Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Materials
2.2. Metabolite Extraction
2.3. Global Metabolomics Analysis
2.4. Data Preprocessing
2.5. Identification of Differential Abundant Metabolites (DAMs)
2.6. HMDB Classification and KEGG Functional Enrichments
3. Results
3.1. Overview of Sequencing Data
3.2. Analysis of Aquatic Adaptation-Related Metabolites (AARM) in A. leii Larvae
3.3. HMDB Class Analysis of Aquatic Adaptation-Related Metabolites (AARM) in A. leii Larvae
3.4. Pathway Analysis of Aquatic Adaptation-Related Metabolites (AARM) in A. leii Larvae
4. Discussion
4.1. Metabolite Function Linked to Freshwater Adaptation
4.2. HMDB Categories Linked to Freshwater Adaptation
4.3. Metabolic Pathways Linked to Freshwater Adaptation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dijkstra, K.D.B.; Monaghan, M.T.; Pauls, S.U. Freshwater biodiversity and aquatic insect diversification. Ann. Rev. Entomol. 2014, 59, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Ntougias, S.; Polkowska, Ż.; Nikolaki, S.; Dionyssopoulou, E.; Stathopoulou, P.; Doudoumis, V.; Ruman, M.; Kozak, K.; Namieśnik, J.; Tsiamis, G. Bacterial community structures in freshwater polar environments of svalbard. Microb. Environ. 2016, 31, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Mitterboeck, T.F.; Fu, J.; Adamowicz, S.J. Rates and patterns of molecular evolution in freshwater versus terrestrial insects. Genome 2016, 59, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, G. A literature review on the molecular mechanism underlying secondary aquatic adaptation of cetaceans. J. China West Norm. Univ. (Nat. Sci.) 2016, 37, 25–38. [Google Scholar]
- Gayk, Z.G.; Le Duc, D.; Horn, J.; Lindsay, A.R. Genomic insights into natural selection in the common loon (Gavia immer): Evidence for aquatic adaptation. BMC Evol. Biol. 2018, 18, 64. [Google Scholar] [CrossRef]
- Escalona, T.; Weadick, C.J.; Antunes, A. Adaptive patterns of mitogenome evolution are associated with the loss of shell scutes in turtles. Mol. Biol. Evol. 2017, 34, 2522–2536. [Google Scholar] [CrossRef]
- Jones, F.C.; Grabherr, M.G.; Chan, Y.F.; Russell, P.; Mauceli, E.; Johnson, J.; Swofford, R.; Pirun, M.; Zody, M.C.; White, S.; et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484, 55. [Google Scholar] [CrossRef]
- Rastorguev, S.M.; Nedoluzhko, A.V.; Gruzdeva, N.M.; Boulygina, E.S.; Tsygankova, S.V.; Oshchepkov, D.Y.; Mazur, A.M.; Prokhortchouk, E.B.; Skryabin, K.G. Gene expression in the three-spined stickleback (Gasterosteus aculeatus) of marine and freshwater ecotypes. Acta Nat. 2018, 10, 66–74. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Wei, H.; Lu, J.; Mu, C.; Wang, C. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. BMC Genom. 2018, 19, 421. [Google Scholar] [CrossRef]
- Zhu, X.; Hao, R.; Tian, C.; Zhang, J.; Zhu, C.; Li, G. Integrative transcriptomics and metabolomics analysis of body color formation in the leopard coral grouper (Plectropomus leopardus). Front. Mar. Sci. 2021, 8, 726102. [Google Scholar] [CrossRef]
- Braasch, I.; Brunet, F.; Volff, J.-N.; Schartl, M. Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol. Evol. 2009, 1, 479–493. [Google Scholar] [CrossRef] [PubMed]
- do Carmo Neves, L.; Favero, G.C.; Beier, S.L.; Ferreira, N.S.; Palheta, G.D.A.; de Melo, N.F.A.C.; Luz, R.K. Physiological and metabolic responses in juvenile Colossoma macropomum exposed to hypoxia. Fish Physiol. Biochem. 2020, 46, 2157–2167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Li, H.W.; Dong, Z.X.; Yang, X.J.; Lin, L.B.; Chen, J.Y.; Yuan, M.L. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol. Ecol. 2020, 29, 2676–2691. [Google Scholar] [CrossRef] [PubMed]
- Bybee, S.; Cordoba-Aguilar, A.; Duryea, M.C.; Futahashi, R.; Hansson, B.; Lorenzo-Carballa, M.O.; Schilder, R.; Stoks, R.; Suvorov, A.; Svensson, E.I.; et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Hine, R.M.; Rouhier, M.F.; Park, S.T.; Qi, Z.; Piermarini, P.M.; Beyenbach, K.W. The excretion of NaCl and KCl loads in mosquitoes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R837–R849. [Google Scholar] [CrossRef]
- Fu, X.; Li, J.; Tian, Y.; Quan, W.; Zhang, S.; Liu, Q.; Liang, F.; Zhu, X.; Zhang, L.; Wang, D. Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome. Gigascience 2017, 6, gix112. [Google Scholar] [CrossRef]
- Lewis, S.; Cratsley, C. Flash signal evolution, mate choice, and predation in fireflies. Ann. Rev. Entomol. 2008, 53, 293–321. [Google Scholar] [CrossRef]
- Fu, X.; Ballantyne, L.; Lambkin, C. The external larval morphology of aquatic and terrestrial Luciolinae fireflies (Coleoptera: Lampyridae). Zootaxa 2012, 3405, 1–34. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Lei, C. Adaptive external morphology and swimming behavior in the aquatic firefly, Luciola substriata. Entomol. Knowl. 2005, 42, 419–423. [Google Scholar]
- Jin, H.; Ma, H.; Gan, N.; Wang, H.; Li, Y.; Wang, L.; Song, L. Non-targeted metabolomic profiling of filamentous cyanobacteria Aphanizomenon flos-aquae exposed to a concentrated culture filtrate of Microcystis aeruginosa. Harmful Algae 2022, 111, 102170. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhang, X.; Zhang, H.; Xu, T.; Zhu, L.; Storey, K.B.; Chen, Q. Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: A metabolome integrated analysis. Front. Zool. 2021, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Chen, G.; Liu, H. Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef] [PubMed]
- Noriega, P.; Sola, M.; Barukcic, A.; Garcia, K.; Osorio, E. Cosmetic antioxidant potential of extracts from species of the Cinchona pubescens (Vahl). Int. J. Phyt. Nat. Ingred. 2015, 2, 14. [Google Scholar] [CrossRef]
- Liu, X.; Sha, Y.; Lv, W.; Cao, G.; Guo, X.; Pu, X.; Wang, J.; Li, S.; Hu, J.; Luo, Y. Multi-omics reveals that the rumen transcriptome, microbiome, and its metabolome co-regulate cold season adaptability of tibetan sheep. Front. Microbiol. 2022, 13, 859601. [Google Scholar] [CrossRef]
- Ling, T.; Boyd, L.; Rivas, F. Triterpenoids as reactive oxygen species modulators of cell fate. Chem. Res. Toxicol. 2022, 35, 569–584. [Google Scholar] [CrossRef]
- Wada, A.; Higashiyama, M.; Kurihara, C.; Ito, S.; Tanemoto, R.; Mizoguchi, A.; Nishii, S.; Inaba, K.; Sugihara, N.; Hanawa, Y.; et al. Protective effect of luminal uric acid against indomethacin-induced enteropathy: Role of antioxidant effect and gut microbiota. Dig. Dis. Sci. 2022, 67, 121–133. [Google Scholar] [CrossRef]
- Metrustry, S.J.; Karhunen, V.; Edwards, M.H.; Menni, C.; Geisendorfer, T.; Huber, A.; Reichel, C.; Dennison, E.M.; Cooper, C.; Spector, T.; et al. Metabolomic signatures of low birthweight: Pathways to insulin resistance and oxidative stress. PLoS ONE 2018, 13, e0194316. [Google Scholar] [CrossRef]
- Chilczuk, B.; Marciniak, B.; Stochmal, A.; Pecio, L.; Kontek, R.; Jackowska, I.; Materska, M. Anticancer potential and capsianosides identification in lipophilic fraction of sweet pepper (Capsicum annuum L.). Molecules 2020, 25, 3097. [Google Scholar] [CrossRef]
- Agnihotri, V.K.; ElSohly, H.N.; Khan, S.I.; Jacob, M.R.; Joshi, V.C.; Smillie, T.; Khan, I.A.; Walker, L.A. Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochem. Lett. 2008, 1, 89–93. [Google Scholar] [CrossRef]
- Hilmarsson, H.; Kristmundsdottir, T.; Thormar, H. Virucidal activities of medium- and long-chain fatty alcohols, fatty acids and monoglycerides against herpes simplex virus types 1 and 2: Comparison at different pH levels. APMIS 2005, 113, 58–65. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Met. 2013, 17, 657–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Guo, L.X.; Li, Y.; Chang, W.Q.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. Dose-response characteristics of Clematis triterpenoid saponins and clematichinenoside AR in rheumatoid arthritis rats by liquid chromatography/mass spectrometry-based serum and urine metabolomics. J. Pharm. Biom. Anal. 2017, 136, 81–91. [Google Scholar] [CrossRef]
- Cutolo, M.; Sulli, A.; Straub, R.H. Estrogen metabolism and autoimmunity. Autoimmun. Rev. 2012, 11, A460–A464. [Google Scholar] [CrossRef]
- Yu, D.; Du, J.; Pu, X.; Zheng, L.; Chen, S.; Wang, N.; Li, J.; Chen, S.; Pan, S.; Shen, B. The gut microbiome and metabolites are altered and interrelated in patients with rheumatoid arthritis. Front. Cell. Infect. Microbiol. 2021, 11, 763507. [Google Scholar] [CrossRef]
- Feng, P.; Li, Q.; Liu, L.; Wang, S.; Wu, Z.; Tao, Y.; Huang, P.; Wang, P. Crocetin prolongs recovery period of DSS-induced colitis via altering intestinal microbiome and increasing intestinal permeability. Int. J. Mol. Sci. 2022, 23, 3832. [Google Scholar] [CrossRef]
- Vainchtein, L.D.; Rosing, H.; Schellens, J.H.; Beijnen, J.H. A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma. Biom. Chromatog. 2010, 24, 374–386. [Google Scholar] [CrossRef]
- Alvarez-Munoz, D.; Farré, M. A snapshot of biomarkers of exposure for environmental monitoring. In Environmental Metabolomics: Applications in Field and Laboratory Studies to Understand from Exposome to Metabolome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 311–338. [Google Scholar]
- Xiao, G.; Shao, X.; Zhu, D.; Yu, B. Chemical synthesis of marine saponins. Nat. Prod. Rep. 2019, 36, 769–787. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Wang, C.; Zhang, Y.; Xu, J. Recent progress in the development of natural ent-kaurane diterpenoids with anti-tumor activity. Mini-Rev. Med. Chem. 2011, 11, 910–919. [Google Scholar] [CrossRef]
- Rao, A.V.; Gurfinkel, D.M. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metab. Drug Interact. 2000, 17, 211–235. [Google Scholar] [CrossRef] [PubMed]
- Pomorska, D.K.; Gach, K.; Janecka, A. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors. Mini-Rev. Med. Chem. 2014, 14, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.M.; Zhong, J.J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomedicine 2011, 18, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, J.; Nam, Y.J.; Kim, H.J.; No, K.T. Isolindleyin exerts anti-melanogenic effects in human epidermal melanocytes via direct binding to tyrosinase. Biochem. Biophys. Res. Commun. 2021, 534, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Ding, D.; Zhu, H.; Wang, R.; Su, F.; Wu, W.; Xiao, Z.; Liang, X.; Zhao, Q.; Hong, Z.; et al. Disturbed microbial ecology in Alzheimer’s disease: Evidence from the gut microbiota and fecal metabolome. BMC Microbiol. 2021, 21, 226. [Google Scholar] [CrossRef]
- Vardhan, S.; Sahoo, S.K. Exploring the therapeutic nature of limonoids and triterpenoids against SARS-CoV-2 by targeting nsp13, nsp14, and nsp15 through molecular docking and dynamics simulations. J. Tradit. Complementary Med. 2022, 12, 44–54. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Soladoye, O.P.; Aluko, R.E.; Fu, Y.; Zhang, Y. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends Food Sci. Technol. 2021, 113, 301–314. [Google Scholar] [CrossRef]
- Silveira-Dorta, G.; Martin, V.S.; Padron, J.M. Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids 2015, 47, 1527–1532. [Google Scholar] [CrossRef]
- Yu, W.; Ying, J.; Wang, X.; Liu, X.; Zhao, T.; Yoon, S.; Zheng, Q.; Fang, Y.; Yang, D.; Hua, F. The involvement of lactosylceramide in central nervous system inflammation related to neurodegenerative disease. Front. Aging Neurosci. 2021, 13, 691230. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Dairi, T. Biosynthesis of oligopeptides using ATP-grasp enzymes. Chemistry 2017, 23, 10714–10724. [Google Scholar] [CrossRef]
- Sato, Y.; Shimizu, S.; Ohtaki, A.; Noguchi, K.; Miyatake, H.; Dohmae, N.; Sasaki, S.; Odaka, M.; Yohda, M. Crystal structures of the lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-dimethyl-8-(1′-D-ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J. Bacteriol. 2010, 192, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Shum, M.; Shintre, C.A.; Althoff, T.; Gutierrez, V.; Segawa, M.; Saxberg, A.D.; Martinez, M.; Adamson, R.; Young, M.R.; Faust, B.; et al. ABCB10 exports mitochondrial biliverdin, driving metabolic maladaptation in obesity. Sci. Transl. Med. 2021, 13, eabd1869. [Google Scholar] [CrossRef] [PubMed]
- Seidler, N.W.; Jona, I.; Vegh, M.; Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 1989, 264, 17816–17823. [Google Scholar] [CrossRef]
- Xue, H.; Huo, Y.; Hu, Y.; Zhang, J.; Deng, C.; Zhang, J.; Wang, X. The role of ALOX15B in heat stress-induced apoptosis of porcine sertoli cells. Theriogenology 2022, 185, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Persons, K.S.; Lu, Z.; Mathieu, J.S.; Holick, M.F. An evaluation of the biologic activity and vitamin D receptor binding affinity of the photoisomers of vitamin D3 and previtamin D3. J. Nutr. Biochem. 2000, 11, 267–272. [Google Scholar] [CrossRef]
- Rizzo, W.B. Fatty aldehyde and fatty alcohol metabolism: Review and importance for epidermal structure and function. Biochim. Biophys. Acta 2014, 1841, 377–389. [Google Scholar] [CrossRef]
- Kim, R.J.; An, S.H.; Gwark, J.Y.; Park, H.B. Antioxidant effects on hypoxia-induced oxidative stress and apoptosis in rat rotator cuff fibroblasts. Eur. Cells Mater. 2021, 41, 680–693. [Google Scholar] [CrossRef]
- Welker, A.F.; Moreira, D.C.; Campos, E.G.; Hermes-Lima, M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 165, 384–404. [Google Scholar] [CrossRef]
- Ao, J.; Li, B. Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Sci. Technol. Int. 2012, 18, 425–434. [Google Scholar] [CrossRef]
- Chi, C.F.; Hu, F.Y.; Wang, B.; Li, Z.R.; Luo, H.Y. Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from Skipjack Tuna (Katsuwonus pelamis) dark muscle. Mar. Drugs 2015, 13, 2580–2601. [Google Scholar] [CrossRef]
- Bombaca, A.C.S.; Brunoro, G.V.F.; Dias-Lopes, G.; Ennes-Vidal, V.; Carvalho, P.C.; Perales, J.; d’Avila-Levy, C.M.; Valente, R.H.; Menna-Barreto, R.F.S. Glycolytic profile shift and antioxidant triggering in symbiont-free and H2O2-resistant Strigomonas culicis. Free Rad. Biol. Med. 2020, 146, 392–401. [Google Scholar] [CrossRef]
- Zeng, L.; Ai, C.X.; Zheng, J.L.; Zhang, J.S.; Li, W.C. Cu pre-exposure alters antioxidant defense and energy metabolism in large yellow croaker Larimichthys crocea in response to severe hypoxia. Sci. Total Environ. 2019, 687, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, N.; Li, B.; Zhang, H.; Zhao, Y.; Cao, X. The effects of fipronil exposure on oxidative stress, non-specific immunity, autophagy, and apoptosis in the common carp. Environ. Sci. Pollut. Res. 2021, 28, 27799–27810. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H.; Cai, S.; Zhang, H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci. Rep. 2019, 9, 3456. [Google Scholar] [CrossRef] [PubMed]
- Bird, L. Getting enough energy for immunity. Nat. Rev. Immunol. 2019, 19, 269. [Google Scholar] [CrossRef]
- Cho, H.Y.; Loreti, E.; Shih, M.C.; Perata, P. Energy and sugar signaling during hypoxia. New Phytol. 2021, 229, 57–63. [Google Scholar] [CrossRef]
- Yancey, P.H. Cellular responses in marine animals to hydrostatic pressure. JEZ-A Ecol. Integr. Physiol. 2020, 333, 398–420. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, C.Y.; Sun, L.; He, Z.; Yang, P.L.; Liao, H.J.; Feng, Y. Edible aquatic insects: Diversities, nutrition, and safety. Foods 2021, 10, 3033. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Chengappa, P.; Sao, K.; Jones, T.M.; Petrie, R.J. Intracellular pressure: A driver of cell morphology and movement. Int. Rev. Cell. Mol. Biol. 2018, 337, 185–211. [Google Scholar]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Sauer, S.W.; Okun, J.G.; Hoffmann, G.F.; Koelker, S.; Morath, M.A. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim. Biophys. Acta 2008, 1777, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Wang, L.; Qiu, J.; Liu, Z.; Geng, X. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. Pest Manag. Sci. 2017, 73, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Duran, A.; Rodriguez-Amado, I.; Prieto, M.A.; Rial, D.; Murado, M.A. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling. Microb. Cell Factories 2011, 10, 100. [Google Scholar] [CrossRef]
- Martinez, O.F.; Duque, H.M.; Franco, O.L. Peptidomimetics as potential anti-virulence drugs against resistant bacterial pathogens. Front. Microbiol. 2022, 13, 831037. [Google Scholar] [CrossRef]
- Spada, V.; Ferranti, P.; Chianese, L.; Salimei, E.; Addeo, F.; Picariello, G. Antibacterial potential of donkey’s milk disclosed by untargeted proteomics. J. Prot. 2021, 231, 104007. [Google Scholar] [CrossRef]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef]
- Olcina, M.; Lecane, P.S.; Hammond, E.M. Targeting hypoxic cells through the DNA damage response. Clin. Cancer Res. 2010, 16, 5624–5629. [Google Scholar] [CrossRef]
- Li, Y.S.; Tang, J.X.; Li, J.L.; Liang, C.; Zhang, M.H.; Wu, J.Y.; Wang, G.X.; Zhu, G.D.; Cao, J. Study on emergency metabolic changes of Anopheles sinensis larvae following exposure to deltamethrin. Chin. J. Schistosomiasis Control 2021, 33, 387–395. [Google Scholar]
- Yang, S.; Yan, D.; Zou, Y.; Mu, D.; Li, X.; Shi, H.; Luo, X.; Yang, M.; Yue, X.; Wu, R.; et al. Fermentation temperature affects yogurt quality: A metabolomics study. Food Biosci. 2021, 42, 101104. [Google Scholar] [CrossRef]
- Wu, X.; Liu, C.; Yang, S.; Shen, N.; Wang, Y.; Zhu, Y.; Guo, Z.; Yang, S.Y.; Xing, D.; Li, H.; et al. Glycine-serine-threonine metabolic axis delays intervertebral disc degeneration through antioxidant effects: An imaging and metabonomics study. Oxidative Med. Cell. Longev. 2021, 2021, 5579736. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jin, Z.B.; Chen, J.; Huang, X.F.; Li, X.M.; Liang, Y.B.; Mao, J.Y.; Chen, X.; Zheng, Z.; Bakshi, A.; et al. Genetic signatures of high-altitude adaptation in Tibetans. Proc. Natl. Acad. Sci. USA 2017, 114, 4189–4194. [Google Scholar] [CrossRef] [PubMed]
- Delchier, N.; Ringling, C.; Cuvelier, M.E.; Courtois, F.; Rychlik, M.; Renard, C.M. Thermal degradation of folates under varying oxygen conditions. Food Chem. 2014, 165, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Fan, F.; Li, X.; Sun, X.; Ma, L.; Wu, J.; Shen, C.; Zhu, H.; Dong, Z.; Wang, C.; et al. Riboflavin attenuates myocardial injury via LSD1-mediated crosstalk between phospholipid metabolism and histone methylation in mice with experimental myocardial infarction. J. Mol. Cell. Cardiol. 2018, 115, 115–129. [Google Scholar] [CrossRef]
- Tian, R.; Yang, C.; Chai, S.M.; Guo, H.; Seim, I.; Yang, G. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zool. Res. 2022, 43, 241–254. [Google Scholar] [CrossRef]
- Del Castillo Velasco-Martinez, I.; Hernandez-Camacho, C.J.; Mendez-Rodriguez, L.C.; Zenteno-Savin, T. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 191, 196–201. [Google Scholar] [CrossRef]
- Goswami, A.R.; Ghosh, T. Vitamin E reduces hypobaric hypoxia-induced immune responses in male rats. High Altitude Med. Biol. 2019, 20, 12–21. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Guo, J.; Deng, X.Y.; Wang, F.; Chen, J.Y.; Lin, L.B. Comparative transcriptomic analysis provides insights into the response to the benzo(a)pyrene stress in aquatic firefly (Luciola leii). Sci. Total Environ. 2019, 661, 226–234. [Google Scholar] [CrossRef]
- Yin, N.N.; Nuo, S.M.; Xiao, H.Y.; Zhao, Y.J.; Zhu, J.Y.; Liu, N.Y. The ionotropic receptor gene family in Lepidoptera and Trichoptera: Annotation, evolutionary and functional perspectives. Genomics 2021, 113, 601–612. [Google Scholar] [CrossRef]
- Niwa, Y.S.; Niwa, R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev. Growth Differ. 2016, 58, 94–105. [Google Scholar] [CrossRef] [Green Version]
Function | Specific Functions # | Id | Metabolites | Log2FC(ALL/ALA) | FDR | References |
---|---|---|---|---|---|---|
Antioxidants | Anti-Oxidant | metab_23671 | Asparaginyl-Tyrosine | 2.64 | 6.82 × 10−3 | [23] |
Anti-Oxidant | metab_9504 | Cinchonidine | 1.41 | 7.84 × 10−3 | [24] | |
Anti-Oxidant | metab_17388 | Cynaroside A | 3.66 | 6.82 × 10−3 | [25] | |
Anti-Oxidant | metab_18889 | Leu-Asp-Glu-Lys | 1.78 | 6.82 × 10−3 | [23] | |
Anti-Oxidant | metab_22119 | Lys-Gln-Asp-Lys | 8.56 | 6.82 × 10−3 | [23] | |
Anti-Oxidant | metab_2651 | Lys-Glu-Ser-Leu-Ser | 1.37 | 7.84 × 10−3 | [23] | |
Active oxygen regulator | metab_6098 | Pokeberrygenin | 1.85 | 7.84 × 10−3 | [26] | |
Active oxygen regulator | metab_8499 | Priverogenin A | 1.69 | 7.84 × 10−3 | [26] | |
Anti-Oxidant | metab_10795 | Tyr-Glu-Asp | −1.60 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_9513 | Tyr-Phe-Glu | 1.90 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_2367 | Tyr-Pro-Trp | 1.88 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_11607 | Val-His-Tyr-Tyr | 3.07 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_25229 | Inosinic acid | 1.23 | 6.82 × 10−3 | [27] | |
Anti-Oxidant | metab_13246 | Histidinyl-Hydroxyproline | 2.02 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_9495 | N(6)-(Octanoyl)lysine | 1.85 | 7.84 × 10−3 | [23] | |
Anti-Oxidant | metab_18186 | 6-Hydroxysandoricin | −9.45 | 6.82 × 10−3 | [23] | |
Oxidative stress | metab_3786 | Gamma-Glutamylleucine | 10.80 | 7.84 × 10−3 | [28] | |
Immunity | Anticancer | metab_10041 | Capsianoside H | 2.83 | 7.84 × 10−3 | [29] |
Antibacterial | metab_9908 | (R)-Roemerine | −2.57 | 7.84 × 10−3 | [30] | |
Antiviral | metab_8329 | 1-(3-Furanyl)-6,7-dihydroxy-4,8-dimethyl-1-nonanone | 1.58 | 7.84 × 10−3 | [31] | |
Antiinflammatory/Energy consumption | metab_21033 | 12a-Hydroxy-3-oxocholadienic acid | 1.37 | 6.82 × 10−3 | [32] | |
Antiinflammatory/Anticancer/Antibacterial | metab_22266 | 2,3-Dihydroabscisic alcohol | 3.54 | 6.82 × 10−3 | [33] | |
Antiinflammatory | metab_9179 | 21-Deoxycortisol | 1.96 | 7.84 × 10−3 | [34] | |
Antiinflammatory/Immune responses | metab_23834 | 2-Hydroxyestrone sulfate | −1.13 | 6.82 × 10−3 | [35] | |
Antiinflammatory | metab_15702 | 3-Formyl-6-hydroxyindole | −1.36 | 6.82 × 10−3 | [36] | |
Antiinflammatory | metab_22693 | 3-Sulfodeoxycholic acid | 1.89 | 6.82 × 10−3 | [37] | |
Anticancer | metab_12280 | 5′-Deoxy-5-fluorocytidine | 6.87 | 7.84 × 10−3 | [38] | |
Antiinflammatory | metab_15804 | 6-Succinoaminopurine | 1.30 | 6.82 × 10−3 | [39] | |
Antibacterial/Anti-inflammatory/Anticancer | metab_5304 | Agavoside G | 1.45 | 7.84 × 10−3 | [40] | |
Anticancer/Antibacterial/Anti-inflammatory | metab_1497 | Annoglabasin F | −2.24 | 7.84 × 10−3 | [41] | |
Anticancer/Antiinflammatory/Immunomodulatory/Anti-oxidant | metab_5350 | Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] | 1.82 | 7.84 × 10−3 | [42] | |
Immunomodulatory | metab_4216 | Dynorphin A (6–8) | 2.40 | 7.84 × 10−3 | [43] | |
Anticancer | metab_20976 | Ganoderic acid Mf | 1.46 | 6.82 ×10−3 | [44] | |
Anticancer/Antimicrobial/anti-inflammatory | metab_9442 | Isolindleyin | 1.46 | 7.84 × 10−3 | [45] | |
Immune responses | metab_13613 | 19-Oxoandrost-4-ene-3,17-dione | 2.26 | 7.84 × 10−3 | [46] | |
Antiviral | metab_16386 | 23-trans-p-Coumaroyloxytormentic acid | 4.34 | 6.82 × 10−3 | [47] | |
Antiinflammatory/Anticancer/Anti-oxidant | metab_11225 | Gamma-Glutamyl-S-methylcysteinyl-beta-alanine | −6.43 | 7.84 × 10−3 | [48] | |
Anticancer | metab_5186 | Glutamylproline | 1.06 | 7.84 × 10−3 | [49] | |
Antiinflammatory | metab_19040 | Lactosylceramide (d18:1/12:0) | 3.38 | 6.82 × 10−3 | [50] | |
Energy | Energy metabolism | metab_11739 | Pro-Thr-Thr-Phe | 2.11 | 7.84 × 10−3 | [51] |
Energy metabolism | metab_5455 | Pro-Trp-Phe | 1.37 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_24676 | 6,7-Dimethyl-8-(1-D-ribityl)lumazine | 2.09 | 6.82 × 10−3 | [52] | |
Energy metabolism | metab_1299 | Ala-Leu-Leu | 2.74 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_5032 | Gly-Leu-Leu | 1.98 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_2274 | Val-Leu-Val-Phe | 1.31 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_10699 | Ala-Ala-Trp-Ile | 1.92 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_10810 | Biliverdin | −1.80 | 7.84 × 10−3 | [53] | |
Energy metabolism/Antibacterial/Immune reaction | metab_19325 | Bisnorcholic acid | 3.24 | 6.82 × 10−3 | [32] | |
ATP enzyme inhibitor | metab_4095 | Cyclopiazonic acid | −1.51 | 7.84 × 10−3 | [54] | |
Energy metabolism | metab_23404 | Gamma-L-Glutamyl-L-pipecolic acid | 2.61 | 6.82 × 10−3 | [51] | |
Energy metabolism | metab_11280 | Gly-Ile-Val | 2.23 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_10695 | Ile-Ile-Val | 1.70 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_10648 | Ile-Phe-Phe-Thr | 2.08 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_2709 | Thr-Val-Val | 1.57 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_9753 | Trp-Phe | 1.78 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_12349 | Val-Leu-Ser | 2.05 | 7.84 × 10−3 | [51] | |
Energy metabolism | metab_5070 | 8(R)-HETE | −8.13 | 7.84 × 10−3 | [55] | |
Morphology | Cuticle formation | metab_401 | 25-Hydroxytachysterol3 | 1.02 | 7.84 ×10−3 | [56] |
Cuticle formation | metab_9436 | (2E,8Z)-Decadiene-4,6-diyn-1-yl-3-methylbutanoate | 2.47 | 7.84 × 10−3 | [57] |
Id | Description | FDR |
---|---|---|
map01523 | Antifolate resistance | 1.05 × 10−1 |
map00740 | Riboflavin metabolism | 1.06 × 10−1 |
map04742 | Taste transduction | 1.06 × 10−1 |
map00600 | Sphingolipid metabolism | 1.15 × 10−1 |
map00564 | Glycerophospholipid metabolism | 1.43 × 10−1 |
map00260 | Glycine, serine and threonine metabolism | 1.50 × 10−1 |
map00230 | Purine metabolism | 1.92 × 10−1 |
map00140 | Steroid hormone biosynthesis | 7.86 × 10−2 |
map00982 | Drug metabolism-cytochrome P450 | 8.20 × 10−2 |
map00780 | Biotin metabolism | 1.03 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhao, Z.; Luo, D.; Liang, M.; Zhang, Q. Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. Insects 2022, 13, 823. https://doi.org/10.3390/insects13090823
Yang L, Zhao Z, Luo D, Liang M, Zhang Q. Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. Insects. 2022; 13(9):823. https://doi.org/10.3390/insects13090823
Chicago/Turabian StyleYang, Linyu, Zishun Zhao, Dan Luo, Mingzhong Liang, and Qilin Zhang. 2022. "Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects" Insects 13, no. 9: 823. https://doi.org/10.3390/insects13090823
APA StyleYang, L., Zhao, Z., Luo, D., Liang, M., & Zhang, Q. (2022). Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. Insects, 13(9), 823. https://doi.org/10.3390/insects13090823