Combined Transcriptome and Proteome Analysis of the Protein Composition of the Brochosomes of the Leafhopper Nephotettix cincticeps
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Sample Preparation and Illumina Sequencing
2.3. Transcriptomic Analysis
2.4. Tissue-Specific Expressions Analysis
2.5. Brochosomes Collection
2.6. Electrophoresis
2.7. Transmission Electron Microscopy
2.8. Protein Identification by LC–MS/MS
2.9. Bioinformatics Analysis
2.10. Distribution of Brochosome Candidate Proteins in Leafhopper and Hemiptera
3. Results
3.1. Nephotettix Cincticeps Transcriptome Sequencing
3.2. Screening of Mt-Specific Expression Genes
3.3. Morphology and Protein Composition Analysis of Brochosome
3.4. Proteins Identified by LC–MS/MS
3.5. Brochosome Candidate Proteins Screening
3.6. Taxonomic Distribution of Brochosome-Related Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakitov, R. What Are Brochosomes for? An Enigma of Leafhoppers (Hemiptera, Cicadellidae); Denisia: London, UK, 2002; Volume 4, pp. 411–432. [Google Scholar]
- Rakitov, R.A. Brochosomal coatings of the integument of leafhoppers (Hemiptera, Cicadellidae). In Functional Surfaces in Biology: Little Structures with Big Effects Volume 1; Springer: Berlin/Heidelberg, Germany, 2009; pp. 113–137. [Google Scholar]
- Rakitov, R. Secretion of brochosomes during the ontogenesis of a leafhopper, Oncometopia orbona (F.)(Insecta, Homoptera, Cicadellidae). Tissue Cell 2000, 32, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Rakitov, R.A. Secretory products of the Malpighian tubules of Cicadellidae (Hemiptera, Membracoidea): An ultrastructural study. Int. J. Insect Morphol. Embryol. 1999, 28, 179–193. [Google Scholar] [CrossRef]
- Rakitov, R.; Gorb, S.N. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122391. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yang, G.; Wang, Z.; You, M. Brochosome detachment facilitates Empoasca onukii (Hemiptera: Cicadellidae) adults escaping from spider web. Acta Entomol Sin 2021, 64, 213–222. [Google Scholar]
- Velema, H.-P.; Hemerik, L.; Hoddle, M.S.; Luck, R.F. Brochosome influence on parasitisation efficiency of Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) egg masses by Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Ecol. Entomol. 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Beyenbach, K.W.; Skaer, H.; Dow, J.A. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 2010, 55, 351–374. [Google Scholar] [CrossRef]
- Farina, P.; Bedini, S.; Conti, B. Multiple Functions of Malpighian Tubules in Insects: A Review. Insects 2022, 13, 1001. [Google Scholar] [CrossRef]
- Marshall, A. Spittle-production and Tube-Building by Cercopoid Nymphs (Homoptera) 2. The Cytology and Function of the Granule Zone of the Malpighian tubules of Tube-Building Nymphs. J. Cell Sci. 1964, 3, 415–422. [Google Scholar] [CrossRef]
- Schauff, M.E.; Janzen, D.H. Taxonomy and ecology of Costa Rican Euplectrus (Hymenoptera: Eulophidae), parasitoids of caterpillars. J. Hymenopt. Res. 2001, 10, 181–230. [Google Scholar]
- Tonelli, M.; Gomes, G.; Silva, W.D.; Magri, N.T.; Vieira, D.M.; Aguiar, C.L.; Bento, J.M.S. Spittlebugs produce foam as a thermoregulatory adaptation. Sci. Rep. 2018, 8, 4729. [Google Scholar] [CrossRef]
- Chang, S.-C.; Shih, H.-T.; Lu, K.-H. Antifungal effect and chitinase activities of the froth of spittlebug Poophilus costalis (Walker) (Hemiptera: Cercopoidea: Aphrophoridae). J. Asia-Pac. Entomol. 2019, 22, 269–273. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, H.; Zhang, Y.; Wei, C. Comparative morphology of the distal segments of Malpighian tubules in cicadas and spittlebugs, with reference to their functions and evolutionary indications to Cicadomorpha (Hemiptera: Auchenorrhyncha). Zool. Anz.-A J. Comp. Zool. 2015, 258, 54–68. [Google Scholar] [CrossRef]
- Rakitov, R.A. Structure and function of the Malpighian tubules, and related behaviors in juvenile cicadas: Evidence of homology with spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anz.-A J. Comp. Zool. 2002, 241, 117–130. [Google Scholar]
- Smith, D.S.; Littau, V.C. Cellular specialization in the excretory epithelia of an insect, Macrosteles fascifrons Stal (Homoptera). J. Cell Biol. 1960, 8, 103–133. [Google Scholar] [CrossRef]
- Gouranton, J.; Maillet, P. Origine et structure des brochosomes. J. De Microsc. 1967, 6, 53–64. [Google Scholar]
- Rakitov, R.; Moysa, A.A.; Kopylov, A.T.; Moshkovskii, S.A.; Peters, R.S.; Meusemann, K.; Misof, B.; Dietrich, C.H.; Johnson, K.P.; Podsiadlowski, L.; et al. Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta, Hemiptera, Cicadellidae). Insect Biochem. Mol. Biol. 2018, 94, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Xue, A.Z.; Dang, V.; Holmes, V.R.; Johnston, J.S.; Barrick, J.E.; Moran, N.A. The Genomic Basis of Evolutionary Novelties in a Leafhopper. Mol. Biol. Evol. 2022, 39, msac184. [Google Scholar] [CrossRef]
- Cabauatan, P.; Hibino, H. Transmission of rice tungro bacilliform and spherical viruses by Nephotettix virescens Distant. Philipp. Phytopathol. (Philipp.) 1985, 21, 103–109. [Google Scholar]
- Jonson, G.B.; Matres, J.M.; Ong, S.; Tanaka, T.; Choi, I.-R.; Chiba, S. Reemerging Rice Orange Leaf Phytoplasma with Varying Symptoms Expressions and Its Transmission by a New Leafhopper Vector—Nephotettix virescens Distant. Pathogens 2020, 9, 990. [Google Scholar] [CrossRef]
- SENOAJI, W.; Rahardjo, B.T.; Tarno, H. Proteomic approach: Identification of Nephotettix virescens vector protein transmitting the tungro virus in rice. Biodiversitas J. Biol. Divers. 2021, 22, 2750–2755. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Yan, B.; Yu, X.; Dai, R.; Li, Z.; Yang, M. Chromosome-Level Genome Assembly of Nephotettix cincticeps (Uhler, 1896)(Hemiptera: Cicadellidae: Deltocephalinae). Genome Biol. Evol. 2021, 13, evab236. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011, 29, 644. [Google Scholar] [CrossRef]
- Mei, Y.; Jing, D.; Tang, S.; Chen, X.; Chen, H.; Duanmu, H.; Cong, Y.; Chen, M.; Ye, X.; Zhou, H. InsectBase 2.0: A comprehensive gene resource for insects. Nucleic Acids Res. 2022, 50, 1040–1045. [Google Scholar]
- Vaandrager, A.B.; Ehlert, E.M.; Jarchau, T.; Lohmann, S.M.; de Jonge, H.R. N-terminal Myristoylation Is Required for Membrane Localization of cGMP-dependent Protein Kinase Type II (∗). J. Biol. Chem. 1996, 271, 7025–7029. [Google Scholar] [CrossRef]
- Gouranton, J. Présence d’une phosphomonoestérase alcaline liée aux brochosomes dans les tubes de Malpighi de la Cicadelle verte. Compte Rendu Société Biol. 1967, 161, 907–909. [Google Scholar]
- Wilkinson, B.; Gilbert, H.F. Protein disulfide isomerase. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2004, 1699, 35–44. [Google Scholar] [CrossRef]
- Okumura, M.; Noi, K.; Inaba, K. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr. Opin. Struct. Biol. 2021, 66, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Fausto, A.M.; Della Pelle, G.; Roncevic, T.; Gerdol, M.; Picchietti, S. Attacins: A Promising Class of Insect Antimicrobial Peptides. Antibiotics 2021, 10, 212. [Google Scholar] [CrossRef]
- Domazet-Loso, T.; Tautz, D. An evolutionary analysis of orphan genes in Drosophila. Genome Res 2003, 13, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Wissler, L.; Gadau, J.; Simola, D.F.; Helmkampf, M.; Bornberg-Bauer, E. Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes. Genome Biol. Evol. 2013, 5, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.R. Taxonomically Restricted Genes Are Fundamental to Biology and Evolution. Front. Genet. 2018, 9, 407. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, X.-W.; Zhang, Z. Identification and evolution of the orphan genes in the domestic silkworm, Bombyx mori. FEBS Lett. 2015, 589, 2731–2738. [Google Scholar] [CrossRef]
- Drukewitz, S.H.; Bokelmann, L.; Undheim, E.A.B.; von Reumont, B.M. Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects. GigaScience 2019, 8, giz081. [Google Scholar] [CrossRef]
- Zhao, C.; Escalante, L.N.; Chen, H.; Benatti, T.R.; Qu, J.; Chellapilla, S.; Waterhouse, R.M.; Wheeler, D.; Andersson, M.N.; Bao, R.; et al. A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Curr. Biol. 2015, 25, 613–620. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, 543–552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Ye, Z.; Mao, Q.; Shan, H.-W.; Li, J.-M.; Chen, J.-P. Combined Transcriptome and Proteome Analysis of the Protein Composition of the Brochosomes of the Leafhopper Nephotettix cincticeps. Insects 2023, 14, 784. https://doi.org/10.3390/insects14100784
Wu W, Ye Z, Mao Q, Shan H-W, Li J-M, Chen J-P. Combined Transcriptome and Proteome Analysis of the Protein Composition of the Brochosomes of the Leafhopper Nephotettix cincticeps. Insects. 2023; 14(10):784. https://doi.org/10.3390/insects14100784
Chicago/Turabian StyleWu, Wei, Zhuangxin Ye, Qianzhuo Mao, Hong-Wei Shan, Jun-Min Li, and Jian-Ping Chen. 2023. "Combined Transcriptome and Proteome Analysis of the Protein Composition of the Brochosomes of the Leafhopper Nephotettix cincticeps" Insects 14, no. 10: 784. https://doi.org/10.3390/insects14100784
APA StyleWu, W., Ye, Z., Mao, Q., Shan, H.-W., Li, J.-M., & Chen, J.-P. (2023). Combined Transcriptome and Proteome Analysis of the Protein Composition of the Brochosomes of the Leafhopper Nephotettix cincticeps. Insects, 14(10), 784. https://doi.org/10.3390/insects14100784