Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Strain
2.2. Gamma Irradiation Procedure
2.3. Temperature Regime in Packed Conditions
2.4. Data Collection
2.4.1. Mortality Rate
2.4.2. Flight Ability
2.4.3. Induced Sterility
2.4.4. Longevity under Laboratory Conditions
2.5. Statistical Analysis
3. Results
3.1. Mortality Rate
3.2. Flight Ability
3.3. Induced Sterility
3.4. Longevity under Laboratory Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, J. Mosquitoes: New contender for most lethal animal. Nature 2016, 540, 525. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop. 2017, 166, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.C.; Scott, T.W.; Lerdthusnee, K.; Coleman, R.C.; Costero, A.; Clark, G.G.; Jones, J.J.; Kitthawee, S.; Kittayapong, P.; Sithiprasasna, R.; et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 2005, 72, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.C.; Beebe, N.W. The dengue vector Aedes aegypti: What comes next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef]
- Powell, J.R.; Gloria-Soria, A.; Kotsakiozi, P. Recent history of Aedes aegypti: Vector genomics and epidemiology records. Bioscience 2018, 68, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Soghigian, J.; Gloria-Soria, A.; Robert, V.; Le Goff, G.; Failloux, A.B.; Powell, J.R. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 2020, 29, 3593–3606. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Ooi, E.E.; Vasudevan, S.G.; Gubler, D.J. Update on dengue: Epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr. Infect. Dis. Rep. 2010, 12, 157–164. [Google Scholar] [CrossRef]
- Morrison, A.C.; Zielinski-Gutierrez, E.; Scott, T.W.; Rosenberg, R. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. 2008, 5, e68. [Google Scholar] [CrossRef]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.; Wint, G.R.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [Green Version]
- Deming, R.; Manrique-Saide, P.; Barreiro, A.M.; Cardeña, E.U.K.; Che-Mendoza, A.; Jones, B.; Liebman, K.; Vizcaino, L.; Vazquez-Prokopec, G.; Lenhart, A. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit. Vectors 2016, 9, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Klassen, W.; Vreysen, M.J.B. Area-wide integrated pest management and the sterile insect technique. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 75–112. [Google Scholar]
- Nelson, C.; Esch, E.; Kimmie, S.; Tesche, M.; Philip, H.; Arthur, S. Putting the sterile insect technique into the modern integrated pest management toolbox to control the codling moth in Canada. In Area-Wide Integrated Pest Management; Hendrich, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 111–127. [Google Scholar]
- Klassen, W.; Curtis, C.F.; Hendrichs, J. History of the sterile insect technique. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–44. [Google Scholar]
- Enkerlin, W.R. Impact of Fruit Fly Control Programmes Using the Sterile Insect Technique. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 979–1006. [Google Scholar]
- Vargas-Terán, M.; Spradbery, J.P.; Hofmann, H.C.; Tweddle, N.E. Impact of Screwworm Eradication Programmes Using the Sterile Insect Technique. In Area-Wide Integrated Pest Management; Hendrich, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 949–978. [Google Scholar]
- Benedict, M.Q.; Robinson, A.S. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol. 2003, 19, 349–355. [Google Scholar] [CrossRef]
- Bouyer, J.; Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 2014, 30, 271–273. [Google Scholar] [CrossRef]
- Lees, R.S.; Gilles, J.R.L.; Hendrichs, J.; Vreysen, M.J.B.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon., P. Combined sterile insect technique and incompatible insect technique: The first proof of concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Balatsos, G.; Puggioli, A.; Karras, V.; Lytra, I.; Mastronikolos, G.; Carrieri, M.; Papachristos, D.P.; Malfacini, M.; Stefopoulou, A.; Ioannou, C.S.; et al. Reduction in egg fertility of Aedes albopictus mosquitoes in Greece following releases of imported sterile males. Insects 2021, 12, 110. [Google Scholar] [CrossRef]
- Gato, R.; Menéndez, Z.; Prieto, E.; Argilés, R.; Rodríguez, M.; Baldoquín, W.; Hernández, Y.; Pérez, D.; Anaya, J.; Fuentes, I.; et al. Sterile insect technique: Successful suppression of an Aedes aegypti field population in Cuba. Insects 2021, 12, 469. [Google Scholar] [CrossRef]
- Bourtzis, K.; Vreysen, M.J.B. Sterile insect technique (SIT) and its applications. Insects 2021, 12, 638. [Google Scholar] [CrossRef]
- Becker, N.; Langentepe-Kong, S.M.; Tokatlian Rodriguez, A.; Oo, T.T.; Reichle, D.; Lühken, R.; Schmidt-Chanasit, J.; Lüthy, P.; Puggioli, A.; Bellini, R. Integrated control of Aedes albopictus in Southwest Germany supported by the Sterile Insect Technique. Parasit. Vectors 2022, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q. Sterile insect technique: Lessons from the past. J. Med. Entomol. 2021, 58, 1974–1979. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, F.; Benedict, M.Q.; Gilles, J.R.L. A new larval tray and rack system for improved mosquito mass rearing. J. Med. Entomol. 2012, 49, 595–605. [Google Scholar] [CrossRef]
- Balestrino, F.; Puggioli, A.; Bellini, R.; Petric, D.; Gilles, J.R.L. Mass production cage for Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Damiens, D.; Benedict, M.Q.; Wille, M.; Gilles, J.R.L. An inexpensive and effective larval diet for Anopheles arabiensis Diptera: Eat like a horse, a bird or a fish? J. Med. Entomol. 2012, 49, 1001–1011. [Google Scholar] [CrossRef]
- Zheng, M.L.; Zhang, D.J.; Damiens, D.D.; Lees, R.S.; Gilles, J.R.L. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)-II-Egg storage and hatching. Parasit. Vectors 2015, 8, 348. [Google Scholar] [CrossRef]
- Culbert, N.; Balestrino, F.; Dor, A.; Herranz, G.S.; Yamada, H.; Wallner, T.; Bouyer, J. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 2018, 8, 16179. [Google Scholar] [CrossRef]
- Sasmita, H.I.; Tu, W.C.; Bong, L.J.; Neoh, K.B. Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): Optimizing rearing techniques for the sterile insect programmes. Parasit. Vectors 2019, 12, 578. [Google Scholar] [CrossRef]
- Tur, C.; Almenar, D.; Benlloch-Navarro, S.; Argilés-Herrero, R.; Zacarés, M.; Dalmau, V.; Pla, I. Sterile insect technique in an integrated vector management program against tiger mosquito Aedes albopictus in the valencia region (Spain): Operating procedures and quality control parameters. Insects 2021, 12, 272. [Google Scholar] [CrossRef]
- Bellini, R.; Balestrino, F.; Medici, A.; Gentile, G.; Veronesi, R.; Carrieri., M. Mating competitiveness of Aedes albopictus radio-sterilized males in large enclosures exposed to natural conditions. J. Med. Entomol. 2013, 50, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Maïga, H.; Damiens, D.; Niang, A.; Sawadogo, S.P.; Fatherhaman, O.; Lees, R.S.; Roux, O.; Dabiré, R.K.; Ouédraogo, G.A.; Tripet, F.; et al. Mating competitiveness of sterile male Anopheles coluzzii in large cages. Malar. J. 2014, 13, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.G.; Osorio, A.R.; Avila, N.; Gómez-Simuta, Y.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Carvalho, D.O.; Bourtzis, K.; et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 2019, 14, e0212520. [Google Scholar]
- Yamada, H.; Maiga, H.; Juarez, J.; Carvalho, D.O.; Mamai, W.; Ali, A.; Bimbile-Somda, N.S.; Parker, A.G.; Zhang, D.; Bouyer, J. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 2019, 12, 435. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Maiga, H.; Bimbile-Somda, N.S.; Carvalho, D.O.; Mamai, W.; Kraupa, C.; Parker, A.G.; Abrahim, A.; Weltin, G.; Wallner, T.; et al. The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water. Parasit. Vectors 2020, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Ernawan, B.; Anggraeni, T.; Yusmalinar, S.; Ahmad, I. Investigation of developmental stage/age, gamma irradiation dose, and temperature in sterilization of male Aedes aegypti (Diptera: Culicidae) in a sterile insect technique program. J. Med. Entomol. 2022, 59, 320–327. [Google Scholar] [CrossRef]
- Chung, H.N.; Rodriguez, S.D.; Gonzales, K.K.; Vulcan, J.; Cordova, J.J.; Mitra, S.; Adams, C.G.; Moses-Gonzales, N.; Tam, N.; Cluck, J.W.; et al. Toward implementation of mosquito sterile insect technique: The effect of storage conditions on survival of male Aedes aegypti mosquitoes (Diptera: Culicidae) during transport. J. Insect Sci. 2018, 18, 2. [Google Scholar] [CrossRef]
- Culbert, N.J.; Lees, R.S.; Vreysen, M.J.B.; Darby, A.C.; Gilles, J.R.L. Optimised conditions for handling and transport of male Anopheles arabiensis: Effects of low temperature, compaction, and ventilation on male quality. Entomol. Exp. Appl. 2017, 164, 276–283. [Google Scholar] [CrossRef]
- Culbert, N.J.; Gilles, J.R.L.; Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 2019, 14, e0221822. [Google Scholar] [CrossRef]
- FAO/IAEA. Guidelines for Mark-Release-Recapture Procedures of Aedes Mosquitoes; Bouyer, J., Balestrino, F., Culbert, N., Yamada, H., Argilés, R., Eds.; Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria, 2020; Available online: https://www.iaea.org/sites/default/files/guidelines-for-mrr-aedes_v1.0.pdf (accessed on 28 May 2022).
- Mastronikolos, G.D.; Kapranas, A.; Balatsos, G.K.; Ioannou, C.; Papachristos, D.P.; Milonas, P.G.; Puggioli, A.; Pajović, I.; Petrić, D.; Bellini, R.; et al. Quality control methods for Aedes albopictus sterile male transportation. Insects 2022, 13, 179. [Google Scholar] [CrossRef]
- Zavala-Lopez, J.L.; Enkerlin, W.R. Guidance for Packing, Shipping, Holding and Release of Sterile Flies in Area-Wide Fruit Fly Control Programmes, 2nd ed.; Food and Agriculture Organization; International Atomic Energy Agency: Vienna, Austria, 2017; Available online: https://www.iaea.org/sites/default/files/guideline-for-packing-sept2017.pdf (accessed on 28 May 2022).
- Pagabeleguem, S.; Seck, M.T.; Sall, B.; Vreysen, M.J.B.; Gimonneau, G.; Fall, A.G.; Bassene, M.; Sidibé, I.; Rayaissé, J.B.; Belem, A.M.; et al. Long distance transport of irradiated male Glossina palpalis gambiensis pupae and its impact on sterile male yield. Parasit. Vectors 2015, 8, 259. [Google Scholar] [CrossRef]
- Parker, A.G.; Vreysen, M.J.B.; Bouyer, J.; Calkins, C.O. Sterile insect quality control/assurance. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 399–440. [Google Scholar]
- Bakri, A.; Mehta, K.; Lance, D.R. Sterilizing insects with ionizing radiation. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 355–398. [Google Scholar]
- Robinson, A.S. Genetic basis of the sterile insect technique. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 143–162. [Google Scholar]
- Sasmita, H.I.; Ernawan, B.; Sadar, M.; Nasution, I.A.; Indarwatmi, M.; Tu, W.C.; Neoh, K.B. Assessment of packing density and transportation effect on sterilized pupae and adult Aedes aegypti (Diptera: Culicidae) in nonchilled conditions. Acta Trop. 2022, 226, 106243. [Google Scholar] [CrossRef] [PubMed]
- Lance, D.R.; McInnis, D.O. Biological basis of the sterile insect technique. In Sterile Insect Technique, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 113–142. [Google Scholar]
- Gullan, P.J.; Cranston, P.S. The Insects an Outline of Entomology; John Wiley and Sons, Ltd.: West Sussex, UK, 2014. [Google Scholar]
- Iyaloo, D.P.; Facknath, S.; Bheecarry, A. Investigating the effects of low temperature and compaction on the quality of adult radio-sterilised Aedes albopictus (Diptera: Culicidae) males in view of their optimal transport to the pilot sterile release site in Mauritius. Int. J. Trop. Insect Sci. 2020, 40, 53–62. [Google Scholar] [CrossRef]
Parameter | Factor | df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Mortality | Density | 3 | 447.633 | 12.123 | <0.0001 |
Temperature | 3 | 2024.217 | 54.822 | <0.0001 | |
Duration | 4 | 11,239.344 | 304.398 | <0.0001 | |
Duration–Density | 8 | 66.429 | 1.799 | 0.082 | |
Duration–Temperature | 12 | 2014.884 | 54.57 | <0.0001 | |
Temperature–Density | 6 | 362.58 | 9.82 | <0.0001 | |
Duration–Temperature–Density | 24 | 108.806 | 2.947 | 0.001 | |
Flight ability | Density | 3 | 296.245 | 4.578 | 0.004 |
Temperature | 3 | 7582.074 | 117.178 | <0.0001 | |
Duration | 4 | 19,054.591 | 294.482 | <0.0001 | |
Duration–Density | 8 | 413.796 | 6.395 | <0.0001 | |
Duration–Temperature | 12 | 664.056 | 10.263 | <0.0001 | |
Temperature–Density | 6 | 392.48 | 6.066 | <0.0001 | |
Duration–Temperature–Density | 24 | 144.891 | 2.239 | 0.001 | |
IS # | Density | 2 | 0.974 | 0.621 | 0.539 |
Temperature | 3 | 2.836 | 1.808 | 0.149 | |
Duration | 4 | 1.125 | 0.717 | 0.582 | |
Duration–Density | 8 | 0.703 | 0.448 | 0.89 | |
Duration–Temperature | 10 | 1.973 | 1.258 | 0.262 | |
Temperature–Density | 6 | 0.944 | 0.602 | 0.728 | |
Duration–Temperature–Density | 20 | 0.744 | 0.474 | 0.972 |
Treatments (Density and Duration) | Mean Mortality ± SE (%) | ||||
---|---|---|---|---|---|
7 °C | 14 °C | 21 °C | 28 °C | ||
* Control 1 (unirradiated–unpacked) | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | |
* Control 2 (irradiated–unpacked) | 0.83 ± 0.83 aA | 1.67 ± 0.42 abA | 1.25 ± 0.72 aA | 1.67 ± 0.83 aA | |
Density 40 males/2 mL | 3 h | 20.0 ± 5.2 abAα | 16.67 ± 3.63 abcAα | 9.17 ± 3.63 aAα | 7.5 ± 1.44 aAα |
6 h | 20.83 ± 8.33 abAα | 13.33 ± 3.63 abcAα | 7.5 ± 2.89 aAα | 7.5 ± 1.44 aAα | |
12 h | 25.83 ± 5.83 bBα | 20.83 ± 4.41 bcABα | 7.5 ± 1.44 aAα | 17.5 ± 2.89 bABα | |
24 h | 17.5 ± 3.82 abAα | 20.83 ± 7.26 bcABα | 10.0 ± 2.89 aAα | 40.83 ± 2.2 cBα | |
48 h | 32.5 ± 6.29 bAα | 22.5 ± 3.82 cAα | 84.17 ± 5.07 bBα | 68.33 ± 2.2 dBα | |
* Control 1 (unirradiated–unpacked) | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | |
* Control 2 (irradiated–unpacked) | 0.83 ± 0.83 abA | 1.67 ± 0.42 aA | 1.25 ± 0.72 aA | 1.67 ± 0.83 abA | |
Density 80 males/2 mL | 3 h | 5.0 ± 2.6 abAα | 17.92 ± 3.97 bBα | 10.42 ± 1.1 abABα | 4.58 ± 0.83 abAα |
6 h | 14.58 ± 1.1 cdAα | 15.42 ± 4.23 bAα | 17.5 ± 0.72 bAα | 13.75 ± 0.72 bcAβ | |
12 h | 9.17 ± 3.41 bAα | 17.5 ± 1.91 bAα | 8.75 ± 2.6 abAα | 17.5 ± 0.72 cAα | |
24 h | 16.67 ± 0.83 cdAα | 16.67 ± 1.1 bAα | 36.67 ± 1.82 cBβ | 35.42 ± 1.1 dBα | |
48 h | 18.33 ± 1.8 dAα | 38.75 ± 1.25 cAβ | 87.5 ± 6.29 dBα | 80.83 ± 6.47 eBα | |
* Control 1 (unirradiated–unpacked) | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | 0.00 ± 0.00 aA | 0.42 ± 0.42 aA | |
* Control 2 (irradiated–unpacked) | 0.83 ± 0.83 aA | 1.67 ± 0.42 aA | 1.25 ± 0.72 aA | 1.67 ± 0.83 aA | |
Density 120 males/2 mL | 3 h | 25.0 ± 10.49 bAα | 24.44 ± 0.73 bAα | 8.33 ± 1.27 abAα | 6.11 ± 1.0 aAα |
6 h | 13.06 ± 2.42 abABα | 22.78 ± 2.37 bBCα | 9.72 ± 2.82 abAα | 32.78 ± 1.47 bCɣ | |
12 h | 16.94 ± 5.05 abAα | 21.94 ± 2.27 bABα | 22.5 ± 1.44 bABβ | 31.11 ± 0.73 bBβ | |
24 h | 9.44 ± 1.94 abAα | 27.78 ± 0.73 bABα | 28.89 ± 9.69 bABαβ | 50.0 ± 0.96 cBβ | |
48 h | 29.72 ± 4.34 bAα | 38.89 ± 2.82 cAβ | 85.56 ± 5.3 cBα | 86.94 ± 3.38 dBα |
Treatments (Density and Duration) | Mean Flight Ability ± SE (%) | ||||
---|---|---|---|---|---|
7 °C | 14 °C | 21 °C | 28 °C | ||
* Control 1 (unirradiated–unpacked) | 100.00 ± 0.00 cA | 99.38 ± 0.36 dA | 99.69 ± 0.31 bA | 98.75 ± 0.88 dA | |
* Control 2 (irradiated–unpacked) | 99.06 ± 0.31 cA | 99.06 ± 0.6 dA | 99.06 ± 0.6 bA | 98.44 ± 0.31 dA | |
Density 40 males/2 mL | 3 h | 99.38 ± 0.63 cBα | 93.13 ± 3.59 cdABα | 82.5 ± 5.1 bAα | 77.5 ± 4.79 cAα |
6 h | 96.25 ± 1.61 cBβ | 86.25 ± 1.61 cdBαβ | 82.5 ± 5.1 bBα | 54.38 ± 0.05 bAα | |
12 h | 85.63 ± 3.13 bcBα | 82.5 ± 4.89 bcBα | 77.5 ± 4.89 bBα | 39.38 ± 0.07 abAα | |
24 h | 73.75 ± 5.05 abBα | 70.63 ± 3.44 abBα | 38.75 ± 9.71 aAα | 38.13 ± 0.03 abAα | |
48 h | 59.38 ± 6.16 aBβ | 57.5 ± 4.56 aBβ | 28.13 ± 6.07 aAα | 31.25 ± 0.04 aAα | |
* Control 1 (unirradiated–unpacked) | 100.00 ± 0.00 dA | 99.38 ± 0.36 cA | 99.69 ± 0.31 cA | 98.75 ± 0.88 eA | |
* Control 2 (irradiated–unpacked) | 99.06 ± 0.31 dA | 99.06 ± 0.6 cA | 99.06 ± 0.6 cA | 98.44 ± 0.31 eA | |
Density 80 males/2 mL | 3 h | 100.0 ± 0.0 dBα | 92.5 ± 0.72 cBα | 78.13 ± 3.63 bcAα | 80.31 ± 0.04 dAα |
6 h | 89.69 ± 1.87 cBCα | 90.94 ± 3.73 cCβ | 78.44 ± 3.08 bcBα | 66.56 ± 0.02 cdAα | |
12 h | 78.13 ± 1.49 bBα | 65.0 ± 8.37 bABα | 81.25 ± 5.54 bcBα | 48.44 ± 0.03 abAα | |
24 h | 79.06 ± 2.25 bAα | 72.81 ± 1.93 bAα | 62.19 ± 9.46 bAα | 57.19 ± 0.05 bcAβ | |
48 h | 23.44 ± 3.83 aAα | 34.06 ± 3.76 aAα | 23.13 ± 4.75 aAα | 34.69 ± 0.06 aAα | |
* Control 1 (unirradiated–unpacked) | 100.00 ± 0.00 dA | 99.38 ± 0.36 cA | 99.69 ± 0.31 cA | 98.75 ± 0.88 dA | |
* Control 2 (irradiated–unpacked) | 99.06 ± 0.31 dA | 99.06 ± 0.6 cA | 99.06 ± 0.6 cA | 98.44 ± 0.31 dA | |
Density 120 males/2 mL | 3 h | 99.79 ± 0.21 dBα | 90.63 ± 1.97 cBα | 70.83 ± 3.45 bAα | 70.0 ± 0.02 cAα |
6 h | 88.75 ± 1.3 cAα | 69.58 ± 7.05 bAα | 80.0 ± 4.99 bcAα | 69.38 ± 0.05 cAα | |
12 h | 78.13 ± 2.49 bBα | 76.04 ± 1.29 bBα | 75.0 ± 5.35 bBα | 44.38 ± 0.03 bAα | |
24 h | 76.04 ± 1.38 bBα | 65.21 ± 1.57 bBα | 39.38 ± 6.98 aAα | 40.83 ± 0.02 abAα | |
48 h | 34.38 ± 1.2 aAα | 35.63 ± 1.91 aAα | 32.71 ± 4.2 aAα | 28.54 ± 0.02 aAα |
Treatments (Density and Duration) | Mean Induced Sterility ± SE (%) | ||||
---|---|---|---|---|---|
7 °C | 14 °C | 21 °C | 28 °C | ||
* Control 1 (unirradiated–unpacked) | - | - | - | - | |
* Control 2 (irradiated–unpacked) | 97.55 ± 2.18 aA | 98.5 ± 0.64 aA | 97.4 ± 0.33 aA | 98.51 ± 0.66 aA | |
Density 40 males/2 mL | 3 h | 98.41 ± 0.49 aAα | 98.0 ± 0.75 aAα | 98.86 ± 0.61 aAα | 98.88 ± 0.35 aAα |
6 h | 98.17 ± 0.72 aAα | 98.3 ± 0.59 aAα | 99.17 ± 0.47 aAα | 99.37 ± 0.26 aAα | |
12 h | 98.68 ± 0.45 aAα | 98.13 ± 0.78 aAα | 98.27 ± 0.81 aAα | 98.63 ± 0.55 aAα | |
24 h | 98.79 ± 0.26 aAα | 98.159 ± 0.92 aAα | 99.52 ± 0.24 aAα | 96.7 ± 1.85 aAα | |
48 h | 98.92 ± 0.57 aAα | 95.34 ± 2.27aAα | n/a | n/a | |
* Control 1 (unirradiated–unpacked) | - | - | - | - | |
* Control 2 (irradiated–unpacked) | 97.55 ± 2.18 aA | 98.5 ± 0.64 aA | 97.4 ± 0.33 aA | 98.51 ± 0.66 aA | |
Density 80 males/2 mL | 3 h | 98.04 ± 0.31 aAα | 98.34 ± 0.28 aAα | 98.77 ± 0.43 aAα | 98.87 ± 0.42 aAα |
6 h | 98.16 ± 0.6 aAα | 98.42 ± 0.73 aAα | 98.99 ± 0.42 aAα | 98.2 ± 0.47 aAα | |
12 h | 98.29 ± 0.09 aAα | 98.56 ± 0.59 aAα | 98.28 ± 0.67 aAα | 98.08 ± 0.67 aAα | |
24 h | 98.7 ± 0.6 aAα | 98.69 ± 0.27 aAα | 98.61 ± 0.58 aAα | 98.99 ± 0.53 aAα | |
48 h | 98.44 ± 0.29 aAα | 98.15 ± 1.52 aAα | n/a | n/a | |
* Control 1 (unirradiated–unpacked) | - | - | - | - | |
* Control 2 (irradiated–unpacked) | 97.55 ± 2.18 aA | 98.5 ± 0.64 aA | 97.4 ± 0.33 aA | 98.51 ± 0.66 aA | |
Density 120 males/2 mL | 3 h | 98.29 ± 0.4 aAα | 98.65 ± 0.31 aAα | 98.81 ± 0.31 aAα | 99.02 ± 0.5 aAα |
6 h | 98.46 ± 0.35 aAα | 98.31 ± 0.3 aAα | 99.02 ± 0.48 aAα | 98.81 ± 0.64 aAα | |
12 h | 98.39 ± 0.56 aAα | 98.36 ± 0.35 aAα | 98.44 ± 0.74 aAα | 98.59 ± 0.54 aAα | |
24 h | 98.43 ± 0.56 aAα | 98.41 ± 0.46 aAα | 99.23 ± 0.24 aAα | 98.33 ± 0.62 aAα | |
48 h | 99.08 ± 0.6 aAα | 97.41 ± 0.57 aAα | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernawan, B.; Anggraeni, T.; Yusmalinar, S.; Sasmita, H.I.; Fitrianto, N.; Ahmad, I. Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. Insects 2022, 13, 847. https://doi.org/10.3390/insects13090847
Ernawan B, Anggraeni T, Yusmalinar S, Sasmita HI, Fitrianto N, Ahmad I. Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. Insects. 2022; 13(9):847. https://doi.org/10.3390/insects13090847
Chicago/Turabian StyleErnawan, Beni, Tjandra Anggraeni, Sri Yusmalinar, Hadian Iman Sasmita, Nur Fitrianto, and Intan Ahmad. 2022. "Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions" Insects 13, no. 9: 847. https://doi.org/10.3390/insects13090847
APA StyleErnawan, B., Anggraeni, T., Yusmalinar, S., Sasmita, H. I., Fitrianto, N., & Ahmad, I. (2022). Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. Insects, 13(9), 847. https://doi.org/10.3390/insects13090847