Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Records and Bioclimatic Variables
2.2. Bioclimatic Variables
2.3. Species Distribution Modelling
2.4. Model Evaluation and Predictions
3. Results
3.1. Habitat Suitability for T. parvicornis in Italy
3.2. Habitat Suitability for T. parvicornis in European Mediterranean Area
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamon, A.; Williams, M. The Soft Scale Insects of Florida (Homoptera: Coccoidea: Coccidae); Florida Department of Agriculture and Consumer Services, Division of Plant Industry: Gainesville, Florida, 1984; Volume 11.
- Malumphy, C.; Hamilton, M.A.; Manco, B.N.; Green, P.W.C.; Sanchez, M.D.; Corcoran, M.; Salamanca, E. Toumeyella parvicornis (Hemiptera:Coccidae), causing severe decline of Pinus caribaea var. bahamensis in the Turks and Caicos Islands. Source Fla. Entomol. 2012, 95, 113–119. [Google Scholar] [CrossRef]
- Orr, L.W. Agricultural experiment station studies on natural vs. artificial control of the pine tortoise scale. Univ. Minn. Agric. Exp. Stn. 1931, 1–21. [Google Scholar]
- Di Sora, N.; Rossini, L.; Contarini, M.; Chiarot, E.; Speranza, S. Endotherapic treatment to control Toumeyella parvicornis Cockerell infestations on Pinus pinea L. Pest Manag. Sci. 2022, 78, 2443–2448. [Google Scholar] [CrossRef]
- Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Fejer Justesen, A.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Toumeyella parvicornis. EFSA J. 2022, 20, e07146. [Google Scholar] [CrossRef] [PubMed]
- Garonna, A.; Foscari, A.; Russo, E.; Jesu, G.; Somma, S.; Cascone, P.; Guerrieri, E. The spread of the non-native pine tortoise scale Toumeyella parvicornis (Hemiptera: Coccidae) in Europe: A major threat to Pinus pinea in Southern Italy. Iforest—Biogeosci. For. 2018, 11, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Cockerell, T.D.A.; Quaintance, A.L. New and little-known Coccidae from Florida. Psyche A J. Entomol. 1897, 8, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Stimmel, J.F. Pine tortoise scale, Toumeyella parvicornis (Cockerell) (Homoptera: Coccidae). Regul. Hortic. 1984, 10, 23–24. [Google Scholar]
- Clarke, S.R.; DeBarr, G.L.; Liu, T.X. Contact toxicities of five pyrethroid and four organophosphorous insecticide to toumeyella parvicornis (Cockerell) crawlers. Can. Entomol. 1992, 124, 563–564. [Google Scholar] [CrossRef]
- Cooper, D.D.; Cranshaw, W.S. Seasonal biology and associated natural enemies of two Toumeyella spp. in Colorado. Southwest. Entomol. 2004, 29, 39–45. [Google Scholar]
- Bradley, G.A. Effect of Formica obscuripes (Hymenoptera: Formicidae) on the predator-prey relationship between Hyperaspis congressis (Coleoptera: Coccinellidae) and Toumeyella numismaticum (Homoptera: Coccidae). Can. Entomol. 1973, 105, 1113–1118. [Google Scholar] [CrossRef]
- Myartseva, S.N.; Ruíz Cancino, E. Annotated Checklist of the Aphelinidae (Hymenoptera: Chalcidoidea) of México. Folia Entomol. Mex. 2000, 109, 7–33. [Google Scholar]
- Segarra-Carmona, A.E.; Cabrera-Asencio, I. Toumeyella parvicornis (Cockerell) (Hemiptera: Coccoidea: Coccidae): A new invasive pest of pine trees in Puerto Rico. J. Agric. Univ. Puerto Rico 2010, 94, 175–177. [Google Scholar] [CrossRef]
- Garonna, A.P.; Scarpato, S.; Vicinanza, F.; Espinosa, B. First report of Toumeyella parvicornis (Cockerell) in Europe (Hemiptera: Coccidae). Zootaxa 2015, 3949, 142–146. [Google Scholar] [CrossRef]
- EPPO. Available online: https://gd.eppo.int/taxon/TOUMPA/distribution/IT (accessed on 1 December 2022).
- Servizio Fitosanitario Nazionale Protezione delle Piante, Toumeyella parvicornis. Available online: https://www.protezionedellepiante.it/emergenze-fitosanitarie/toumeyella-parvicornis/ (accessed on 1 December 2022).
- Bernetti, G. Selvicoltura speciale; Unione tipografico-editrice Torinese, Ed.; Unione Tipografico-Editrice Torinese: Torino, Italy, 1995. [Google Scholar]
- Ciancio, O.; Travaglini, D.; Bianchi, L.; Mariotti, B. La gestione delle pinete litoranee di pino domestico: Il caso dei tomboli di Cecina. In Proceedings of the III Congresso Nazionale Selvicoltura, Taormina, Italy, 16–19 October 2008; pp. 156–162. [Google Scholar]
- Mannu, R.; Torres-Vila, L.M.; Olivieri, M.; Lentini, A. When a threatened species becomes a threat: A key to reading the habitats directive based on occurrence and distribution of Cerambyx cerdo L. in Mediterranean urban and peri-urban areas. Insect Conserv. Divers. 2021, 14, 730–735. [Google Scholar] [CrossRef]
- Rabkin, F. Studies on the Biology of the Manitoba Jack Pine Scale Toumeyella Sp.(Coccidae Homoptera). Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1939. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Modell. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Rossini, L.; Bono Rosselló, N.; Contarini, M.; Speranza, S.; Garone, E. Modelling ectotherms’ populations considering physiological age structure and spatial motion: A novel approach. Ecol. Inform. 2022, 70, 101703. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Strayer, D.L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 2008, 1134, 1–24. [Google Scholar] [CrossRef]
- Wang, X.Y.; Huang, X.L.; Jiang, L.Y.; Qiao, G.X. Predicting potential distribution of chestnut phylloxerid (Hemiptera: Phylloxeridae) based on GARP and Maxent ecological niche models. J. Appl. Entomol. 2010, 134, 45–54. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Guo, G.; Zhang, M.; Lang, J.; Wei, J. Potential distributions of the invasive barnacle scale Ceroplastes cirripediformis (Hemiptera: Coccidae) under climate change and implications for its management. J. Econ. Entomol. 2021, 114, 82–89. [Google Scholar] [CrossRef]
- Sung, S.; Kwon, Y.S.; Lee, D.K.; Cho, Y. Predicting the potential distribution of an invasive species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under climate change using species distribution models. Entomol. Res. 2018, 48, 505–513. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Lu, H.; Lu, F.; Lu, B. Potential distribution of an invasive pest, Euplatypus parallelus, in China as predicted by Maxent. Pest Manag. Sci. 2019, 75, 1630–1637. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2006, 34, 102–117. [Google Scholar] [CrossRef]
- Chirici, C.; Fattori, F.; Cutolo, C.; Tufano, T.; Corona, C.; Barbati, B.; Blasi, B.; Copiz, C.; Rossi, R.; Biscontini, B.; et al. La realizzazione della carta delle formazioni naturali e semi-naturali e della carta forestale su basi tipologiche della regione Lazio. For. J. Silvic. For. Ecol. 2014, 11, 65. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, Y. What is it you really want of me? generalized reward learning with biased beliefs about domain dynamics. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 3 April 2020; Volume 34, pp. 2485–2492. [Google Scholar]
- Kou, J.; Wang, T.; Yu, F.; Sun, Y.; Feng, C.; Shao, X. The moss genus didymodon as an indicator of climate change on the tibetan plateau. Ecol. Indic. 2020, 113, 106204. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. Package ‘Biomod2’. Ensemble Platform for Species Distribution Modeling. 2016. Available online: https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (accessed on 1 December 2022).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Phillips, S.; Anderson, R.; Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Anderson, D.R.; Burnham, K.P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 2002, 66, 912–918. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological Niche Modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R Package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Graham, J.; West, A.M.; Evangelista, P.H. Using district-level occurrences in maxent for predicting the invasion potential of an exotic insect pest in India. Comput. Electron. Agric. 2014, 103, 55–62. [Google Scholar] [CrossRef]
- Lozano, V.; Marzialetti, F.; Carranza, M.L.; Chapman, D.; Branquart, E.; Dološ, K.; Große-Stoltenberg, A.; Fiori, M.; Capece, P.; Brundu, G. Modelling Acacia saligna invasion in a large mediterranean island using PAB factors: A Tool for implementing the european legislation on invasive species. Ecol. Indic. 2020, 116, 106516. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Freitas, F.F.; Khosa, C.K.; Sanz, V. Exploring the standard model EFT in VH production with machine learning. Phys. Rev. D 2019, 100, 035040. [Google Scholar] [CrossRef] [Green Version]
- Dakhil, M.A.; Xiong, Q.; Farahat, E.A.; Zhang, L.; Pan, K.; Pandey, B.; Olatunji, O.A.; Tariq, A.; Wu, X.; Zhang, A.; et al. Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in Southwestern China. Ecol. Indic. 2019, 107, 105559. [Google Scholar] [CrossRef]
- Engelhardt, E.K.; Neuschulz, E.L.; Hof, C. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. J. Biogeogr. 2020, 47, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Sobek-Swant, S.; Kluza, D.A.; Cuddington, K.; Lyons, D.B. Potential distribution of emerald ash borer: What can we learn from ecological niche models using Maxent and GARP? For. Ecol. Manag. 2012, 281, 23–31. [Google Scholar] [CrossRef]
- Alaniz, A.J.; Carvajal, M.A.; Vergara, P.M. Giants are coming? predicting the potential spread and impacts of the giant asian hornet (Vespa mandarinia, Hymenoptera:Vespidae) in the USA. Pest Manag. Sci. 2021, 77, 104–112. [Google Scholar] [CrossRef]
- Li, X.; Xu, D.; Jin, Y.; Zhuo, Z.; Yang, H.; Hu, J.; Wang, R. Predicting the current and future distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under climate change in China. Glob. Ecol. Conserv. 2021, 25, e01444. [Google Scholar] [CrossRef]
- Early, R.; Rwomushana, I.; Chipabika, G.; Day, R. Comparing, evaluating and combining statistical species distribution models and CLIMEX to forecast the distributions of emerging crop pests. Pest Manag. Sci. 2022, 78, 671–683. [Google Scholar] [CrossRef]
- Godefroid, M.; Morente, M.; Schartel, T.; Cornara, D.; Purcell, A.; Gallego, D.; Moreno, A.; Pereira, J.A.; Fereres, A. Climate tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa. J. Pest Sci. 2022, 95, 855–868. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.; Boggia, A.; Neteler, M. Analysis of grape production in the face of climate change. Climate 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Ponti, L.; Gutierrez, A.P.; de Campos, M.R.; Desneux, N.; Biondi, A.; Neteler, M. Biological invasion risk assessment of Tuta absoluta: Mechanistic versus correlative methods. Biol. Invasions 2021, 23, 3809–3829. [Google Scholar] [CrossRef]
- Solhjouy-Fard, S.; Sarafrazi, A.; Minbashi Moeini, M.; Ahadiyat, A. Predicting habitat distribution of five heteropteran pest species in Iran. J. Insect Sci. 2013, 13, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Wang, Y.C.; Feng, C.C.; Wan, P.H.M.; Chang, K.T.T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- O’Donnell, M.; Ignizio, D. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geol. Surv. Data Ser. 2012, 691, 10. [Google Scholar]
- Kiritani, K. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 2006, 48, 5–12. [Google Scholar] [CrossRef]
- Musolin, D.L. Insects in a warmer world: Ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob. Chang. Biol. 2007, 13, 1565–1585. [Google Scholar] [CrossRef]
- Gomi, T.; Nagasaka, M.; Fukuda, T.; Hagihara, H. Shifting of the life cycle and life-history traits of the fall webworm in relation to climate change. Entomol. Exp. Appl. 2007, 125, 179–184. [Google Scholar] [CrossRef]
- Walther, G.R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef]
- Moran, V.C.; Hoffmann, J.H.; Basson, N.C.J. The effects of simulated rainfall on cochineal insects (Homoptera: Dactylopiidae): Colony composition and survival on cactus cladodes. Ecol. Entomol. 1987, 12, 51–60. [Google Scholar] [CrossRef]
- Kamata, N.; Igarashi, Y. Influence of rainfall on feeding behavior, growth, and mortality of larvae of the beech caterpillar, Quadricalcarifera punctatella (Motschulsky) (Lep., Notodontidae). J. Appl. Entomol. 1994, 118, 347–353. [Google Scholar] [CrossRef]
- Ruf, C.; Fiedler, K. Colony survivorship of social caterpillars in the field: A case study of the small eggar moth (Lepidoptera: Lasiocampidae). J. Res. Lepid. 1999, 38, 15–25. [Google Scholar] [CrossRef]
- Beirne, B.P. Effects of precipitation on crop insects. Can. Entomol. 1970, 102, 1360–1373. [Google Scholar] [CrossRef]
- Vendramin, G.G.; Fady, B.; González-Martínez, S.C.; Hu, F.S.; Scotti, I.; Sebastiani, F.; Soto, Á.; Petit, R.J. Genetically depauperate but widespread: The case of an emblematic mediterranean pine. Evolution 2008, 62, 680–688. [Google Scholar] [CrossRef]
- Sofia, C.; Dos Santos, S.; Wilton De Vasconcelos, M. Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode. Eur. J. Plant Pathol. 2012, 132, 407–418. [Google Scholar] [CrossRef]
- Mutke, S.; Vendramin, G.G.; Fady, B.; Bagnoli, F.; González-Martínez, S.C. Molecular and quantitative genetics of stone pine (Pinus pinea). In Genetic Diversity in Horticultural Plants; Springer: Cham, Switzerland, 2019; pp. 61–84. [Google Scholar] [CrossRef]
- Altieri, M.A. Green desert: Monocultures and their impacts on biodiversity. In Red Sugar, Green Deserts: Latin American Report on Monocultures and Violations of the Human Rights to Adequate Food and Housing, to Water, to Land and to Territory; FIAN International, FIAN Sweden, HIC-AL, and SAL: Stockholm, Sweden, 2009; pp. 67–76. [Google Scholar]
- Straub, C.S.; Simasek, N.P.; Dohm, R.; Gapinski, M.R.; Aikens, E.O.; Nagy, C. Plant diversity increases herbivore movement and vulnerability to predation. Basic Appl. Ecol. 2014, 15, 50–58. [Google Scholar] [CrossRef]
- Wright, A.J.; Mommer, L.; Barry, K.; van Ruijven, J. Stress gradients and biodiversity: Monoculture vulnerability drives stronger biodiversity effects during drought years. Ecology 2021, 102, e03193. [Google Scholar] [CrossRef]
- Stefani, A. Le pinete litoranee e il nuovo testo unico forestale. In I Georgofili, Quaderni: I. Le Pinete Litoranee Come Patrimonio Culturale; Polistampa: Firenze, Italy, 2019; pp. 53–57. [Google Scholar]
- Caudullo, G.; Welk, E.; Jesús, S.-M.-A. Chorological maps for the main European woody species. Data Br. 2017, 12, 662–666. [Google Scholar] [CrossRef]
- Tagarelli, N.; Avosani, S.; Tucci, M.; Verrastro, V. First report of Toumeyella parvicornis (Hemiptera: Coccidae) in Puglia (South-Eastern Italy). EPPO Bull. 2022, 52, 487–492. [Google Scholar] [CrossRef]
- Boselli, M.; Vai, N.; Mirotti, A.; Mazzini, F.; Mazzoni, F.; Mosti, M.; Foschi, S.; Scapini, C. Crisococcus pini (Homoptera, Pseudococcidae) in Emilia Romagna: Delimitazione dell’area infestata e piano di controllo. In Proceedings of the Giornate Fitopatologiche; Giornate Fitopatologiche: Chianciano Terme, Italy, 2018; p. 8. [Google Scholar]
- Bragard, C.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; Parnell, S.; Potting, R.; et al. Pest categorisation of Crisicoccus pini. EFSA J. 2021, 19, e06928. [Google Scholar] [CrossRef]
- EPPO. Available online: https://gd.eppo.int/reporting/article-7314 (accessed on 1 December 2022).
- Cutini, A.; Chianucci, F.; Manetti, M.C. Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in italian coastal stands. Iforest—Biogeosci. For. 2013, 6, 331. [Google Scholar] [CrossRef] [Green Version]
- Camarda, I.; Laureti, P.; Angelini, P.; Capogrossi, R.; Carta, L.; Brunu, A. Il Sistema Carta della Natura della Sardegna; Serie Rapp.; ISPRA: Rome, Italy, 2015. [Google Scholar]
- Gallego, D.; Riba, J.M.; Molina, N.; González, E.; Di Sora, N.; Núñez, L.; Closa, A.M.; Comparini, C.; Leza, M. Las invasiones silenciosas de escolítidos: El caso del género Xylosandrus (Coleoptera, Curculionidae, Scolytinae). Foresta 2020, 78, 78–83. [Google Scholar]
- Rabkin, F.B.; Lejeune, R.R. Some aspects of the biology and dispersal of the pine tortoise scale, Toumeyella numismaticum (Pettit and McDaniel) (Homoptera: Coccidae). Can. Entomol. 1954, 86, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Devy-Vareta, N. Investigación sobre la historia forestal portuguesa en los siglos xix y xx: Orientaciones y lagunas. Hist. Agrar. 1999, 18, 57–94. [Google Scholar]
- Barranco Reyes, J.; Ortuño Pérez, S.F. Aproximación al sector del piñón en España. Rev. Española Estud. Agrosoc. Y Pesq. 2004, 201, 165–189. [Google Scholar] [CrossRef]
- Proença, V.M.; Pereira, H.M.; Guilherme, J.; Vicente, L. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecol. 2010, 36, 219–226. [Google Scholar] [CrossRef]
- Lloret, F.; Calvo, E.; Pons, X.; Díaz-Delgado, R. Wildfires and landscape patterns in the eastern iberian peninsula. Landsc. Ecol. 2002, 17, 745–759. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bladé, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, J.A.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and oaks in the restoration of mediterranean landscapes of Spain: New perspectives for an old practice-a review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Álvarez, G.; Etxebeste, I.; Gallego, D.; David, G.; Bonifacio, L.; Jactel, H.; Sousa, E.; Pajares, J.A. Optimization of traps for live trapping of pine wood nematode vector Monochamus galloprovincialis. J. Appl. Entomol. 2015, 139, 618–626. [Google Scholar] [CrossRef]
- De la Fuente, B.; Beck, P.S.A. Invasive species may disrupt protected area networks: Insights from the pine wood nematode spread in Portugal. Forests 2018, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Gallego, D.; Cánovas, F.; Esteve, M.A.; Galián, J. Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. J. Biogeogr. 2004, 31, 2011–2024. [Google Scholar] [CrossRef]
- Gallego, D.; Galián, J.; Diez, J.J.; Pajares, J.A. Kairomonal responses of Tomicus destruens (Col., Scolytidae) to host volatiles α-pinene and ethanol. J. Appl. Entomol. 2008, 132, 654–662. [Google Scholar] [CrossRef]
- Choudhary, J.S.; Kumari, M.; Mali, S.S.; Dhakar, M.K.; Das, B.; Singh, A.K. Predicting impact of climate Ccange on habitat suitability of guava fruit fly, Bactrocera correcta (Bezzi) using MaxEnt modeling in India. J. Agrometeorol. 2019, 21, 24–30. [Google Scholar] [CrossRef]
- Ji, W.; Han, K.; Lu, Y.; Wei, J. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Prot. 2020, 137, 105268. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
BIO01 | Annual Mean Temperature |
BIO02 | Mean Diurnal Temperature Range [Mean of monthly (max temp–min temp)] |
BIO03 | Isothermality (BIO02/BIO07) (×100) |
BIO04 | Temperature Seasonality (standard deviation × 100) |
BIO05 | Max Temperature of Warmest Month |
BIO06 | Min Temperature of Coldest Month |
BIO07 | Temperature Annual Range (BIO05–BIO06) |
BIO08 | Mean Temperature of Wettest Quarter |
BIO09 | Mean Temperature of Driest Quarter |
BIO10 | Mean Temperature of Warmest Quarter |
BIO11 | Mean Temperature of Coldest Quarter |
BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month |
BIO14 | Precipitation of Driest Month |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
BIO16 | Precipitation of Wettest Quarter |
BIO17 | Precipitation of Driest Quarter |
BIO18 | Precipitation of Warmest Quarter |
BIO19 | Precipitation of Coldest Quarter |
Bioclimatic Variable 1 | GLM | MARS | MaxEnt | RF |
---|---|---|---|---|
BIO01 | 19.74% | 32.30% | 33.12% | 26.47% |
BIO02 | 6.40% | 4.61% | 3.07% | 1.76% |
BIO03 | 10.18% | 20.37% | 14.17% | 32.35% |
BIO04 | 6.05% | 1.23% | 5.14% | 1.47% |
BIO08 | 12.96% | 2.65% | 7.36% | 5.59% |
BIO09 | 5.77% | 11.54% | 3.66% | 5.29% |
BIO12 | 16.12% | 2.21% | 12.55% | 7.06% |
BIO15 | 12.18% | 17.92% | 16.56% | 10.88% |
BIO19 | 10.60% | 7.17% | 4.38% | 9.12% |
Bioclimatic Variable 1 | GLM | MARS | MaxEnt | RF |
---|---|---|---|---|
BIO01 | 35.73% | 35.13% | 2.88% | 15.64% |
BIO02 | 8.44% | 14.39% | 10.20% | 1.82% |
BIO03 | 3.49% | 2.86% | 14.94% | 4.73% |
BIO04 | 6.36% | 1.77% | 2.64% | 15.27% |
BIO08 | 3.54% | 0.64% | 11.28% | 11.27% |
BIO09 | 6.49% | 11.62% | 6.66% | 12.73% |
BIO12 | 11.36% | 2.27% | 15.42% | 12.00% |
BIO15 | 4.49% | 12.30% | 20.76% | 9.09% |
BIO19 | 20.09% | 19.02% | 15.24% | 17.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sora, N.; Mannu, R.; Rossini, L.; Contarini, M.; Gallego, D.; Speranza, S. Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae). Insects 2023, 14, 46. https://doi.org/10.3390/insects14010046
Di Sora N, Mannu R, Rossini L, Contarini M, Gallego D, Speranza S. Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae). Insects. 2023; 14(1):46. https://doi.org/10.3390/insects14010046
Chicago/Turabian StyleDi Sora, Nicolò, Roberto Mannu, Luca Rossini, Mario Contarini, Diego Gallego, and Stefano Speranza. 2023. "Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae)" Insects 14, no. 1: 46. https://doi.org/10.3390/insects14010046
APA StyleDi Sora, N., Mannu, R., Rossini, L., Contarini, M., Gallego, D., & Speranza, S. (2023). Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae). Insects, 14(1), 46. https://doi.org/10.3390/insects14010046