Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biology
3. Ecology of L. dispar
3.1. Distribution
3.2. Outbreaks
4. Control of L. dispar
4.1. Biological Control
4.1.1. Natural Enemies
4.1.2. Bioinsecticides or Pathogens
4.2. Traps and Attractants
4.3. Chemical and Biorational Control
4.4. Essential Oils
5. Public Health Concerns
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Beurs, K.M.; Townsend, P.A. Estimating the effect of gypsy moth defoliation using MODIS. Remote Sens. Environ. 2008, 112, 3983–3990. [Google Scholar] [CrossRef]
- Mull, A.; Spears, L.R. Spongy Moth (Lymantria dispar dispar Linnaeus); Utah State University Extension and Utah Plant Pest Diagnostic Laboratory: Logan, UT, USA, 2022. [Google Scholar]
- Kostić, M.; Popović, Z.; Brkić, D.; Milanović, S. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera, Lymantriidae). Bioresour. Technol. 2008, 99, 7897–7901. [Google Scholar] [CrossRef] [PubMed]
- Milanović, S.; Lazarević, J.; Popović, Z.; Miletić, Z.; Kostić, M.; Radulović, Z.; Karadžić, D.; Vuleta, A. Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species of European oaks. Eur. J. Entomol. 2014, 111, 371–378. [Google Scholar] [CrossRef]
- Cao, C.; Sun, L.; Wen, R.; Shang, Q.; Ma, L.; Wang, Z. Characterization of the transcriptome of the Asian gypsy moth Lymantria dispar identifies numerous transcripts associated with insecticide resistance. Pestic. Biochem. Phys. 2015, 119, 54–61. [Google Scholar] [CrossRef]
- Doane, C.C.; McManus, M.L. The Gypsy Moth: Research toward Integrated Pest Management (No. 1584); US Department of Agriculture: Washington, DC, USA, 1981. [Google Scholar]
- Mihajlović, L.J.; Grbić, C.; Vandić, D. The latest outbreaks of gypsy moth, Lymantria dispar L., in the region of Serbia in the period 1995–1998. The gypsy moth outbreaks in Serbia. Acta Entomol. Serb. 1998, 80–88. [Google Scholar]
- Lowe, S.; Brone, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species. A Selection from the Global Invasive Species Database; Hollands Printing Ltd.: Auckland, New Zealand, 2000. [Google Scholar]
- EPPO (European and Mediterranean Plant Protection Organization). EPPO Global Data Base. Lymantria dispar. Available online: https://gd.eppo.int/taxon/LYMADI/categorization (accessed on 6 September 2022).
- Fabel, S. Effects of Lymantria dispar, the Gypsy moth, on broadleaved forests in eastern North America. Restor. Reclam. Rev. 2000, 6, 1–15. [Google Scholar]
- Nealis, V.G.; Erb, S. A Sourcebook for Management of the Gypsy Moth; Canadian Forestry Service, Great Lakes Forestry Centre: Sault Ste. Marie, ON, Canada, 1993; p. 47. [Google Scholar]
- Pogue, M.; Schaefer, P.W. A Review of Selected Species of Lymantria Hübner (1819) (Lepidoptera: Noctuidae: Lymantriinae) from Subtropical and Temperate Regions of Asia, Including the Descriptions of Three New Species, Some Potentially Invasive to North America; Forest Health Technology Enterprise Team: Washington, DC, USA, 2007. [Google Scholar]
- Humble, L.; Stewart, A.J. Gypsy Moth. Natural Resources. Available online: http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/3456.pdf (accessed on 6 September 2022).
- Keena, M.A. Identification of Gypsy Moth Larval Color Forms. NE/NA-INF-123-94. Available online: http://www.forestpests.org/gypsymth (accessed on 6 September 2022).
- Hajek, A.E.; Tobin, P.C. North American eradications of Asian and European gypsy moth. In Use of Microbes for Control and Eradication of Invasive Arthropods; Hajek, A.E., Glare, T.R., O’Callaghan, M., Eds.; Springer: New York, NY, USA, 2009; pp. 71–89. [Google Scholar]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mucher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Gottschalk, K.W.; Muzika, R.M.; Montgomery, M.E.; Young, R.; O’Day, K.; Kelley, B. Suitability of North American tree species to the gypsy moth: A summary of field and laboratory tests. In U.S. Department of Agriculture Forest Service NE Forest Experimental Station General Technical Bulletin, NE-211; U.S. Department of Agriculture: Washington, DC, USA, 1995. [Google Scholar]
- Tobin, P.C.; Liebhold, A.M. “Gypsy moth”. In Encyclopedia of Biological Invasions; Simberloff, D., Rejmanek, M., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 298–304. [Google Scholar]
- Kozhanchikov, I.V. Gypsy moth. In Fauna Sssr. Nasekomye Cheshuekrylyye. Volnyanki Orgyidae; Izd.AN SSSR: Moscow/Leningrad, Russia, 1950; Volume 12, p. 582. [Google Scholar]
- Kim, C.H.; Nam, S.H.; Lee, S.M. Insecta. (vlll); Ministry of Education: Seoul, Korea, 1982. [Google Scholar]
- Schaefer, P.W.; Weseloh, R.M.; Sun, X.L.; Wallner, W.E.; Yan, J.J. Gypsy-moth, Lymantria (=Ocneria) dispar (L.) (Lepidoptera: Lymantriidae), in the People’s Republic of China. Environ. Entomol. 1984, 13, 1535–1541. [Google Scholar] [CrossRef]
- Schaefer, P.W.; Ikebe, K.; Higashiura, Y. Gypsy moth, Lymantria dispar (L.) and its natural enemies in the Far East (especially Japan). In Annotated Bibliography and Guide to the Literature through 1986 and Host Plant List for Japan; University of Delaware, Agricultural Experiment Station: Newark, DE, USA, 1988; p. 160. [Google Scholar]
- Baranchikov, Y.N. Ecological basis of the evolution of host relationships in Eurasian gypsy moth populations. In Proceedings, Lymantriidae: A Comparison of Features of New and Old World Tussock Moths. GTR-NE-123; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1989; pp. 319–338. [Google Scholar]
- Baranchikov, Y.N.; Montgomery, M.E. Tree Suitability for Asian, European and American Populations of Gypsy Moth; General Technical Reports NE-188; USDA Forest Service: Washington, DC, USA, 1994; p. 4. [Google Scholar]
- Gninenko, Y.I.; Orlinskii, A.D. Outbreaks of Lymantria dispar in Russian forests during the 1990s. EPPO Bull. 2003, 33, 325–329. [Google Scholar] [CrossRef]
- Johns, R.C.; Tobita, H.; Hara, H.; Ozaki, K. Adaptive advantages of dietary mixing different-aged foliage within conifers for a generalist defoliator. Ecol. Res. 2015, 30, 793–802. [Google Scholar] [CrossRef]
- Keena, M.A.; Côté, M.J.; Grinberg, P.S.; Wallner, W.E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2008, 37, 636–649. [Google Scholar] [CrossRef]
- Yang, F.; Luo, Y.; Huang, D.; Cui, X.; Yang, H.; Liu, X.; Shi, J. A preliminary study on flight ability among Chinese populations of Asian gypsy moth, Lymantria dispar. Chin. Agr. Sci. Bull. 2012, 28, 53–57. [Google Scholar]
- Bigsby, K.M.; Tobin, P.C.; Sills, E.O. Anthropogenic drivers of gypsy moth spread. Biol. Invasions 2011, 13, 2077. [Google Scholar] [CrossRef]
- Walsh, P.J. Asian gypsy moth: The risk to New Zealand. N. Z. For. 1993, 38, 41–43. [Google Scholar]
- Schaefer, P.W.; Strothkamp, K.G. Mass flights of Lymantria dispar japonica and Lymantria mathura (Erebidae: Lymantriinae) to commercial lighting, with notes on female viability and fecundity. J. Lepid. Soc. 2014, 68, 124–129. [Google Scholar]
- Djoumad, A.; Nisole, A.; Zahiri, R.; Freschi, L.; Picq, S.; Gundersen-Rindal, D.E.; Sparks, M.E.; Dewar, K.; Stewart, D.; Maaroufi, H.; et al. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Sci. Rep. 2017, 7, 14245. [Google Scholar] [CrossRef]
- Johnson, D.M.; Liebhold, A.M.; Bjorsnstad, O.N. Geographical variation in periodicity of gypsy moth outbreaks. Ecography 2006, 29, 367–374. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Vanhanen, H.; Veteli, T.O.; Päivinen, S.; Kellomäki, S.; Niemela, P. Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth—A model study. Silva Fenn. 2007, 41, 621–638. [Google Scholar] [CrossRef]
- Papadopoulou, S.; Chryssochoides, C.; Avtzis, D. Genetic Diversity of Lymantria dispar Linnaeus (Lepidoptera: Lymantriidae) in Northern Greece and Evaluation of the Effectiveness of Novel Insecticides. Biotechnol. Biotechnol. Equip. 2012, 26, 2976–2980. [Google Scholar] [CrossRef]
- Wanner, K.W.; Helson, B.V.; Harris, B.J. Laboratory evaluation of two novel strategies to control first-instar gypsy moth larvae with spinosad applied to tree trunks. Pest Manag. Sci. 2002, 58, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Dubois, N.R.; Dean, D.H. Synergism between CryIA insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environ. Entomol. 1995, 24, 1741–1747. [Google Scholar] [CrossRef]
- Georgiev, G.; Hubenov, Z.; Georgieva, M.; Mirchev, P.; Matova, M.; Solter, L.F.; Pilarska, D.; Pilarski, P. Interactions between the introduced fungal pathogen Entomophaga maimaiga and indigenous tachinid parasitoids of gypsy moth Lymantria dispar in Bulgaria. Phytoparasitica 2013, 41, 125–131. [Google Scholar] [CrossRef]
- Georgieva, M.; Georgiev, G.; Pilarska, D.; Pilarski, P.; Mirchev, P.; Papazova-Anakieva, I.; Matova, M. First record of Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) in Lymantria dispar populations in Greece and the former yugoslavian republic of Macedonia. Ŝumarski List 2013, 137, 307–311. [Google Scholar]
- Papadopoulou, S.; Chryssochoides, C.; Katanos, J. Control of Lymantria dispar L. for eliminating the risk of forage production loss for small ruminants. In Nutritional and Foraging Ecology of Sheep and Goats; Papachristou, T.G., Parissi, Z.M., Ben Salem, H., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain; FAO: Rome, Italy; NAGREF: Thermi, Greece, 2009; pp. 197–199. [Google Scholar]
- Pilarska, D.; McManus, M.; Pilarski, P.; Georgiev, G.; Mirchev, P.; Linde, A. Monitoring the establishment and prevalence of the fungal entomopathogen Entomophaga maimaiga in two Lymantria dispar L. populations in Bulgaria. J. Pest Sci. 2006, 79, 63–67. [Google Scholar] [CrossRef]
- Shapiro, M.; McLane, W.; Belli, R. Laboratory evaluation of selected chemicals as antidesiccants for the protection of the entomogenous nematode, Steinernema feltiae (Rhabditidae: Steinernematidae), against Lymantria dispar (Lepidoptera: Lymantriidae). J. Econ. Entomol. 1985, 78, 1437–1441. [Google Scholar] [CrossRef]
- Žikić, V.; Stanković, S.S.; Kavallieratos, N.G.; Athanassiou, C.; Grorgiou, P.; Tschorsnig, H.P.; Achterberg, C.V. Parasitoids associated with Lymantria dispar (Lepidoptera: Erebidae) and Malacosoma neustria (Lepidoptera: Lasiocampidae) in Greece and comparative analysis of their parasitoid spectrum in Europe. Zool. Anz. 2017, 270, 166–175. [Google Scholar] [CrossRef]
- Zhang, J.; Lapointe, R.; Thumbi, D.; Morin; Lucarotti, C.J. Molecular comparisons of alphabaculovirus-based products: Gypchek with Disparvirus (Lymantria dispar) and TM BioControl-1 with Virtuss (Orgyia pseudotsugata). Can. Entomol. 2010, 142, 546–556. [Google Scholar] [CrossRef]
- Harrison, R.L.; Rowley, D.L. Complete genome sequence of the strain of Lymantria dispar multiple nucleopolyhedrovirus found in the gypsy moth biopesticide Virin-ENSh. Genome Announc. 2015, 3, e01407-14. [Google Scholar] [CrossRef]
- Hajek, A.E.; van Frankenhuyzen, K. Use of entomopathogens against forest pests. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L.A., Ed.; Elsevier: Cambridge, MA, USA, 2017; pp. 313–330. [Google Scholar]
- Akhanaev, Y.; Pavlushin, S.; Polenogova, O.; Klementeva, T.; Lebedeva, D.; Okhlopkova, O.; Kolosov, A.; Martemyanov, V. The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae. BioControl 2022, 67, 331–343. [Google Scholar] [CrossRef]
- Greathead, D. Parasitoids in classical biological control. In Insect Parasitoids, Proceedings of the 13th Symposium of the Royal Entomological Society of London, Department of Physics Lecture Theatre, Imperial College, London, UK, 18–19 September 1985; Waage, J., Greathead, D., Eds.; London Academic Press: London, UK, 1986; pp. 289–318. [Google Scholar]
- Montgomery, M.E.; Wallner, W.E. The Gypsy Moth. In Dynamics of Forest Insect Populations. Population Ecology; Berryman, A.A., Ed.; Springer: Boston, MA, USA, 1988; pp. 353–375. [Google Scholar]
- Doane, C.C. Aspects of mating behavior of the gypsy moth. Ann. Entomol. Soc. Am. 1968, 61, 768–773. [Google Scholar] [CrossRef]
- Forbush, E.H.; Fernald, C.H. The Gypsy Moth; Wrightand Potter Press: Boston, MA, USA, 1896. [Google Scholar]
- Cardé, R.T. Precopulatory sexual behavior of the adult gypsy moth. In The Gypsy Moth: Research toward Integrated Pest Management; Doane, C.C., McManus, M.L., Eds.; USDA Technical Bulletin 1584; USDA: Washington, DC, USA, 1981; pp. 572–587. [Google Scholar]
- Charlton, R.E.; Cardé, R.T. Behavioral interactions in the courtship of Lymantria dispar (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 1990, 83, 89–96. [Google Scholar] [CrossRef]
- Timms, L.L.; Smith, S.M. Effects of gypsy moth establishment and dominance in native caterpillar communities of northern oak forests. Can. Entomol. 2011, 143, 479–503. [Google Scholar] [CrossRef]
- Campbell, R.W. The analysis of numerical change in gypsy moth populations. For. Sci. 1967, 13, a0001–z0001. [Google Scholar]
- Closa, S.; Núñez, L.; Parga, E. Eruga Peluda (Lymantria dispar), L’Insecte Defoliador de les Alzines. Quadern de Natura; Conselleria de Medi Ambien CAIB, Govern de les Illes Balears: Palma, Spain, 2008; p. 26. [Google Scholar]
- Junta de Andalucía. Plan de Lucha Integrada Contra la Lagarta Peluda Lymantria dispar (Linnaeus, 1978) en la Comunidad Autónoma de Andalucía; Consejería de Medio Ambiente y Ordenación del Territorio: Seville, Spain, 2013; p. 45. [Google Scholar]
- Stefanescu, C.; Soldevila, A.; Gutiérrez, C.; Torre, I.; Ubach, A.; Miralles, M. Explosions demogràfiques de l’eruga peluda del suro, Lymantria dispar (Linnaeus, 1758), als boscos del Montnegre el 2019 i 2020: Possibles causes, impactes i idoneitat dels tractaments per combatre la plaga. Butlletí Inst. Catalana D’història Nat. 2020, 84, 267–279. [Google Scholar]
- Leonard, D.E. Diapause in the gypsy moth. J. Econ. Entomol. 1968, 61, 596–598. [Google Scholar] [CrossRef]
- Leonard, D.E. Recent developments in ecology and control of the gypsy moth. Ann. Rev. Entomol. 1974, 19, 197–229. [Google Scholar] [CrossRef]
- Leonard, D.E. Bioecology of the gypsy moth. Bull. U.S. Dep. Agric. 1981, 1584, 9–29. [Google Scholar]
- Grijpma, P. Overview of research on lymantrids in eastern and western Europe. In Proceedings, Lymantriidae: A Comparison of Features of New and Old World Tussock Moth; GTR-NE-123; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1989; pp. 21–49. [Google Scholar]
- Sawyer, A.J.; Tauber, M.J.; Tauber, C.A.; Ruberson, J.R. Gypsy moth (Lepidoptera: Lymantriidae) egg development: A simulation analysis of laboratory and field data. Ecol. Model. 1993, 66, 121–155. [Google Scholar] [CrossRef]
- Zharkov, D.G.; Tvaradze, M.S. Gypsy moth and its entomophages in the forests of Georgia. In Neparnyy Shelkopryad: Itogi I Perspektivy Issledovaniy; Institut Lesa I Drevesiny SO AN SSSR: Krasnoyarsk, Russia, 1988; p. 22. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación. Plagas de Insectos en las Masas Forestales Españolas; Publicaciones del Ministerio de Agricultura, Pesca y Alimentación; Secretaría General Técnica, Servicio de Publicaciones Agrarias: Madrid, Spain, 1981; p. 254. [Google Scholar]
- Hernandez-Alonso, R.; Martín-Bernal, E.; Cañada-Martín, J.F.; Pérez-Fortea, V.; Ibarra-Ibáñez, N.; Soriano-Giménez, M. Oruga Defoliadora de las Frondosas, Lymantria dispar L. (Lepidóptero, Fam. Lymantriidae); Informaciones Técnicas 3/2001; Dirección General del Medio Natural, Departamento de Medio Ambiente, Gobierno de Aragón: Zaragoza, Spain, 2001; p. 4. [Google Scholar]
- Roonwal, M.L. Structure of the egg-masses and their hairs in some species of Lymantria of importance to forestry (Insecta: Lepidoptera: Lymnantriidae). India For. 1954, 8, 265–276. [Google Scholar]
- Katovich, S.; Haack, R. Gypsy moth in the northern hardwood forest. In Northern Hardwood Notes; Hutchinson, J.G., Ed.; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1991; Section 7.10. [Google Scholar]
- Keena, M.A.; O’Dell, T.M.; Tanner, J.A. Effects of diet ingredient source and preparation method on larval development of laboratory-reared gypsy moth (Lepidoptera, Lymantriidae). Ann. Entomol. Soc. Am. 1995, 88, 672–679. [Google Scholar] [CrossRef]
- Gray, D.R. Age-dependent postdiapause development in the gypsy moth (Lepidoptera: Lymantriidae) life stage model. Environ. Entomol. 2009, 38, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.R.; Ravlin, F.W.; Braine, J.A. Diapause in the gypsy moth: A model of inhibition and development. J. Insect Physiol. 2001, 47, 173–184. [Google Scholar] [CrossRef]
- Gray, D.R.; Logan, J.A.; Ravlin, F.W.; Carlson, J.A. Toward a model of gypsy moth egg phenology: Using respiration rates of individual eggs to determine temperature–time requirements of prediapause development. Environ. Entomol. 1991, 20, 1645–1652. [Google Scholar] [CrossRef]
- Bell, R.A. Manipulation of diapause in the gypsy moth, Lymantria dispar L., by application of KK-42 and precocious chilling of eggs. J. Insect Physiol. 1996, 42, 557–563. [Google Scholar] [CrossRef]
- Giese, R.L.; Cittadino, M.L. Relationship of the Gypsy Moth to the Physical Environment; Staff Paper #6; Department of Forestry, University of Wisconsin-Madison: Madison, WI, USA, 1977; p. 13. [Google Scholar]
- Pantyukhov, G.A. The effect of low temperatures on different populations of the brown-tail moth Euproctis chrysorrhoea (L.) and the gypsy moth Lymantria dispar (L.) (Lepidoptera: Orgyidae). Entomol. Rev. 1964, 43, 47–55. [Google Scholar]
- Masaki, S. The effect of temperature on the termination of diapause in the egg of Lymantria dispar Linné (Lepidoptera: Lymantriidae). Jpn. J. Appl. Zool. 1956, 21, 148–157. [Google Scholar]
- Gray, D.R.; Ravlin, F.W.; Régnière, J.; Logan, J.A. Further advances toward a model of gypsy moth (Lymantria dispar (L.)) egg phenology: Respiration rates and thermal responsiveness during diapause, and age-dependent developmental rates in postdiapause. J. Insect Physiol. 1995, 41, 247–256. [Google Scholar] [CrossRef]
- Marr, J.; Director, P.W. Gypsy Moth Monitoring Program; BioForest: Toronto, ON, Canada, 2020. [Google Scholar]
- Wanner, K.W.; Helson, B.V.; Harris, B.J. Laboratory and field evaluation of spinosad against the gypsy moth, Lymantria dispar. Pest Manag. Sci. 2000, 56, 855–860. [Google Scholar] [CrossRef]
- Weseloh, R.M. Behavioural responses of gypsy moth (Lepidoptera:Lymantridae) larvae to abiotic environmental factors. Environ. Entomol. 1989, 18, 361–367. [Google Scholar] [CrossRef]
- Leonard, D.E. Feeding rhythm in larvae of the gypsy moth. J. Econ. Entomol. 1970, 63, 1454–1457. [Google Scholar] [CrossRef]
- Campbell, R.W.; Sloan, R.J. Influence of behavioral evolution on gypsy moth pupal survival in sparse populations. Environ. Entomol. 1976, 5, 1211–1217. [Google Scholar] [CrossRef]
- Wallner, W.E. Gypsy moth host interactions: A concept of room and board. In Proceedings, Forest Defoliator-Host Interactions: Comparison between Gypsy Moth and Spruce Budworms, New Haven, CT, USA, 5–7 April 1983; General Technical Report, NE-85; Talerico, R.L., Montgomery, M., Eds.; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1983; pp. 5–8. [Google Scholar]
- USDA. Gypsy Moth Management in the United States: A Cooperative Approach; Draft Environmental Impact Statement; USDA Forest Service: Washington, DC, USA, 1995. [Google Scholar]
- Barbosa, P. Distribution of an endemic level gypsy moth population among various tree species. Environ. Entomol. 1978, 7, 526–527. [Google Scholar] [CrossRef]
- Brooks, C.; Hall, D. Gypsy Moth Silvicultural Guidelines for Wisconsin; Wisconsin DNR PUB-FR-123 97; Wisconsin Department of Natural Resources: Madison, WI, USA, 2005; p. 14. [Google Scholar]
- Allen, V.T.; Miller, O.F.; Tyler, W.B. Gypsy moth caterpillar dermatitis-revisited. J. Am. Acad. Dermatol. 1991, 24, 979–981. [Google Scholar] [CrossRef]
- Leroy, B.M.L.; Lemme, H.; Braumiller, P.; Hilmers, T.; Jacobs, M.; Hochrein, S.; Kienlein, S.; Müller, J.; Pretzsch, H.; Stimm, K.; et al. Relative impacts of gypsy moth outbreaks and insecticide treatments on forest resources and ecosystems: An experimental approach. Ecol. Solut. Evid. 2021, 2, e12045. [Google Scholar] [CrossRef]
- Lance, D.R. Host-seeking behavior of the gypsy moth: The influence of polyphagy and highly apparent host plants. In Host-Seeking Behavior and Mechanisms; Herbivorous Insects; Ahmad, S., Ed.; Academic Press: New York, NY, USA, 1983; pp. 210–224. [Google Scholar]
- APHIS (Animal and Plant Health Inspection Service). Asian Gypsy Moth. Available online: https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/gypsy-moth/CT_Gypsy_Moth (accessed on 6 September 2022).
- Mosher, F.H. Food plants of the gypsy moth in America. USDA Bull. 1915, 250, 1–39. [Google Scholar]
- Shields, V.D.C.; Broomell, B.P.; Salako, J.O.B. Host selection and acceptability of selected tree species by gypsy moth larvae, Lymantria dispar (L.). Ann. Entomol. Soc. Am. 2003, 96, 920–926. [Google Scholar] [CrossRef]
- Elkinton, J.S.; Liebhold, A.M. Population dynamics of Gypsy moth in North America. Annu. Rev. Entomol. 1990, 35, 571–596. [Google Scholar] [CrossRef]
- Valentine, H.T.; Talerico, R.L. Gypsy moth larval growth and consumption on red oak. For. Sci. 1980, 26, 599–605. [Google Scholar]
- Montgomery, M.E. Variation in the susceptibility of tree species for gypsy moth. In Proceedings of the U.S. Department of Agriculture Interagency Gypsy Moth Review 1990, GTR-NE-146, East Windsor, CT, USA, 22–25 January 1990; United States Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1991; pp. 1–13. [Google Scholar]
- Fuester, R.W.; Drea, J.J.; Gruber, F.; Herard, F. Explorations in Europe and Iran by the ARS European Parasite Laboratory: 1972–77. The gypsy moth: Research toward integrated pest management. USDA Tech. Bull. 1981, 1584, 324–340. [Google Scholar]
- McManus, M.; Csóka, G. History and impact of gypsy moth in north America and comparison to the recent outbreaks in Europe. Acta Silv. Lignaria Hung. 2007, 3, 47–64. [Google Scholar]
- Hirka, A. A 2004. Évi Biotikus És Abiotikus Erdőgazdasági Károk, Valamint a 2005-Ben Várható Károsítások; Hungarian Forest Research Institute: Budapest, Hungary, 2005. [Google Scholar]
- Keena, M.A.; Richards, J.Y. Comparison of survival and development of gypsy moth Lymantria dispar L. (Lepidoptera: Erebidae) populations from different geographic areas on North American conifers. Insects 2020, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Lechowicz, M.J.; Mauffette, Y. Host preference of the gypsy moth in eastern North America versus European forests. Rev. Entomol. Que. 1986, 31, 43–51. [Google Scholar]
- Rossiter, M. Use of a secondary host by non-outbreak populations of the gypsy moth. Ecology 1987, 68, 857–868. [Google Scholar] [CrossRef]
- Strom, B.L.; Hain, F.P.; Ayres, M.P. Field performance of F1-sterile gypsy moth larvae (Lepidoptera: Lymantriidae) on loblolly pine and sweetgum. Environ. Entomol. 1996, 25, 749–756. [Google Scholar] [CrossRef]
- Lovett, G.M.; Camja, C.D.; Arthur, M.A.; Weathers, K.C.; Fitzhugh, R.D. Forest ecosystem responses to exotic pests and pathogens in Eastern North America. BioScience 2006, 56, 395–405. [Google Scholar] [CrossRef]
- Davidson, C.B.; Johnson, J.E.; Gottschalk, K.W.; Amateis, R.L. Prediction of stand susceptibility and gypsy moth defoliation in Coastal Plain mixed pine hardwoods. Can. J. For. Res. 2001, 31, 1914–1921. [Google Scholar]
- Campbell, R.W.; Garlo, A.S. Gypsy moth in New Jersey pine-oak. J. For. 1982, 80, 89–90. [Google Scholar]
- Romanyk, N. Les gradations de Lymantria dispar L. en Espagne. Zast. Bilja. 1973, 24, 285–288. [Google Scholar]
- Romanyk, N.; Rupérez, A. Principales parásitos observados en los defoliadores de España con atención particular de la Lymantria dispar L. Entomophaga 1960, 5, 229–239. [Google Scholar] [CrossRef]
- Leite, R.M.M.R. Ocorrência de Lymantria dispar L. em Pinus radiata D. Don: Estudo do Ciclo de Vida e Comportamento da Praga Neste Hospedeiro: Medidas de Proteção e Combate; Instituto Politécnico de Castelo Branco: Castelo Branco, Portugal, 1993. [Google Scholar]
- Miller, J.C.; Hanson, P.E. Laboratory studies on development of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), larvae on foliage of gymnosperms. Can. Entomol. 1989, 121, 425–429. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Lago-Parra, G.; Lombardero, M.J.; Liebhold, A.M.; Álvarez-Taboada, M.F. European gypsy moth (Lymantria dispar dispar L.) completes development and defoliates exotic radiata pine plantations in spain. N. Z. J. For. Sci. 2016, 46, 18. [Google Scholar] [CrossRef]
- Mead, D.J. Sustainable Management of Pinus Radiata Plantations; FAO: Rome, Italy, 2013. [Google Scholar]
- Aber, R.; De Melfi, T.; Gill, T.; Healey, B.; McCarthy, M.A. Rash illnesses associated with gypsy moth caterpillars, Pennsylvania. Morb. Mortal. Wkly. Rep. 1982, 31, 169–170. [Google Scholar]
- Liebhold, A.M.; Mastro, V.; Schaefer, P.W. Learning from the legacy of Léopold Trouvelot. Bull. Entomol. Soc. Am. 1989, 35, 20–22. [Google Scholar] [CrossRef]
- Diaz, J.H. The Evolving Global Epidemiology, Syndromic Classification, Management, and Prevention of Caterpillar Envenoming. Am. J. Trop. Med. Hyg. 2005, 72, 347–357. [Google Scholar] [CrossRef]
- Wu, Y.; Molongoski, J.J.; Winograd, D.F.; Bogdanowicz, S.M.; Louyakis, A.S.; Lance, D.R.; Mastro, V.C.; Harrison, R.G. Genetic structure, admixture and invasion success in a Holarctic defoliator, the gypsy moth (Lymantria dispar, Lepidoptera: Erebidae). Mol. Ecol. 2015, 24, 1275–1291. [Google Scholar] [CrossRef]
- Glare, T.R.; Walsh, P.J.; Kay, M.; Barlow, N.D. Strategies for the Eradication or Control of Gypsy Moth in New Zealand; Lincoln, Agresearch: Lincoln, New Zealand, 2003; pp. 30–31. [Google Scholar]
- Wulf, A.; Graser, E. Gypsy moth outbreaks in Germany and neighboring countries. Nachr. Dtsch. Pflanzenschutzd. 1996, 48, 265–269. [Google Scholar]
- Grayson, K.L.; Johnson, D.M. Novel insights on population and range edge dynamics using an unparalleled spatiotemporal record of species invasion. J. Anim. Ecol. 2018, 87, 581–593. [Google Scholar] [CrossRef]
- Tobin, P.C.; Robinet, C.; Johnson, D.M.; Whitmire, S.L.; Bjornstad, O.N.; Liebhold, A.M. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions. Popul. Ecol. 2009, 51, 373–384. [Google Scholar] [CrossRef]
- Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J.; Haight, R.G.; Holmes, T.P.; Liebhold, A.M.; et al. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 2011, 6, e24587. [Google Scholar] [CrossRef]
- Morin, R.S.; Liebhold, A.M. Invasive forest defoliator contributes to the impending downward trend of oak dominance in eastern North America. Forestry 2016, 89, 284–289. [Google Scholar] [CrossRef]
- McNamara, D.G. EPPO’s perspective on the gypsy moth in Europe. In Proceedings of the 1995 Annual Gypsy Moth Review, Traverse City, MI, USA, 5–8 November 1995; Michigan Department of Agriculture: Lansing, MI, USA, 1995; pp. 60–65. [Google Scholar]
- Keena, M.A.; Grinberg, P.S.; Wallner, W.E. Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2007, 36, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, P.C.; Bai, B.B.; Eggen, D.A.; Leonard, D.S. The ecology, geopolitics, and economics of managing Lymantria dispar in the United States. Int. J. Pest Manag. 2012, 58, 195–210. [Google Scholar] [CrossRef]
- Weseloh, R.M. Evidence for limited dispersal of larval gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Can. Entomol. 1997, 129, 355–361. [Google Scholar] [CrossRef]
- Campbell, R.W. Population dynamics. In The Gypsy Moth: Research toward Integrated Pest Management; USDA Forest Service Technical Bulletin 1584; Government Printing Office: Washington, DC, USA, 1981; pp. 65–214. [Google Scholar]
- Lance, D.R.; Barbosa, P. Host tree influences on the dispersal of late instar gypsy moths, Lymantria dispar. Oikos 1982, 38, 1–7. [Google Scholar] [CrossRef]
- Deml, R.; Dettner, J.K. “Balloon hairs” of gypsy moth larvae (Lepidoptera: Lymantriidae): Morphology and comparative chemistry. Comp. Biochem. Physical. 1995, 112B, 673–681. [Google Scholar] [CrossRef]
- McManus, M.L. The Role of Behavior in the Disperal of Newly Hatch Gypsy Moth Larvae; Research Paper NE-267; USDA Forest Service, Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1973. [Google Scholar]
- Liebhold, A.M.; Halverson, J.A.; Elmes, G.A. Gypsy moth invasion in North America: A quantitative analysis. J. Biogeogr. 1992, 19, 513–520. [Google Scholar] [CrossRef]
- McFadden, M.W.; McManus, M.E. An insect out of control? The potential for spread and establishment of the gypsy moth in new forest areas in the United States. In Insect Guilds: Patterns of Interaction with Host Trees; Baranchikov, Y.N., Mattson, W.J., Hain, F.P., Payne, T.L., Eds.; USDA Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1991; pp. 172–186. [Google Scholar]
- Kearns, D.N.; Tobin, P.C. Oregon vs. the gypsy moth: Forty years of battling an invasive species. Am. Entomol. 2020, 66, 50–58. [Google Scholar] [CrossRef]
- Tobin, P.; Blackburn, L.M. Slow the Spread: A National Program to Manage the Gyspy Moth; General Technical Reports NRS-6; US Department of Agriculture, Forest Service, Northern Research Station: Newton Square, PA, USA, 2007. [Google Scholar]
- Picq, S.; Keena, M.; Havill, N.; Stewart, D.; Pouliot, E.; Boyle, B.; Levesque, R.C.; Hamelin, R.C.; Cusson, M. Assessing the potential of genotyping-by-sequencing-derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (Lymantria dispar) specimens: A proof-of-concept study. Evol. Appl. 2018, 11, 325–339. [Google Scholar] [CrossRef]
- Gray, D.R. The gypsy moth life stage model: Landscapewide estimates of gypsy moth establishment using a multigenerational phenology model. Ecol. Model. 2004, 176, 155–171. [Google Scholar] [CrossRef]
- Tobin, P.C.; Gray, D.R.; Liebhold, A.M. Supraoptimal temperatures influence the range dynamics of a non-native insect. Divers. Distrib. 2014, 20, 813–823. [Google Scholar] [CrossRef]
- Tobin, P.C.; Kean, J.M.; Suckling, D.M.; McCullough, D.G.; Herms, D.A.; Stringer, L.D. Determinants of successful arthropod eradication programs. Biol. Invasions 2014, 16, 401–414. [Google Scholar] [CrossRef]
- Contarini, M.; Onufrieva, K.S.; Thorpe, K.W.; Raffa, K.F.; Tobin, P.C. Mate-finding failure as an important cause of Allee effects along the leading edge of an invading insect population. Entomol. Exp. Appl. 2009, 133, 307–314. [Google Scholar] [CrossRef]
- Yamanaka, T.; Liebhold, A.M. Mate-location failure, the Allee effect, and the establishment of invading populations. Popul. Ecol. 2009, 51, 337–340. [Google Scholar] [CrossRef]
- Rhainds, M. Size-dependent realized fecundity in two lepidopteran capital breeders. Environ. Entomol. 2015, 44, 1193–1200. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Nixon, P.L.; Gypsy Moth. University of Illinois Extension. Available online: https://extension.illinois.edu/gypsymoth/biology.cfm (accessed on 6 September 2022).
- Myers, J.H.; Cory, J.S. Population Cycles in Forest Lepidoptera Revisited. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 565–592. [Google Scholar] [CrossRef]
- Roy, A.S.; McNamara, D.G.; Smith, I.M. Situation of Lymantria dispar in Europe. EPPO Bull. 1995, 25, 611–616. [Google Scholar] [CrossRef]
- Ananko, G.G.; Kolosov, A.V. Asian gypsy moth (Lymantria dispar L.) populations: Tolerance of eggs to extreme winter temperatures. J. Therm. Biol. 2021, 102, 103123. [Google Scholar] [CrossRef]
- Elton, C.S. Periodic fluctuations in the numbers of animals: Their causes and effects. Br. J. Exp. Biol. 1924, 2, 119–163. [Google Scholar] [CrossRef]
- Johnson, D.M.; Liebhold, A.M.; Bjornstad, O.N.; Mcmanus, M.L. Circumpolar variation in periodicity and synchrony among gypsy moth populations. J. Anim. Ecol. 2005, 74, 882–892. [Google Scholar] [CrossRef]
- Hlasny, T.; Trombik, J.; Holusa, J.; Lukasova, K.; Grendar, M.; Turcani, M.; Zubrik, M.; Tabakovic-Tosic, M.; Hirka, A.; Buksha, I.; et al. Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. J. Pest Sci. 2016, 89, 413–425. [Google Scholar] [CrossRef]
- Lovett, G.M.; Christenson, L.M.; Groffman, P.M.; Jones, C.G.; Hart, J.E.; Mitchell, M.J. Insect defoliation and nitrogen cycling in forests. BioScience 2002, 52, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Kosola, K.R.; Durall, D.M.; Robertson, G.P.; Dickmann, D.I.; Parry, D.; Russell, C.A.; Paul, E.A. Resilience of mycorrhizal fungi on defoliated and fertilized hybrid poplars. Can. J. Bot. 2004, 82, 671–680. [Google Scholar] [CrossRef]
- Campbell, R.W.; Sloan, R.J. Forest stand responsesto defoliation by the gypsy moth. For. Sci. 1977, 19, 1–34. [Google Scholar]
- Gottschalk, K.W. Gypsy moth effects on mast production. In Proceedings of the Workshop: Southern Appalachian Mast Management, Knoxville, TN, USA, 14–16 August 1989; McGee, C.E., Ed.; University of Tennessee: Knoxville, TN, USA, 1990; pp. 42–50. [Google Scholar]
- Wu, Y.; Bogdanowicz, S.M.; Andres, J.A.; Vieira, K.A.; Wang, B.; Cossé, A.; Pfister, S.E. Tracking invasions of a destructive defoliator, the gypsy moth (Erebidae: Lymantria dispar): Population structure, origin of intercepted specimens, and Asian introgression into North America. Evol. Appl. 2020, 13, 2056–2070. [Google Scholar] [CrossRef]
- McCullough, D.M.; Bauer, L.S. Bt: One Option for Gypsy Moth Management; Ext. Bull. E-2724; Michigan State University Extension: East Lansing, MI, USA, 2000; p. 4. [Google Scholar]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.M.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef]
- Harrison, R.L.; Rowley, D.L.; Keena, M.A. Pathology and genome sequence of a Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) isolate from Heilongjiang, China. J. Invertebr. Pathol. 2020, 177, 107495. [Google Scholar] [CrossRef]
- Gottschalk, K.W. Silvicultural Guidelines for Forest Stands Threatened by the Gypsy Moth; GTR NE-171; Department of Agriculture Forest Service Northeastern Forest Experiment Station: Radnor, PA, USA, 1993. [Google Scholar]
- Schwenke, W. Die Forstschädlinge Europas, Ein Handbuch in Fünf Bäden. Autorenkollektiv: Band 3. Schmetterlinge, 1st ed.; Paul Parey: Hamburg/Berlin, Germany, 1978; p. 467. [Google Scholar]
- Keremidchiev, M.T. Dynamics of outbreaks of the gypsy moth (Lymantria dispar L.) in the People’s Republic of Bulgaria. In Proceedings of the 13th International Congres of Entomology, Moscow, Russia, 2–9 August 1968; Bei-Bienko, G.Y., Ed.; Volume 3, pp. 51–54. [Google Scholar]
- Milenković, M.; Ducić, V. The solar activity cycles and the outbreaks of the Gypsy Moth—Lymantria dispar L. (Lepidoptera: Lymantriidae) in Serbia. Ecol. Montenegrina 2016, 7, 538–545. [Google Scholar] [CrossRef]
- Živojinović, S. Introduction. Gypsy-moth-Results of the activity on its study and control in our country in the course of 1957. Zast. Bilja 1957, 52/53, 3–6. [Google Scholar]
- Lipa, J.J.; Kolk, A. The recent situation of the gypsy moth (Lymantria dispar) and other Lymantariids in Poland. Bull. OEPP 1995, 25, 623–629. [Google Scholar] [CrossRef]
- Landmann, G.; Barthod, C. La santé des forêts françaises en 1994. Rev. For. Française 1996, 48, 101. [Google Scholar] [CrossRef]
- Krehan, H. Schwammspinner-Bekämpfung: Ist sie in Österreich möglich, ist sie notwendig? Forstsch. Aktuell 1994, 15, 13. [Google Scholar]
- Anon. PBMD Bulletin Forstschutz-Überblick 1994; Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft: Birmensdorf, Switzerland, 1995. [Google Scholar]
- Cannon, R.J.C.; Koerper, D.; Ashby, S.; Baker, R.; Bartlett, P.W.; Brookes, G.; Burgess, R.; Cheek, S.; Evans, H.F.; Hammon, R.; et al. Gypsy moth, Lymantria dispar, outbreak in Northeast London, 1995–2003. Int. J. Pest. Sci. 2004, 50, 259–273. [Google Scholar] [CrossRef]
- Kailidis, D.S. Forest Entomology and Zoology, 4th ed.; Christodoulidis Press: Thessaloniki, Greece, 1991; p. 536. [Google Scholar]
- Blanch Rissech, F.; Massana Ribas, R.M. Les industries sureres a Llagostera. Crònica 1992, 6, 1–12. [Google Scholar]
- Soldevila, A. Causes de les Explosions Demogràfiques i Mètodes de Seguiment de la Papallona Lymantria dispar Als Boscos del Montnegre. Bachelor Thesis, University of Girona, Girona, Spain, 2020. [Google Scholar]
- Tardà, A.; Corbera, J.; Riera, R. Estudi de L’àrea D’afectació de L’eruga Peluda del Suro al Massís del Montnegre a Partir D’imatges Sentinel-2; Institut Cartogràfic i Geològic de Catalunya i Diputació de Barcelona: Generalitat de Catalunya, Spain, 2021; p. 18. [Google Scholar]
- Kurenshchikov, D.K.; Martemyanov, V.V.; Imranova, E.L. Features of the far eastern gypsy moth (Lymantria dispar L.) population outbreak. Contemp. Probl. Ecol. 2020, 13, 172–179. [Google Scholar] [CrossRef]
- Shamuratova, N.G. Gypsy moth (Lymantria dispar L.) population in Uzbekistan and pathogenicity of the nuclear polyhedrosis virus. Eur. Sci. Rev. 2018, 11, 204–206. [Google Scholar]
- Kozhevnikova, L.N.; Levykh, A.Y.; Panchenko, V.Y. Distribution of Lymantria dispar in forests of CSI «Kyzylzharskoe forestry» of the North Kazakhstan region. Karaganda Univ. Bull. Ser. Biomed. Geogr. 2018, 91, 33–39. [Google Scholar]
- Krcmar-Nozic, E.; Wilson, B.; Arthur, L. The Potential Impacts of Exotic Forest Pests in North America: A Synthesis of Research; Pacific Forestry Centre: Victoria, BC, Canada, 2000; pp. 12–13. [Google Scholar]
- Pernek. M.; Pilaš. I.; Vrbek. B.; Benko. M.; Hrašovec. B.; Milković. J. Forecasting the impact of the gypsy moth on lowland hardwood forests by analyzing the cyclical pattern of population and climate data series. For. Ecol. Manag. 2008, 255, 1740–1748. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, Q.; Rex, E.A.; Hallwachs, W.; Janzen, D.H.; Grishin, N.V.; Gammon, D.B. Gypsy moth genome provides insights into flight capability and virus–host interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 1669–1678. [Google Scholar] [CrossRef]
- Smitley, D.R.; Davis, T.W. Aerial application of Bacillus thuringiensis for suppression of gypsy moth (Lepidoptera: Lymantriidae) in Populus–Quercus forests. J. Econ. Entomol. 1993, 86, 1178–1184. [Google Scholar] [CrossRef]
- Luciano, P.; Lentini, A. Ten years of microbiological control program against lepidopterous defoliators in Sardinian cork oak forests. IOBC/WPRS Bull. 2012, 76, 175–178. [Google Scholar]
- Tobin, P.C.; Whitmire, S.L. Spread of gypsy moth (Lepidoptera: Lymantriidae) and its relationship to defoliation. Environ. Entomol. 2005, 34, 1448–1455. [Google Scholar] [CrossRef]
- Tobin, P.C.; Liebhold, A.M.; Roberts, E.A.; Blackburn, L.M. Estimating Spread Rates of Non-native Species: The Gypsy Moth as a Case Study. In Invasive Alien Species: Pest Risk Modelling and Mapping; Venette, R.C., Ed.; CABI: Wallingford, UK, 2015; pp. 131–144. [Google Scholar]
- Onufrieva, K.S.; Hickman, A.D.; Leonard, D.S.; Tobin, P.C. Relationship between efficacy of mating disruption and gypsy moth density. Int. J. Pest Manag. 2019, 65, 44–52. [Google Scholar] [CrossRef]
- Luciano, P.; Prota, R. La dinamica di popolazione di Lymantria dispar L. in Sardegna. Indicatori della gradazione ricavati dale ovideposizioni. Studi Sassar. III 1981, 27, 137–160. [Google Scholar]
- Luciano, P.; Prota, R. Osservazioni sulla densità di popolazione di Lymantria dispar L. nelle principali aree subericole della Sardegna. Studi Sassar. III 1982, 28, 168–179. [Google Scholar]
- Mannu, R.; Olivieri, M.; Cocco, A.; Lentini, A. Development of Enumerative and Binomial Sequential Sampling Plans for Monitoring Lymantria dispar (L.) (Lepidoptera Erebidae) in Mediterranean Oak Forests. Agronomy 2022, 12, 1501. [Google Scholar] [CrossRef]
- Herms, D.A. Assessing management options for gypsy moth. Pestic. Outlook 2003, 14, 14–18. [Google Scholar] [CrossRef]
- Kumar, S. Biopesticides: A need for food and environmental safety. J. Biofertil. Biopestic. 2012, 3, e107. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Rausell, C.; Martinez-Ramirez, A.C.; Garcia Roblez, I.; Real, M.D. The toxicity and physiological effects of Bacillus thuringiensis toxins and formulations on Thaumetopoea pityocampa, the pine processionary caterpillar. Pestic. Biochem. Physiol. 1999, 65, 44–54. [Google Scholar] [CrossRef]
- Kalender, Y.; Uzunhisarcikli, M.; Ogutcu, A.; Suludere, Z.; Kalender, S. Effects of endosulfan on Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae. Folia Biol. 2005, 53, 3–4. [Google Scholar] [CrossRef]
- Ogutcu, A.; Suludere, Z.; Uzunhisarcikli, M.; Kalender, Y. Effects of Bacillus thuringiensis kurstaki on Malpighian tubule cells of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) larvae. Folia Biol. 2005, 53, 7–11. [Google Scholar] [CrossRef]
- Aslanturk, A.; Kalender, S.; Uzunhisarcikli, M.; Kalender, Y. Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (lepidoptera) larvae. J. Entomol. Res. Soc. 2011, 13, 27–38. [Google Scholar]
- Liebhold, A.; McManus, M. The evolving use of insecticides in gypsy moth management. J. For. 1999, 97, 20–23. [Google Scholar]
- Sharov, A.A.; Leonard, D.; Liebhold, A.M.; Clemens, N.S. Evaluation of preventive treatments in low-density gypsy moth populations. J. Econ. Entomol. 2002, 95, 1205–1215. [Google Scholar] [CrossRef]
- Jones, C.G.; Ostfeld, R.S.; Richard, M.P.; Schauber, E.M.; Wolff, J.O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease. Science 1998, 279, 1023–1026. [Google Scholar] [CrossRef]
- Bess, H.A. Population ecology of the gypsy moth Porthetria dispar L. (Lepidoptera: Lymantriidae). Conn. Agric. Exp. Stn. Bull. 1961, 646, 1–43. [Google Scholar]
- Weseloh, R.M. Changes in population size, dispersal behaviour, and reproduction of Calosoma sycophanta (Coleoptera: Carabidae), associated with changes in gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), abundance. Environ. Entomol. 1985, 14, 370–377. [Google Scholar] [CrossRef]
- Weseloh, R.M. Predation by Calosoma sycophanta L (Coleoptera, Carabidae) evidence for a large impact on gypsy moth Lymantria dispar pupae. Can. Entomol. 1985, 117, 1117–1126. [Google Scholar] [CrossRef]
- Burgess, A.F.; Crossman, S.S. Imported Insect Enemies of the Gypsy Moth and the Browntail Moth; USDA Technical Bulletin 86; USDA: Washington, DC, USA, 1929. [Google Scholar]
- Hoch, G.; Kahlbacher, G.; Schopf, A. Gypsy moth revisited: Studies on the natural enemy complex of Lymantria dispar L. (Lep., Lymantriidae) during an outbreak in a well known gypsy moth area. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 2006, 15, 201–204. [Google Scholar]
- Kryzhanovsky, O.L. Calosoma sycophanta. In Areas of Insects in the European Part of the USSR; Gorodkov, K.B., Ed.; Atlas: Leningrad, Russia, 1981; p. 20. [Google Scholar]
- Kryzhanovsky, O.L.; Belousov, I.A.; Kabak, I.I.; Kataev, B.M.; Makarov, K.V.; Shilenkov, V.G. A Checklist of the Ground-Beetles of Russia and Adjacent Lands (Insecta, Coleoptera, Carabidae); Pensoft Publishers: Moscow, Russia, 1995; p. 271. [Google Scholar]
- Kryzhanovsky, O.L.; Obydov, D.V. Krasotel Pakhuchiy Calosoma sycophanta; Red Data Book of the Russian Federation: Moscow, Russia, 2001; p. 122. [Google Scholar]
- Bespalov, A.N.; Dudko, R.Y.; Lyubechanskii, I.I. Additions to the ground beetle fauna (Coleoptera, Carabidae) of the Novosibirsk Oblast: Do the southern species spread to the north? Evraziatskii Entomol. Zhurnal 2010, 9, 625–628. [Google Scholar]
- Ostfeld, R.S.; Jones, C.G.; Wolff, J.O. Of mice and mast: Ecological connections in eastern deciduous forests. BioScience 1996, 46, 323–330. [Google Scholar] [CrossRef]
- Gschwantner, T.; Hoch, G.; Schopf, A. Impact of predators on artificially augmented populations of Lymantria dispar L. Pupae (Lep., Lymantriidae). J. Appl. Entomol. 2002, 126, 66–73. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Higashiura, Y.; Unno, A. Forest type affects predation on gypsy moth (Lepidoptera: Lymantriidae) pupae in Japan. Environ. Entomol. 1998, 27, 858–862. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Raffa, K.F.; Diss, A.L. Forest type affects predation on gypsy moth pupae. Agric. For. Entomol. 2005, 7, 179–185. [Google Scholar] [CrossRef]
- Turcani, M.; Novotny, J.; Zubrik, M.; McManus, M.L.; Pilarksa, D.; Maddox, J. The role of biotic factors in gypsy moth population dynamics in Slovakia: Present knowledge. In Proceedings of the Integrated Management and Dynamics of Forest Defoliating Insects, Victoria, BC, Canada, 15–19 August 1999; Liebhold, A.M., McManus, M.L., Otvos, I.S., Fosbroke, S.L.C., Eds.; General Technical Reports NE-277. USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2001; pp. 152–167. [Google Scholar]
- Reichart, G. Birds destroying eggs of Lymantria dispar L. Aquila 1959, 77, 315–317. [Google Scholar]
- Higashiura, Y. Survival of eggs in the gypsy-moth Lymantria dispar L. Predation by birds. J. Anim. Ecol. 1989, 58, 403–412. [Google Scholar] [CrossRef]
- Turcani, M.; Liebhold, A.; McManus, M.; Novotny, J. Preliminary results on predation of gypsy moth egg masses in Slovakia. In Proceedings of the Ecology, Survey and Management of Forest Insects, Kraków, Poland, 1–5 September 2002; McManus, M.L., Liebhold, A.M., Eds.; General Technical Reports NE-311. USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2002; pp. 115–120. [Google Scholar]
- Cooper, R.J.; Smith, H.R. Predation on gypsy-moth (Lepidoptera, Lymantriidae) egg masses by birds. Environ. Entomol. 1995, 24, 571–575. [Google Scholar] [CrossRef]
- Weseloh, R.M. Behaviour of the gypsy-moth predator, Calosoma sycophanta L (Carabidae, coleoptera), as influenced by time of day and reproductive status. Can. Entomol. 1993, 125, 887–894. [Google Scholar] [CrossRef]
- Weseloh, R.; Bernon, G.; Butler, L.; Fuester, R.; McCullough, D.; Stehr, F. Releases of Calosoma sycophanta (Coleoptera: Carabidae) near the edge of gypsy moth (Lepidoptera: Lymantriidae) distribution. Environ. Entomol. 1995, 24, 1713–1717. [Google Scholar] [CrossRef]
- Burgess, A.F. Calosoma sycophanta: Its life history, behavior, and successful colonization in New England. Bull. U.S. Dep. Agric. 1911, 101, 1–94. [Google Scholar]
- Evans, A.V. The forest caterpillar hunter, Calosoma sycophanta, an Old World species confirmed as part of the Virginia beetle fauna (Coleoptera: Carabidae). Banisteria 2009, 34, 33–37. [Google Scholar]
- Goertz, D.; Hoch, G. Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar. Agric. For. Entomol. 2013, 15, 178–186. [Google Scholar] [CrossRef]
- Howard, L.O.; Fiske, W.F. The importation into the United States of the parasites of the gypsy moth and brown-tailed moth. Bull. U.S. Dep. Agric. 1911, 91, 312. [Google Scholar]
- Hoy, M.A. Establishment of gypsy moth parasitoids in North America: An evaluation of possible reasons for establishment or non-establishment. In Perspectives in Forest Entomology; Anderson, J.F., Kaya, H.K., Eds.; Academic Press: New York, NY, USA, 1976; pp. 215–232. [Google Scholar]
- Reardon, R.C. Parasite incidence and ecological relationships in field populations of gypsy moth Lepidoptera-Lymantriidae larvae and pupae. Environ. Entomol. 1976, 5, 981–987. [Google Scholar] [CrossRef]
- Glare, T.R.; Barlow, N.D.; Walsh, P.J. Potential agents for eradication or control of gypsy moth in New Zealand. In Proceedings of the New Zealand Plant Protection Conference, Hamilton, New Zealand, 12 August 1998; pp. 224–229. [Google Scholar]
- Webb, R.E.; Peiffer, R.; Fuester, R.W.; Thorpe, K.W.; Calabrese, L.; McLaughlin, J.M. An evaluation of the residual activity of traditional, safe, and biological insecticides against the gypsy moth. J. Arboric. 1998, 24, 286–293. [Google Scholar] [CrossRef]
- Martin, J.C.; Bonneau, X. Bacillus thuringiensis 30 ans de lutte contre les chenilles defoliatrices en foret. Phytoma Défense Végétaux 2006, 590, 4–7. [Google Scholar]
- Crickmore, N. Beyond the spore—Past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol. 2006, 101, 616–619. [Google Scholar] [CrossRef]
- Mannu, R.; Cocco, A.; Luciano, P.; Lentini, A. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Manag. Sci. 2020, 76, 1103–1111. [Google Scholar] [CrossRef]
- Scriber, J.M. Non-target impacts of forest defoliator management options: Decision for no spraying may have worse impacts on non-target Lepidoptera than Bacillus thuringiensis insecticides. J. Insect Conserv. 2004, 8, 243–263. [Google Scholar] [CrossRef]
- Bateman, R. Application of Biopesticides. In Pesticide Application Methods, 4th ed.; Matthews, G.A., Bateman, R., Miller, P., Eds.; John Wiley & Sons: Oxford, UK, 2014; pp. 411–427. [Google Scholar]
- Reardon, R.C.; Podgwaite, J.D. Summary of efficacy evaluations using aerially applied Gypchek® against gypsy moth in the U.S.A. Environ. Sci. Health 1994, B29, 739–756. [Google Scholar] [CrossRef]
- Lentini, A.; Mannu, R.; Cocco, A.; Ruiu Pino, A.; Cerboneschi, A.; Luciano, P. Long-term monitoring and microbiological control programs against lepidopteran defoliators in the cork oak forests of Sardinia (Italy). Ann. Silvic. Res. 2019, 45, 21–30. [Google Scholar]
- Glare, T.R.; O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Maczuga, S.A.; Mierzejewski, K.J. Droplet size and density effects of Bacillus thuringiensis kurstaki on gypsy moth (Lepidoptera: Lymantriidae) larvae. J. Econ. Entomol. 1995, 88, 1376–1379. [Google Scholar] [CrossRef]
- Speare, A.T.; Colley, R.H. The Artificial Use of the Brown-Tail Fungus in Massachusetts, with Practical Suggestions for Private Experiment, and a Brief Note on a Fungous Disease of the Gypsy Caterpillar; Wright and Potter Printing Co.: Boston, MA, USA, 1912. [Google Scholar]
- Andreadis, T.G.; Weseloh, R.M. Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar. Proc. Natl. Acad. Sci. USA 1990, 87, 2461–2465. [Google Scholar] [CrossRef]
- Hajek, A.E.; Humber, R.A.; Griggs, M.H. Decline in virulence of Entomophaga maimaiga (Zygomycetes: Entomophthorales) with repeated in vitro subculture. J. Invertebr. Pathol. 1990, 56, 91–97. [Google Scholar] [CrossRef]
- Nielsen, C.; Milgroom, M.G.; Hajek, A.E. Genetic diversity in the gypsy moth fungal pathogen Entomophaga maimaiga from founder populations in North America and source populations in Asia. Mycol. Res. 2005, 109, 941–950. [Google Scholar] [CrossRef]
- Pilarska, D.; McManus, M.; Hajek, A.; Herard, F.; Vega, F.; Pilarski, P.; Markova, G. Introduction of the entomopathogenic fungus Entomophaga maimaiga Hum., Shim. & Sop. (Zygomycetes: Entomophtorales) to a Lymantria dispar (L.) (Lepidoptera: Lymantriidae) population in Bulgaria. J. Pest Sci. 2000, 73, 125–126. [Google Scholar]
- Zúbrik, M.; Hajek, A.; Pilarska, D.; Spilda, I.; Georgiev, G.; Hrasovec, B.; Hirka, A.; Goertz, D.; Hoch, G.; Barta, M.; et al. The potential for Entomophaga maimaiga to regulate gypsy moth Lymantria dispar (L.) (Lepidoptera: Erebidae) in Europe. J. Appl. Entomol. 2016, 140, 565–579. [Google Scholar] [CrossRef]
- Zúbrik, M.; Barta, M.; Pilarska, D.; Goertz, D.; Úradník, M.; Galko, J.; Vakula, J.; Gubka, A.; Rell, S.; Kunca, A. First record of Entomophaga maimaiga (Entomophthorales: Entomophthoraceae) in Slovakia. Biocontrol Sci. Technol. 2014, 24, 710–714. [Google Scholar] [CrossRef]
- Tabaković-Tošić, M.; Georgiev, G.; Mirchev, P.; Tošić, D.; Golubović-Ćurguz, V. Entomophaga maimaiga—New entomopathogenic fungus in the Republic of Serbia. Afr. J. Biotechnol. 2012, 34, 8571–8577. [Google Scholar] [CrossRef]
- Tabaković-Tošić, M.; Georgieva, M.; Hubenov, Z.; Georgiev, G. Impact of tachinid parasitoids of gypsy moth (Lymantria dispar) after the natural spreading and introduction of fungal pathogen Entomophaga maimaiga in Serbia. J. Entomol. Zool. Stud. 2014, 2, 262–266. [Google Scholar]
- Cory, J.S.; Myers, J.H. The ecology and evolution of insect baculoviruses. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 239–272. [Google Scholar] [CrossRef]
- Clem, R.J.; Passarelli, A.L. Baculoviruses: Sophisticated pathogens of insects. PLoS Pathog. 2013, 9, e1003729. [Google Scholar] [CrossRef]
- Weseloh, R.M. People and the gypsy moth: A story of human interactions with an invasive species. Am. Entomol. 2003, 49, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Doane, C.C. Ecology of pathogens of the gypsy moth. In Perspectives in Forest Entomology; Anderson, J.F., Kaya, H.K., Eds.; Academic Press: New York, NY, USA, 1976; pp. 285–293. [Google Scholar]
- Shapiro, M.; Bell, R.A.; Owens, C.D. In vivo mass production of gypsy moth nucleopolyhedrosis virus. In The Gypsy Moth; Research toward Integrated Pest Management; Doane, C.C., McManus, M.L., Eds.; USDA Technical Bulletin 1584; USDA: Washington, DC, USA, 1981; pp. 633–655. [Google Scholar]
- Lewis, F.B.; Yendol, W.G. Efficacy [of virus]. U.S. Dep. Agric. For. Serv. Tech. Bull. 1981, 1584, 503–512. [Google Scholar]
- Ruiu, L.; Mannu, R.; Olivieri, M.; Lentini, A. Gypsy Moth Management with LdMNPV Baculovirus in Cork Oak Forest. Forests 2021, 12, 495. [Google Scholar] [CrossRef]
- McManus, M.L.; Solter, L.F. Microsporidian pathogens in European gypsy moth populations. In Ecology, Survey and Management of Forest Insects; General Technical Report NE-311; McManus, M.L., Liebhold, A.M., Eds.; USDA Forest Service: Newton Square, PA, USA, 2003; pp. 44–51. [Google Scholar]
- Goertz, D.; Hoch, G. Horizontal transmission pathways of terrestrial microsporidia: A quantitative comparison of three pathogens infecting different organs in Lymantria dispar L. (Lep.: Lymantriidae) larvae. Biol. Control 2008, 44, 196–206. [Google Scholar] [CrossRef]
- Goertz, D.; Hoch, G. Vertical transmission and overwintering of microsporidia in the gypsy moth, Lymantria dispar. J. Invertebr. Pathol. 2008, 99, 43–48. [Google Scholar] [CrossRef]
- Hoch, G.; Zubrik, M.; Novotny, J.; Schopf, A. The natural enemy complex of the gypsy moth, Lymantria dispar (Lep., Lymantriidae) in different phases of its population dynamics in eastern Austria and Slovakia—A comparative study. J. Appl. Entomol. 2001, 125, 217–227. [Google Scholar] [CrossRef]
- Bathon, H. Biologische Bek€ Bekämpfung des Schwammspinners: Räuber und Parasitoide. In Schwammspinner-Kalamität im Forst; Wulf, A.B., Berendes, K.H., Eds.; Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft: Berlin, Germany, 1993; pp. 117–124. [Google Scholar]
- Bierl, B.A.; Beroza, M.; Collier, C.W. Potent sex attractant of the gypsy moth: Its isolation, identification and synthesis. Science 1970, 170, 87–89. [Google Scholar] [CrossRef]
- Beroza, M.; Knipling, E.F. Gypsy moth control with the sex attractant pheromone. Science 1972, 177, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.C.; Sheals, R.A. The present outlook on the gypsy moth problem. J. For. 1944, 42, 393–407. [Google Scholar]
- Mastro, V.C.; Richerson, J.V.; Cameron, E.A. An evaluation of gypsy moth pheromone-baited traps using behavioral observations as a measure of trap efficiency. Environ. Entomol. 1977, 6, 128–132. [Google Scholar] [CrossRef]
- Elkinton, J.S.; Childs, R.D. Efficiency of two gypsy moth (Lepidoptera: Lymantriidae) pheromone-baited traps. Environ. Entomol. 1983, 12, 1519–1525. [Google Scholar] [CrossRef]
- Thorpe, K.W.; Ridgway, R.L.; Leonhardt, B.A. Relationship between gypsy moth (Lepidoptera: Lymantriidae) pheromone trap catch and population density: Comparison of traps baited with 1 and 500 mg (þ)-disparlure lures. J. Econ. Entomol. 1993, 86, 86–92. [Google Scholar] [CrossRef]
- Richerson, J.V. Pheromone-mediated behavior of the gypsy moth. J. Chem. Ecol. 1977, 3, 291–301. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Tobin, P.C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 2008, 53, 387–408. [Google Scholar] [CrossRef]
- Suckling, D.M.; Tobin, P.C.; McCullough, D.G.; Herms, D.A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 2012, 105, 1–13. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.S.; Haight, R.G.; Berec, L.; Kean, J.M.; Liebhold, A.M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 2012, 15, 803–812. [Google Scholar] [CrossRef]
- Tobin, P.C.; Onufrieva, K.S.; Thorpe, K.W. The relationship between male moth density and female mating success in invading populations of Lymantria dispar. Entomol. Exp. Appl. 2013, 146, 103–111. [Google Scholar] [CrossRef]
- Miller, J.R.; Gut, L.J. Mating disruption for the 21st century: Matching technology with mechanism. Environ. Entomol. 2015, 44, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Cardé, R.; Minks, A.K. Control of moths by mating disruption: Successes and constraints. Annu. Rev. Entomol. 1995, 40, 559–585. [Google Scholar] [CrossRef]
- Rice, R.E.; Kirsch, P. Mating Disruption of Oriental Fruit Moth in the United States. Behavior-Modifying Chemicals for Insect Management; Marcel Dekker: New York, NY, USA, 1990; pp. 193–211. [Google Scholar]
- Bengtsson, M.; Karg, G.; Kirsch, P.A.; Lofqvist, J.; Sauer, A.; Witzgall, P. Mating Disruption of Pea Moth CydiaNigricana F (Lepidoptera, Tortricidae) by a Repellent Blend of Sex-Pheromone and Attraction Inhibitors. J. Chem. Ecol. 1994, 20, 871–887. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, P.; Backman, A.C.; Svensson, M.; Koch, U.; Rama, F.; ElSayed, A.; Brauchli, J.; Arn, H.; Bengtsson, M.; Lofqvist, J. Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. Biocontrol 1999, 44, 211–237. [Google Scholar] [CrossRef]
- Thorpe, K.; Reardon, R.; Tcheslavskaia, K.; Leonard, D.; Mastro, V. A Review of the Use of Mating Disruption to Manage Gypsy Moth, Lymantria dispar (L.). Available online: http://www.fs.fed.us/foresthealth/technology/pdfs/GMComplete.pdf (accessed on 29 June 2022).
- Walton, V.M.; Daane, K.M.; Bentley, W.J.; Millar, J.G.; Larsen, T.E.; Malakar-Kuenen, R. Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards. J. Econ. Entomol. 2006, 99, 1280–1290. [Google Scholar] [CrossRef]
- Stelinski, L.L.; Gut, L.J.; Miller, J.R. An attempt to increase efficacy of moth mating Disruption by Co-releasing pheromones with kairomones and to understand possible underlying mechanisms of this technique. Environ. Entomol. 2013, 42, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Trematerra, P.; Colacci, M.; Athanassiou, C.G.; Kavallieratos, N.G.; Rumbos, C.; Boukouvala, M.C.; Nikolaidou, A.J.; Kontodimas, D.C.; Benavent-Fernández, E.; Gálvez-Settier, S. Evaluation of Mating disruption for the control of Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) in suburban recreational areas in Italy and Greece. J. Econ. Entomol. 2019, 112, 2229–2235. [Google Scholar] [CrossRef]
- Gordon, D.; Zahavi, T.; Anshelevich, L.; Harel, M.; Ovadia, S.; Dunkelblum, E.; Harari, A.R. Mating disruption of Lobesia botrana (Lepidoptera: Tortricidae): Effect of pheromone formulations and concentrations. J. Econ. Entomol. 2005, 98, 135–142. [Google Scholar] [CrossRef]
- Stelinski, L.L.; Miller, J.R.; Ledebuhr, R.; Siegert, P.; Gut, L.J. Season-long mating disruption of Grapholita molesta (Lepidoptera: Tortricidae) by one machine application of pheromone in wax drops (SPLAT-OFM). J. Pest Sci. 2007, 80, 109–117. [Google Scholar] [CrossRef]
- Hoshi, H.; Takabe, M.; Nakamuta, K. Mating disruption of a carpenter moth, Cossus insularis (Lepidoptera: Cossidae) in apple orchards with synthetic sex pheromone, and registration of the pheromone as an agrochemical. J. Chem. Ecol. 2016, 42, 606–611. [Google Scholar] [CrossRef]
- Mori, B.A.; Evenden, M.L. When mating disruption does not disrupt mating: Fitness consequences of delayed mating in moths. Entomol. Exp. Appl. 2013, 146, 50–65. [Google Scholar] [CrossRef]
- Tobin, P.C.; Bolyard, J.L.; Onufrieva, K.S.; Hickman, A.D. The effect of male and female age on Lymantria dispar (Lepidoptera: Lymantriidae) fecundity. J. Econ. Entomol. 2014, 107, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Hide, R.; Suckling, D. Decision analysis of insecticide resistance in light-brown apple moth. N. Z. J. Exp. Agric. 1988, 16, 219–224. [Google Scholar] [CrossRef]
- Suckling, D.; Shaw, P.; Khoo, J.; Cruickshank, V. Resistance management of lightbrown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae) by mating disruption. N. Z. J. Crop Hortic. Sci. 1990, 18, 89–98. [Google Scholar] [CrossRef]
- Caprio, M.A.; Suckling, D.M. Mating Disruption Reduces the Risk of Resistance Development to Transgenic Apple Orchards: Simulations of the Lightbrown Apple Moth: New Zealand; Plant Protection Society: Rotorua, New Zeland, 1995; pp. 52–58. [Google Scholar]
- Schwalbe, C.P.; Mastro, V.C. Gypsy moth mating disruption: Dosage effects. J. Chem. Ecol. 1988, 14, 581–588. [Google Scholar] [CrossRef]
- Leonhardt, B.A.; Mastro, V.C.; Leonard, D.S.; McLane, W.; Reardon, R.C.; Thorpe, K.W. Control of low-density gypsy moth (Lepidoptera: Lymantriidae) populations by mating disruption with pheromone. J. Chem. Ecol. 1996, 22, 1255–1272. [Google Scholar] [CrossRef]
- Thorpe, K.W.; Mastro, V.C.; Leonard, D.S.; Leonhardt, B.A.; McLane, W.; Reardon, R.C.; Talley, S.E. Comparative efficacy of two controlled-release gypsy moth mating disruption formulations. Entomol. Exp. Appl. 1999, 90, 267–277. [Google Scholar] [CrossRef]
- Onufrieva, K.S.; Thorpe, K.W.; Hickman, A.D.; Leonard, D.S.; Mastro, V.C.; Roberts, E.A. Gypsy moth mating disruption in open landscapes. Agric. For. Entomol. 2008, 10, 175–179. [Google Scholar] [CrossRef]
- Collins, C.W.; Hood, C.E. Gypsy Moth Tree Banding Material: How to Make, Use, and Apply It; Bulletin 899; United States Department of Agriculture: Washington, DC, USA, 1920. [Google Scholar]
- McManus, M.L.; Houston, D.R.; Wallner, W.E. The Homeowner and the Gypsy Moths: Guidelines for Control; Home and Garden Bulletin No. 227; USDA: Washington, DC, USA, 1980; p. 34. [Google Scholar]
- McManus, M.L.; Smith, H.R. Effectiveness of Artificial Bark Flaps in Mediating Migration of Late-Instar Gypsy Moth Larvae; Forest Service Res. NE-316; U.S. Department of Agriculture: Washington, DC, USA, 1984. [Google Scholar]
- Liebhold, A.M.; Elkinton, J.S.; Wallner, W.E. Effect of burlap bands on between-tree movement of late-instar gypsy moth, Lymantria dispar (Lepidoptera:Lymantriidae). Environ. Entomol. 1986, 15, 373–379. [Google Scholar] [CrossRef]
- Blumenthal, E.M.; Hoover, C.R. Gypsy moth (Lepidoptera: Lymantriidae) population control using mechanical barriers and contact insecticides applied to tree stems. J. Econ. Entomol. 1986, 79, 1394–1396. [Google Scholar] [CrossRef]
- Thorpe, K.W.; Webb, R.E.; Ridgway, R.L.; Venables, L.; Tatman, K.M. Sticky barrier bands affect density of Gypsy moth (Lepidoptera:Lymantriidae) and damage in oak canopies. J. Econ. Entomol. 1993, 86, 1479–1501. [Google Scholar] [CrossRef]
- Bell, J.L.; Whitmore, R.C. Bird populations and habitat in Bacillus thuringiensis and Dimilin-treated and untreated areas of hardwood forest. Am. Midl. Nat. 1997, 137, 239–250. [Google Scholar] [CrossRef]
- Conis, E. Polio, DDT, and disease risk in the United States after World War II. Environ. Hist. 2017, 22, 696–721. [Google Scholar] [CrossRef]
- Allstadt, A.J.; Haynes, K.J.; Liebhold, A.M.; Johnson, D.M. Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect. Oecologia 2013, 172, 141–151. [Google Scholar] [CrossRef]
- Schönfeld, F. Dimilin im Eichenwald—Insektizideinsatz mit Nebenwirkungen. LWF Aktuell 2009, 70, 58–60. [Google Scholar]
- Durkin, P.R. Control/Eradication Agents for the Gypsy Moth—Human Health and Ecological Risk Assessment for Bacillus thuringiensis var. Kurstaki (B.t.k.); SERA Technical Reports, 03-43-05-02d, (4-1–4-25); U.S. Department of Agriculture, Forest Service, Forest Health: Arlington, WA, USA, 2004. [Google Scholar]
- Protection European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance diflubenzuron. EFSA J. 2012, 10, 2870. [Google Scholar] [CrossRef]
- Lemme, H.; Lobinger, G.; Müller-Kroehling, S. Schwammspinner—Massenvermehrung in Franken. LWF Aktuell 2019, 121, 37–43. [Google Scholar]
- Sial, A.A.; Brunner, J.F. Toxicity and residual efficacy of Chlorantraniliprole, Spinetoram, and Emamectin benzoate to Obliquebanded Leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 1277–1285. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Razaq, M.; Saleem, M.A.; Anjumm, F.; Noor ul An, M.; Raza, A.M.; Wright, D.J. Stability, cross-resistance and fitness costs of resistance to emamectin benzoate in a re-selected field population of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Crop Prot. 2014, 65, 227–231. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, J.; Li, L.u.; Liang, L.; Ma, X.; Ma, L. Sublethal concentration of emamectin benzoate inhibits the growth of gypsy moth by inducing digestive dysfunction and nutrient metabolism disorder. Pest Manag. Sci. 2021, 77, 4073–4083. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Zaitsev, A.S.; Nyadar, P.M.; Gninenko, Y.I.; Gushchin, V.A.; Makarov, V.V.; Agranovsky, A.A. Topical treatment of LdMNPV-infected gypsy moth caterpillars with 18 nucleotides long antisense fragment from LdMNPV IAP-3 gene triggers higher levels of apoptosis in the infected cells and mortality of the pest. J. Plant Prot. Res. 2017, 57, 18–24. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Repetskaya, A.I.; Kenyo, I.M.; Gorlov, M.V.; Kasich, I.N.; Krasnodubets, A.M.; Gal’chinsky, N.V.; Fomochkina, I.I.; Zaitsev, A.S.; et al. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: We should continue the journey. Molecules 2018, 23, 1302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Li, H.; Miao, X. Second-generation sequencing supplies an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE 2011, 6, e18644. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Knipple, D.C. Recent advances in RNA interference research in insects: Implications for future insect pest management strategies. Crop Prot. 2013, 45, 36–40. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Useinov, R.Z.; Gal’chinsky, N.V.; Novikov, I.A.; Yurchenko, K.A.; Volkov, M.E.; Gorlov, M.V.; Brailko, V.A.; Plugatar, Y.V. Insecticidal activity of three 10–12 nucleotides long antisense sequences from 5.8S ribosomal RNA gene of gypsy moth Lymantria dispar L. against its larvae. J. Plant Prot. Res. 2019, 59, 561–564. [Google Scholar]
- Oberemok, V.V.; Laikova, K.V.; Gal’chinsky, N.V.; Useinov, R.Z.; Novikov, I.A.; Temirova, Z.Z.; Shumskykh, M.N.; Krasnodubets, A.M.; Repetskaya, A.I.; Dyadichev, V.V.; et al. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci. Rep. 2019, 9, 6197. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Zaitsev, A.S.; Shumskykh, M.N.; Kasich, I.N.; Gal’chinsky, N.V.; Bekirova, V.V.; Makarov, V.V.; Agranovsky, A.A.; Gushchin, V.A.; et al. Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: A novel approach for gypsy moth control. Int. J. Mol. Sci. 2017, 18, 2446. [Google Scholar] [CrossRef]
- Stenersen, J. Chemical Pesticides Mode of Action and Toxicology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Devine, G.J.; Furlong, M.J. Insecticide use: Contexts and ecological consequences. Agric. Hum. Values 2007, 24, 281–306. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Brevik, K.; Schoville, S.D.; Mota-Sanchez, D.; Chen, Y.H. Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag. Sci. 2018, 74, 1953–1963. [Google Scholar] [CrossRef]
- Umina, P.A.; McDonald, G.; Maino, J.; Edwards, O.; Hoffmann, A.A. Escalating insecticide resistance in Australian grain pests: Contributing factors, industry trends and management opportunities. Pest Manag. Sci. 2019, 75, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Kaushik, G.; Chiu, J.F.V. Pollution status and biodegradation of organophosphate pesticides in the environment. In Abatement of Environmental Pollutants; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–66. [Google Scholar]
- Senthil-Nathan, S. A review of bio pesticides and their mode of action against insect pests. In Environmental Sustainability—Role of Green Technologies; Thangavel, P., Sridevi, G., Eds.; Springer: New Delhi, India, 2015; pp. 49–63. [Google Scholar]
- Kumar, V. A review on efficacy of biopesticides to control the agricultural insect’s pest. Int. J. Agric. Sci. Res. 2015, 4, 168–179. [Google Scholar]
- Anwer, M.A. Biopesticides and Bioagents: Novel Tools for Pest Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Stanković, S.; Kostić, M.; Kostić, I.; Krnjajić, S. Practical approaches to pest control: The use of natural compounds. In Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production; Kontogiannatos, D., Ed.; IntechOpen: London, UK, 2020; pp. 43–60. [Google Scholar]
- Shahzad, K.; Manzoor, F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021, 44, 1–11. [Google Scholar] [CrossRef]
- Helson, B. Naturally derived insecticides: Prospects for forestry use. For. Chron. 1992, 68, 349–354. [Google Scholar] [CrossRef]
- Kostić, I.; Lazarević, J.; Šešlija Jovanović, D.; Kostić, M.; Marković, T.; Milanović, S. Potential of Essential Oils from Anise, Dill and Fennel Seeds for the Gypsy Moth Control. Plants 2021, 10, 2194. [Google Scholar] [CrossRef]
- Carson, F.; Hammer, K.A. Chemistry and bioactivity of essential oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons: London, UK, 2011; Volume 25, pp. 203–238. [Google Scholar]
- Koul, O. Phytochemicals and insect control: An antifeedant approach. Crit. Rev. Plant Sci. 2008, 27, 1–24. [Google Scholar] [CrossRef]
- Trumble, J.T. Caveat emptor: Safety considerations for natural products used in arthropod control. Am. Entomol. 2002, 48, 7–13. [Google Scholar] [CrossRef]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef]
- Katz, M.; Miller, H.; Hebert, A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends. Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Moretti, L.; Sanna-Passino, G.; Demontis, S.; Bazzoni, E. Essential oil formulations useful as a new tool for insect pest control. AAPS Pharm. Sci. Tech. 2002, 3, e13. [Google Scholar] [CrossRef] [PubMed]
- Kostić, I.; Petrović, O.; Milanović, S.; Popović, Z.; Stanković, S.; Todorović, G.; Kostić, M. Biological activity of essential oils of Athamanta haynaldii and Myristica fragrans to gypsy moth larvae. Ind. Crop Prod. 2013, 41, 17–20. [Google Scholar] [CrossRef]
- Devrnja, N.; Kostić, I.; Lazarević, J.; Savić, J.; Ćalić, D. Evaluation of tansy essential oil as potential ‘green’ alternative for gypsy moth control. Environ. Sci. Pollut. Res. 2020, 27, 11958–11967. [Google Scholar] [CrossRef] [PubMed]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Berry, E.; Moldenke, F.; Miller, C.; Wernz, G. Toxicity of diflubenzuron in larvae of gypsy moth (Lepidoptera: Lymantriidae): Effects of host plant. J. Econ. Entomol. 1993, 86, 809–814. [Google Scholar] [CrossRef]
- Traupman, J.C. The Bantam New College Latin and English Dictionary, 2nd ed.; Bantam Books: New York, NY, USA, 1995. [Google Scholar]
- Hellier, F.F.; Warin, R.P. Caterpillar dermatitis. Br. Med. J. 1967, 2, 346–348. [Google Scholar] [CrossRef]
- Haddad, V., Jr.; Lastória, J.C. Envenomation by caterpillars (erucism): Proposal for simple pain relief treatment. J. Venom Anim. Toxins Incl. Trop. Dis. 2014, 20, 21. [Google Scholar] [CrossRef]
- Goldman, L.; Sawyer, F.; Levine, A.; Goldman, J.; Goldman, S.; Spinanger, J. Investigative studies of skin irritations from caterpillars. J. Investig. Dermatol. 1960, 34, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Haddad, V., Jr.; Cardoso, J.L.C. Erucismo e lepidopterismo. In Animais Peçonhentos No Brasil: Biologia, Clínica e Terapêutica Dos Acidentes; Cardoso, J.L.C., Franca, F.O.S., Wen, F.H., Malaque, C.M.S., Haddad, V., Jr., Eds.; Sarvier: São Paulo, Brazil, 2003; pp. 236–239. [Google Scholar]
- Cardoso, A.E.C.; Haddad, V., Jr. Acidentes por lepidópteros (larvas e adultos de mariposas): Estudo dos aspectos epidemiológicos, clínicos e terapêuticos. An. Bras. Dermatol. 2005, 80, 571–578. [Google Scholar] [CrossRef]
- Haddad, V., Jr.; Cardoso, J.L.; Lupi, O.; Tyring, S.K. Tropical dermatology: Venomous arthropods and human skin: Part I: Insecta. J. Am. Acad. Dermatol. 2012, 67, 331. [Google Scholar] [CrossRef] [PubMed]
- Stipetic, M.E.; Rosen, P.B.; Borys, D.J. A retrospective analysis of 96 “Asp” (Megalopyge opercularis) envenomations in central Texas during 1996. J. Toxicol. Clin. Toxicol. 1999, 37, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Battisti, A.; Holm, G.; Fagrell, B.; Larsson, S. Urticating Hairs in Arthropods: Their Nature and Medical Significance. Annu. Rev. Entomol. 2011, 56, 203–210. [Google Scholar] [CrossRef]
- Shama, S.K.; Etkind, P.H.; Odell, T.M.; Canada, A.T.; Finn, A.M.; Soter, N.A. Gypsy-moth-caterpillar-dermatitis. N. Engl. J. Med. 1982, 306, 1300–1301. [Google Scholar] [CrossRef]
- Beaucher, W.N.; Farnham, J.E. Gypsymoth-caterpillar dermatitis. N. Engl. J. Med. 1982, 21, 1301–1302. [Google Scholar] [CrossRef]
- De Jong, M.C.; Bleumink, E. Investigative studies of the dermatitis caused by the larva of the brown-tail moth, Euproctis chrysorrhoea L. (Lepidoptera, Lymantriidae). Arch. Dermatol. Res. 1977, 259, 247–262. [Google Scholar] [CrossRef]
- Croitoru, D.O.; Brooks, S.G.; Pon, K. Dermatitis after exposure to Lymantria dispar dispar. Can. Med. Assoc. J. 2022, 194, E500. [Google Scholar] [CrossRef]
- Deml, R. Pyrrolidinyl and pyridyl alkaloids in Lymantria dispar. Z. Naturforsch. C Biosci. 2003, 58, 860–866. [Google Scholar] [CrossRef]
- Villas-Boas, I.M.; Bonfá, G.; Tambourgi, D.V. Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon 2018, 153, 39–52. [Google Scholar] [CrossRef]
- Aldrich, J.R.; Schaefer, P.W.; Oliver, J.E.; Puapoomchareon, P.; Lee, C.J.; Vander Meer, R.K. Biochemistry of the exocrine secretion from gypsy moth caterpillars (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 1997, 90, 75–82. [Google Scholar] [CrossRef]
- Teutschlaender, O. Ueber die durch Rauperhaare Verursachten Erkrankungen. Arch. Augenheilkd. 1908, 61, 117–118. [Google Scholar]
- Perlman, F.; Press, E.; Googins, J.A.; Malley, A.; Poarea, H. Tussockosis: Reactions to Douglas fir tussock moth. Ann. Allergy 1976, 36, 302–307. [Google Scholar] [PubMed]
- Anderson, J.F.; Furniss, W.E. Epidemic of urticaria associated with first-instar larvae of the gypsy moth (Lepidoptera: Lymantriidae). J. Med. Entomol. 1983, 20, 146–150. [Google Scholar] [CrossRef]
- Tuthill, R.W.; Canada, A.T.; Wilcock, K.; Etkind, P.H.; O’Dell, T.M.; Sharma, S.K. An epidemiologic study of gypsy moth rash. Am. J. Public Health 1984, 74, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, R.A. Occupational allergies to arthropods—Documentation and prevention. Bull. Entomol. Soc. Am. 1980, 26, 356–360. [Google Scholar] [CrossRef]
- Etkind, P.H.; Odell, T.M.; Canada, A.T.; Shama, S.K.; Finn, A.M.; Tuthill, R.W. The gypsy moth caterpillar: A significant new occupational and public health problem. J. Occup. Med. 1982, 24, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.J.; Carbonaro, P.A.; Schwartz, R.A. Arthropods in dermatology. J. Am. Acad. Dermatol. 2004, 50, 819–842. [Google Scholar] [CrossRef]
- Haq, M.; O’Toole, A.; Beecker, J.; Gooderham, M.J. Return of Lymantria dispar dispar (gypsy moth): A case report. SAGE Open Med. Case Rep. 2021, 9, 2050313X211057926. [Google Scholar] [CrossRef]
- Gooderham, M.; Haq, M.; Beecker, J.; O’Toole, A. Lymantria dispar dispar (Gypsy) moth dermatitis. J. Cutan. Med. Surg. 2021, 25, 555–556. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kobayashi, K.; Sakata, K.; Akasaka, T. Gypsy moth-induced dermatitis: A hospital review and community survey. Eur. J. Dermatol. 2012, 22, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Hossler, E.W. Caterpillars and moths. Part I: Dermatologic manifestations of encounters with Lepidoptera. J. Am. Acad. Dermatol. 2010, 62, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Yu, Y.; Zhou, P.; Zhang, J.; Dou, L.; Hao, Q.; Chen, H.; Zhu, S. Identification and Knockdown of the Olfactory Receptor (OrCo) in Gypsy Moth, Lymantria dispar. Int. J. Biol. Sci. 2015, 11, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament. Directive 2009/128/CE of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF (accessed on 6 September 2022).
Common Name | Scientific Name | Order | Family | Categorization | Reference |
---|---|---|---|---|---|
European crab apple | Malus sylvestris (L.) Mill. | Rosales | Rosaceae | Susceptible | [17] |
Bigtooth aspen | Populus grandidentata Michaux | Mapighiales | Salicaceae | Susceptible | [17] |
Quaking aspen | P. tremuloides Michx. | Mapighiales | Salicaceae | Susceptible | [17] |
Boxelder | Acer negundo L. | Sapindales | Sapindaceae | Susceptible | [17] |
American mountain ash | Sorbus americana Marshall | Rosales | Rosaceae | Susceptible | [17] |
Sweetgum | Liquidambar styraciflua L. | Saxifragales | Altingiaceae | Susceptible | [17] |
Basswood | Tilia spp. | Malvales | Malvaceae | Susceptible | [17] |
Birch | Betula spp. | Fagales | Betulaceae | Susceptible | [17] |
Larch | Larix spp. | Pinales | Pinaceae | Susceptible | [17] |
Oak | Quercus spp. | Fagales | Fagaceae | Susceptible | [17] |
Willow | Salix spp. | Malpighiales | Salicaceae | Susceptible | [17] |
Alder | Alnus spp. | Fagales | Betulaceae | Preferred | [10] |
Hawthorn | Crataegus spp. | Rosales | Rosaceae | Preferred | [10] |
Hazelnut | Corylus spp. | Fagales | Betulaceae | Preferred | [10] |
Hornbeam | Carpinus sp. | Fagales | Betulaceae | Preferred | [10] |
Serviceberry | Amelanchier spp. | Rosales | Rosaceae | Preferred | [10] |
Sumac | Rhus spp. | Sapindales | Anacardiaceae | Preferred | [10] |
Hemlock | Tsuga canadensis (L.) Carrière | Pinales | Pinaceae | Resistant | [10,17] |
Yellow birch | Betula alleghaniensis Britt. | Fagales | Betulaceae | Resistant | [10,17] |
Eastern white pine | Pinus strobus L. | Pinales | Pinaceae | Resistant | [10,17] |
Predators | |||
---|---|---|---|
Species Name | Order | Family | Reference |
Peromyscus leucopus (Rafinesque, 1818) | Rodentia | Cricetidae | [194] |
Apodemus sylvaticus (Linnaeus, 1758) | Rodentia | Muridae | [59,169] |
Crocidura russula (Hermann, 1780) | Eulipotyphla | Soricidae | [59,169] |
Parus major Linnaeus, 1758 | Passeriformes | Paridae | [59,169] |
Garrulus glandarius (Linnaeus, 1758) | Passeriformes | Corvidae | [59,169] |
Dendrocopos kizuki (Temminck, 1836) | Passeriformes | Picidae | [59,169] |
Sitta eiuropaea Linnaeus, 1758 | Passeriformes | Sittidae | [59,169] |
Calosoma sycophanta L. | Coleoptera | Carabidae | [56,59,169,195,196,197,198,199,200,201,202,203] |
Parasitoids | |||
Acropimpla didyma (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Aleiodes pallidator Thunberg | Hymenoptera | Braconidae | [44] |
Anastatus bifasciatus (Geoffroy) | Hymenoptera | Eupelmidae | [44] |
Anastatus catalonicus Bolivar & Pieltain | Hymenoptera | Eupelmidae | [44] |
Anastatus japonicus Ashmead | Hymenoptera | Eupelmidae | [44] |
Apanteles impurus (Nees) | Hymenoptera | Braconidae | [44] |
Apanteles lacteicolor Viereck | Hymenoptera | Braconidae | [44] |
Apanteles xanthostigma (Haliday) | Hymenoptera | Braconidae | [44] |
Apechthis capulifera (Kriechbaumer) | Hymenoptera | Ichneumonidae | [44] |
Apechthis compunctor (L.) | Hymenoptera | Ichneumonidae | [44] |
Apechthis quadridentata (Thomson) | Hymenoptera | Ichneumonidae | [44] |
Apechthis rufata (Gmelin) | Hymenoptera | Ichneumonidae | [44] |
Aphantorhaphopsis samarensis (Villeneuve) | Diptera | Tachinidae | [44] |
Banchus falcatorius (Fabricius) | Hymenoptera | Ichneumonida | [44] |
Barylypa pallida (Gravenhorst) | Hymenoptera | Ichneumonida | [44] |
Baryscapus oophagus (Otten) | Hymenoptera | Eulophidae | [44] |
Blepharipa pratensis (Meigen) | Diptera | Tachinidae | [44] |
Blepharipa schineri (Mesnil) | Diptera | Tachinidae | [44] |
Blondelia nigripes (Fallén) | Diptera | Tachinidae | [44] |
Blondelia piniariae (Hartig) | Diptera | Tachinidae | [44] |
Bothriothorax altensteinii Ratzeburg | Hymenoptera | Encyrtidae | [44] |
Bothriothorax paradoxus Dalman | Hymenoptera | Encyrtidae | [44] |
Brachymeria inermis (Fonscolombe) | Hymenoptera | Chalcididae | [44] |
Brachymeria minuta (L.) | Hymenoptera | Chalcididae | [44] |
Brachymeria secundaria (Ruschka) | Hymenoptera | Chalcididae | [44] |
Brachymeria tibialis Walker | Hymenoptera | Chalcididae | [44] |
Campoplex difformis (Gmelin) | Hymenoptera | Ichneumonidae | [44] |
Carcelia gnava (Meigen) | Diptera | Tachinidae | [44] |
Casinaria tenuiventris (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Chouioia cunea Yang | Hymenoptera | Eulophidae | [44] |
Cirrospilus pictus Nees | Hymenoptera | Eulophidae | [44] |
Compsilura concinnata (Meigen) | Diptera | Tachinidae | [44] |
Cotesia gastropachae (Bouché) | Hymenoptera | Braconidae | [44] |
Cotesia glomerata (L.) | Hymenoptera | Braconidae | [44] |
Cotesia melanoscela (Ratzeburg) | Hymenoptera | Braconidae | [44] |
Cotesia melitaearum (Wilkinson) | Hymenoptera | Braconidae | [44] |
Cotesia neustriae (Tobias) | Hymenoptera | Braconidae | [44] |
Cotesia ocneriae (Ivanov) | Hymenoptera | Braconidae | [44] |
Cotesia praepotens (Haliday) | Hymenoptera | Braconidae | [44] |
Cotesia rubripes (Haliday) | Hymenoptera | Braconidae | [44] |
Cotesia spuria (Wesmael) | Hymenoptera | Braconidae | [44] |
Deuterixys carbonaria (Wesmael) | Hymenoptera | Braconidae | [44] |
Doryctes leucogaster (Nees) | Hymenoptera | Braconidae | [44] |
Drino gilva (Hartig) | Diptera | Tachinidae | [44] |
Drino inconspicua (Meigen) | Diptera | Tachinidae | [44] |
Dusona blanda (Förster) | Hymenoptera | Ichneumonidae | [44] |
Elachertus charondas Walker | Hymenoptera | Eulophidae | [44] |
Elasmus nudus Nees | Hymenoptera | Eulophidae | [44] |
Euceros serricornis (Haliday) | Hymenoptera | Ichneumonidae | [44] |
Euceros superbus Kriechbaumer | Hymenoptera | Ichneumonidae | [44] |
Eulophus cyanescens Bouček | Hymenoptera | Eulophidae | [44] |
Eulophus larvarum L. | Hymenoptera | Eulophidae | [44] |
Eulophus slovacus Bouček | Hymenoptera | Eulophidae | [44] |
Eupelmus annulatus Nees | Hymenoptera | Eulophidae | [44] |
Eupelmus urozonus Dalman | Hymenoptera | Eulophidae | [44] |
Euplectrus liparidis Ferrière | Hymenoptera | Eulophidae | [44] |
Eurytoma appendigaster Swederus | Hymenoptera | Eurytomidae | [44] |
Eurytoma goidanichi Bouček | Hymenoptera | Eurytomidae | [44] |
Eurytoma verticillata (Fabricius) | Hymenoptera | Eurytomidae | [44] |
Exeristes roborator (Fabricius) | Hymenoptera | Ichneumonidae | [44] |
Exorista amoena (Mesnil) | Diptera | Tachinidae | [44] |
Exorista larvarum (L.) | Diptera | Tachinidae | [44] |
Exorista segregata (Rondani) | Diptera | Tachinidae | [44] |
Gelis agilis (Fabricius) | Hymenoptera | Ichneumonidae | [44] |
Gelis areator (Panzer) | Hymenoptera | Ichneumonidae | [44] |
Glyptapanteles porthetriae (Muesebeck) | Hymenoptera | Braconidae | [44] |
Glyptapanteles vitripennis (Curtis) | Hymenoptera | Braconidae | [44] |
Gregopimpla inquisitor (Scopoli) | Hymenoptera | Ichneumonidae | [44] |
Gryon howardi (Mokrzecki and Oglobin) | Hymenoptera | Scelionidae | [44] |
Gryon hungaricum (Szabó) | Hymenoptera | Scelionidae | [44] |
Gryon lymantriae (Masner) | Hymenoptera | Scelionidae | [44] |
Hemiteles pulchellus Gravenhorst | Hymenoptera | Ichneumonidae | [44] |
Hyposoter tricoloripes (Viereck) | Hymenoptera | Ichneumonidae | [44] |
Ichneumon sarcitorius L. | Hymenoptera | Ichneumonidae | [44] |
Iseropus stercorator (Fabricius) | Hymenoptera | Ichneumonidae | [44] |
Itoplectis alternans (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Itoplectis enslini (Ulbricht) | Hymenoptera | Ichneumonidae | [44] |
Itoplectis kolthoffi (Aurivillius) | Hymenoptera | Ichneumonidae | [44] |
Itoplectis viduata (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Lymantrichneumon disparis (Poda) | Hymenoptera | Ichneumonidae | [44] |
Lysibia nana (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Melittobia acasta Walker | Hymenoptera | Eulophidae | [44] |
Mesochorus confusus Holmgren | Hymenoptera | Ichneumonidae | [44] |
Meteorus pendulus (Müller) | Hymenoptera | Braconidae | [44] |
Meteorus pulchricornis (Wesmael) | Hymenoptera | Braconidae | [44] |
Meteorus versicolor (Wesmael) | Hymenoptera | Braconidae | [44] |
*Monodontomerus aereus Walker | Hymenoptera | Torymidae | [44] |
Ooencyrtus kuvanae (Howard) | Hymenoptera | Encyrtidae | [44] |
Ooencyrtus masii (Mercet) | Hymenoptera | Encyrtidae | [44] |
Parasarcophaga uliginosa (Kramer) | Diptera | Sarcophagidae | [44] |
Parasetigana silvestris (Robineau-Desvoidy) | Diptera | Tachinidae | [44] |
Pediobius cassidae Erdös | Hymenoptera | Eulophidae | [44] |
Pediobius crassicornis (Thomson) | Hymenoptera | Eulophidae | [44] |
Pediobius foliorum (Geoffroy) | Hymenoptera | Eulophidae | [44] |
Pediobius pyrgo (Walker) | Hymenoptera | Eulophidae | [44] |
Peribaea tibialis (Robineau-Desvoidy) | Diptera | Tachinidae | [44] |
Perilampus neglectus Bouček | Hymenoptera | Perilampidae | [44] |
Perilampus ruficornis Fabricius | Hymenoptera | Perilampidae | [44] |
Phobocampe lymantriae Gupta | Hymenoptera | Ichneumonidae | [44] |
Phobocampe unicincta (Gravenhorst) | Hymenoptera | Ichneumonidae | [44] |
Pimpla disparis Viereck | Hymenoptera | Ichneumonidae | [44] |
Pimpla rufipes (Miller) | Hymenoptera | Ichneumonidae | [44] |
Pimpla turionellae (L.) | Hymenoptera | Ichneumonidae | [44] |
Pronotalia carlinarum (Szelényi and Erdös) | Hymenoptera | Eulophidae | [44] |
Protapanteles fulvipes (Haliday) | Hymenoptera | Braconidae | [44] |
Protapanteles liparidis (Bouché) | Hymenoptera | Braconidae | [44] |
Protapanteles nigerrimus (Roman) | Hymenoptera | Braconidae | [44] |
Senometopia separata (Rondani) | Diptera | Tachinidae | [44] |
Siphona boreata Mesnil | Diptera | Tachinidae | [44] |
Tachina magnicornis (Zetterstedt) | Diptera | Tachinidae | [44] |
Tachina praeceps Meigen | Diptera | Tachinidae | [44] |
Telenomus embolicus Kozlov | Hymenoptera | Scelionidae | [44] |
Telenomus laevisculus (Ratzeburg) | Hymenoptera | Scelionidae | [44] |
Telenomus longistriatus Kozlov | Hymenoptera | Scelionidae | [44] |
Telenomus lymantriae Kozlov | Hymenoptera | Scelionidae | [44] |
Telenomus macroceps Szabó | Hymenoptera | Scelionidae | [44] |
Telenomus phaIaenarum Nees | Hymenoptera | Scelionidae | [44] |
Telenomus tetratomus (Thomson) | Hymenoptera | Scelionidae | [44] |
Tetrastichomyia clisiocampae Ashmead | Hymenoptera | Eulophidae | [44] |
Tetrastichus sp. | Hymenoptera | Eulophidae | [44] |
Theronia atalantae (Poda) | Hymenoptera | Ichneumonidae | [44] |
Torymus anastativorus Fahringer | Hymenoptera | Torymidae | [44] |
Tyndarichus kuriri Fahringer | Hymenoptera | Encyrtidae | [44] |
Tyndarichus navae Howard | Hymenoptera | Encyrtidae | [44] |
Zenillia libatrix (Panzer) | Diptera | Tachinidae | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukouvala, M.C.; Kavallieratos, N.G.; Skourti, A.; Pons, X.; Alonso, C.L.; Eizaguirre, M.; Fernandez, E.B.; Solera, E.D.; Fita, S.; Bohinc, T.; et al. Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America. Insects 2022, 13, 854. https://doi.org/10.3390/insects13090854
Boukouvala MC, Kavallieratos NG, Skourti A, Pons X, Alonso CL, Eizaguirre M, Fernandez EB, Solera ED, Fita S, Bohinc T, et al. Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America. Insects. 2022; 13(9):854. https://doi.org/10.3390/insects13090854
Chicago/Turabian StyleBoukouvala, Maria C., Nickolas G. Kavallieratos, Anna Skourti, Xavier Pons, Carmen López Alonso, Matilde Eizaguirre, Enrique Benavent Fernandez, Elena Domínguez Solera, Sergio Fita, Tanja Bohinc, and et al. 2022. "Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America" Insects 13, no. 9: 854. https://doi.org/10.3390/insects13090854
APA StyleBoukouvala, M. C., Kavallieratos, N. G., Skourti, A., Pons, X., Alonso, C. L., Eizaguirre, M., Fernandez, E. B., Solera, E. D., Fita, S., Bohinc, T., Trdan, S., Agrafioti, P., & Athanassiou, C. G. (2022). Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America. Insects, 13(9), 854. https://doi.org/10.3390/insects13090854