in Australia: Efficacy against Rhyzopertha dominica (F.) and fate of residues in whole wheat and milling fractions. Aust. J. Entomol. 2008, 47, 70–74. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Yiatilis, A.E.; Vayias, B.J.; Mavrotas, C.S.; Tomanovic, Z. Influence of temperature and humidity on the efficacy of spinosad against four stored-grain beetle species. J. Insect Sci. 2008, 60, 1–9. [Google Scholar] [CrossRef]
- Chintzoglou, G.J.; Athanassiou, C.G.; Markoglou, A.A.; Kavallieratos, N.G. Influence of commodity on the effect of spinosad dust against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Int. J. Pest Man. 2008, 54, 277–285. [Google Scholar] [CrossRef]
- Vayias, B.J.; Athanassiou, C.G.; Milonas, D.N.; Mavrotas, C. Persistence and efficacy of spinosad on wheat, maize and barley grains against four major stored product pests. Crop Protect. 2010, 29, 496–505. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crouse, G.D.; Dripps, J.E.; Anzeveno, P.; Martynow, J.; De Amicis, C.V.; Gifford, J. Neural networkbased QSAR and insecticide discovery: Spinetoram. J. Comp. Aided Mol. Design. 2008, 22, 393–401. [Google Scholar] [CrossRef]
- Dripps, J.E.; Boucher, R.E.; Chloridis, A.; Cleveland, C.B.; De Amicis, C.V.; Gomez, L.E.; Paroonagian, D.L.; Pavan, L.A.; Sparks, T.C.; Watson, G.B. The spinosyn insecticides. In Green Trends in Insect Control; Lopez, O., Bolanos, J.G., Eds.; Royal Society of Chemistry: Cambridge, UK, 13 June 2011; pp. 163–212. [Google Scholar]
- Vassilakos, T.N.; Athanassiou, C.G.; Saglam, O.; Chloridis, A.S.; Dripps, J.E. Insecticidal effect of spinetoram against six major stored grain insect species. J. Stored Prod. Res. 2012, 51, 69–73. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Athanassiou, C.G. Effect of temperature and relative humidity on the efficacy of spinetoram for the control of three stored product beetle species. J. Stored Prod. Res. 2013, 55, 73–77. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Athanassiou, C.G. Long-Term residual efficacy of Spinetoram on concrete and steel surfaces for the management of three stored product beetle species. J. Econ. Entomol. 2015, 108, 2090–2097. [Google Scholar] [CrossRef]
- Işıkber, A.A.; Sağlam, Ö.; Çelik, A. Residual toxicity of spinetoram on various surfaces to adult Acanthoscelides obtectus Say (Coleoptera: Bruchidae). In Proceedings of the 9th Conference on Integrated Protection of Stored Products, IPSP-2013, IOBC Working Group on Integrated Protection of Stored Products, Bordeaux, France, 1–4 July 2013. 420p. [Google Scholar]
- Athanassiou, C.G.; Kavallieratos, N.G. Evaluation of spinetoram and spinosad for control of Prostephanus truncatus, Rhyzopertha dominica, Sitophilus oryzae, and Tribolium confusum on stored grains under laboratory tests. J. Pest Sci. 2014, 87, 469–483. [Google Scholar] [CrossRef]
- Saglam, Ö.; Athanassiou, C.G.; Vassilakos, T.N. Comparison of spinetoram, imidacloprid, thiamethoxam and chlorantraniliprole against life stages of Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) on concrete. Crop Protect. 2013, 53, 85–95. [Google Scholar] [CrossRef]
- Rust, M.K. Factors Affecting Control with Residual Insecticide Deposits. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 149–169. [Google Scholar]
- Arthur, F.H.; Liu, S.; Zhao, B.; Phillips, T.W. Residual efficacy of pyriproxyfen and hydroprene applied to wood, metal and concrete for control of stored-product insects. Pest Manag. Sci. 2009, 65, 791–797. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Athanassiou, C.G.; Chloridis, A.S.; Dripps, J.E. Efficacy of spinetoram as a contact insecticide on different surfaces against stored-product beetle species. J. Pest Sci. 2014, 87, 485–494. [Google Scholar] [CrossRef]
- Collins, P.J.; Nayak, M.K.; Kopittke, R. Residual efficacy of four organophosphate insecticides on concrete and galvanized steel against three liposcelid psocid species (Psocoptera: Liposcelidae) infesting stored products. J. Econ. Entomol. 2000, 93, 1357–1363. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 2nd ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1984; 718p. [Google Scholar]
- SAS Institute Inc. User’s Guide: Statistics; Version 8.2; SAS Institute Inc.: Cary, NC, USA, 2001. [Google Scholar]
- Burkholder, W.E.; Dicke, R.J. The toxicity of malathion and fenthion to dermestid larvae as influenced by various surfaces. J. Econ. Entomol. 1966, 59, 253–254. [Google Scholar] [CrossRef]
- Jain, S.; Yadav, T.D. Persistence of deltamethrin, etrimfos, and malathion on different storage surfaces. Pesticid 1989, 23, 21–24. [Google Scholar]
- Fletcher, M.G.; Axtell, R.C. Susceptibility of the bedbug, Cimex lectularius, to selected insecticides and various surfaces. Med Vet Entomol. 1993, 7, 69–72. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Arthur, F.H.; Throne, J.E. Effects of short exposures to spinosad-treated wheat or maize on four stored grain insects. J. Econ. Entomol. 2010, 103, 197–202. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Athanassiou, C.G.; Tsiropoulos, N.G. Persistence and efficacy of spinetoram against three major stored grain beetle on wheat. Crop Protect. 2015, 69, 44–51. [Google Scholar] [CrossRef]
- Arthur, F.H. Aerosols and contact insecticides as alternatives to methyl bromide in flour mills, food production facilities, and food warehouses. J. Pest Sci. 2012, 85, 323–329. [Google Scholar] [CrossRef]
- Williams, P.; Semple, R.L.; Amos, T. Relative toxicity and persistence of one carbamate and three organophosphate insecticides on concrete, wood and iron surfaces for control of grain insects. Gen. Appl. Entomol. J. Entomol. Soc. N. S. W. 1982, 14, 35–40. [Google Scholar]
- Williams, P.; Semple, R.; Amos, T.G. Relative toxicity and persistence of three pyrethroid insecticides on concrete, wood and iron surfaces for control of grain insects. Gen. Appl. Entomol. J. Entomol. Soc. N. S. W. 1983, 15, 7–10. [Google Scholar]
- Giga, D.P.; Canhao, S.J. Persistence of insecticide spray deposits on different surfaces against Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.). Insect Sci. Appl. 1992, 13, 755–762. [Google Scholar] [CrossRef]
- Arthur, F.H. Differential effectiveness of deltamethrin dust on plywood, concrete, and tile surfaces against three stored-product beetles. J. Stored Prod. Res. 1997, 33, 167–173. [Google Scholar] [CrossRef]
- Arthur, F.H. Efficacy of chlorfenapyr against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) adults exposed on concrete, vinyl tile, and plywood surfaces. J. Stored Prod. Res. 2008, 44, 145–151. [Google Scholar] [CrossRef]
Exposure Interval | Source | df | F | P |
---|---|---|---|---|
1 day | Surface | 2 | 7.02 | 0.002 |
Concentration | 6 | 33.88 | <0.0001 | |
Surface x* Concentration | 12 | 3.05 | 0.001 | |
3 days | Surface | 2 | 22.47 | <0.0001 |
Concentration | 6 | 185.41 | <0.0001 | |
Surface x Concentration | 12 | 23.56 | 0.001 | |
5 days | Surface | 2 | 12.26 | <0.0001 |
Concentration | 6 | 265.97 | <0.0001 | |
Surface x Concentration | 12 | 24.18 | <0.0001 | |
7 days | Surface | 2 | 37.50 | <0.0001 |
Concentration | 6 | 230.70 | <0.0001 | |
Surface x Concentration | 12 | 15.30 | <0.0001 |
Concentration (mg AI/cm2) | Exposure Interval (Day) | |||
---|---|---|---|---|
1 Day | 3 Days | 5 Days | 7 Days | |
0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 4.0 ± 1.3 |
0.0025 | 0.8 ± 0.8 C * | 3.2 ± 0.8 CD | 8.0 ± 1.3 B | 17.6 ± 1.3 B |
0.005 | 0 ± 0 C | 1.6 ± 1.6 D | 10.4 ± 4.8 B | 20.8 ± 8.9 B |
0.0075 | 2.9 ± 1.2 C | 6.7 ± 2.4 C | 14.3 ± 4.9 B | 30.8 ± 8.5 B |
0.01 | 6.0 ± 2.5 CB | 75.0 ± 9.1 B | 91.0 ± 3.1 A | 99.0 ± 1.0 A |
0.015 | 4.0 ± 1.8 C | 75.2 ± 2.9 B | 94.4 ± 1.0 A | 100 ± 0 A |
0.025 | 16.0 ± 4.0 AB | 92.0 ± 2.5 A | 100 ± 0 A | 100 ± 0 A |
0.05 | 27.2 ± 4.9 A | 91.2 ± 1.9 A | 100 ± 0A | 100 ± 0 A |
Concentration (mg AI/cm2) | Exposure Interval (Day) | |||
---|---|---|---|---|
1 Day | 3 Days | 5 Days | 7 Days | |
0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
0.0025 | 0 ± 0 C * | 0.8 ± 0.8 C | 1.6 ± 1.6 C | 6.4 ± 3.3 C |
0.005 | 0 ± 0 C | 2.4 ± 1.6 C | 4.0 ± 2.5 C | 8.0 ± 2.8 C |
0.0075 | 0 ± 0 C | 0.0 ± 0.0 C | 3.2 ± 0.8 C | 13.6 ± 2.7 C |
0.01 | 0.8 ± 0.8 C | 13.6 ± 4.1 B | 59.2 ± 6.9 B | 85.6 ± 5.2 B |
0.015 | 7.2 ± 1.9 B | 80.8 ± 1.9 A | 98.4 ± 0.9 A | 99.2 ± 0.8 A |
0.025 | 12.0 ± 4.0 B | 82.4 ± 1.6A | 99.2 ± 0.8 A | 100 ± 0 A |
0.05 | 24.8 ± 5.9 A | 84.8 ± 1.9 A | 100 ± 0 A | 100 ± 0 A |
Concentration (mg AI/cm2) | Exposure Interval (Day) | |||
---|---|---|---|---|
1 Day | 3 Days | 5 Days | 7 Days | |
0 | 0 ± 0 | 1.6 ± 1.6 | 1.6 ± 1.6 | 3.2 ± 1.5 |
0.0025 | 0.8 ± 0.8 C* | 5.6 ± 3.7 E | 20.8 ± 5.9 D | 52.0 ± 4.6 D |
0.005 | 0.8 ± 0.8 C | 21.6 ± 2.9 D | 44.8 ± 4.8 C | 64.0 ± 4.9 CD |
0.0075 | 0 ± 0 C | 28.8 ± 3.4 CD | 63.2 ± 2.9 BC | 82.4 ± 1.6 BC |
0.01 | 0.8 ± 0.8 C | 32.0 ± 8.5 BCD | 76.8 ± 3.9 AB | 92.0 ± 2.2 AB |
0.015 | 1.5 ± 0.9 C | 37.9 ± 4.9 ABC | 78.8 ± 2.7 AB | 97.7 ± 1.5 A |
0.025 | 16.1 ± 1.9 A | 53.1 ± 4.4 A | 82.3 ± 1.6 A | 98.4 ± 0.9 A |
0.05 | 7.2 ± 3.2 B | 46.4 ± 3.5 AB | 87.2 ± 4.3A | 96.0 ± 1.8 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sağlam, Ö.; Çelik, A.; Işıkber, A.A.; Bozkurt, H.; Sakka, M.K.; Athanassiou, C.G. Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces. Insects 2022, 13, 723. https://doi.org/10.3390/insects13080723
Sağlam Ö, Çelik A, Işıkber AA, Bozkurt H, Sakka MK, Athanassiou CG. Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces. Insects. 2022; 13(8):723. https://doi.org/10.3390/insects13080723
Chicago/Turabian StyleSağlam, Özgür, Ahmet Çelik, Ali Arda Işıkber, Hüseyin Bozkurt, Maria K. Sakka, and Christos G. Athanassiou. 2022. "Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces" Insects 13, no. 8: 723. https://doi.org/10.3390/insects13080723
APA StyleSağlam, Ö., Çelik, A., Işıkber, A. A., Bozkurt, H., Sakka, M. K., & Athanassiou, C. G. (2022). Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces. Insects, 13(8), 723. https://doi.org/10.3390/insects13080723