Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Analysis, and Synthesis
2.1.1. Chemicals
2.1.2. GC-MS Analysis
2.1.3. Synthesis of Carvacrol Acetate and Thymol Acetate
2.2. Ants
2.3. Digging Bioassay
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tschinkel, W.R. The Fire Ants; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wang, L.; Zeng, L.; Xu, Y.; Lu, Y. Prevalence and management of Solenopsis invicta in China. NeoBiota 2020, 54, 89–124. [Google Scholar] [CrossRef]
- Gibbons, L.; Simberloff, D. Interaction of hybrid imported fire ants (Solenopsis invicta × S. richteri) with native ants at baits in southeastern Tennessee. Southeast. Nat. 2005, 4, 303–320. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Bamisile, B.S.; Khan, M.M.; Islam, W.; Hafeez, M.; Bodlah, I.; Xu, Y. Impact of invasive ant species on native fauna across similar habitats under global environmental changes. Environ. Sci. Pollut. Res. Int. 2021, 28, 54362–54382. [Google Scholar] [CrossRef] [PubMed]
- Vinson, S.B. Impact of the invasion of the imported fire ant. Insect Sci. 2013, 20, 439–455. [Google Scholar] [CrossRef]
- Chen, J.; Oi, D.H. Naturally occurring compounds/materials as alternatives to synthetic chemical insecticides for use in fire ant management. Insects 2020, 11, 758. [Google Scholar] [CrossRef]
- Cohen, P.; Privman, E. Speciation and hybridization in invasive fire ants. BMC Evol. Biol. 2019, 19, 111. [Google Scholar] [CrossRef]
- Pandey, M.; Addesso, K.M.; Archer, R.S.; Valles, S.M.; Baysal-Gurel, F.; Ganter, P.F.; Youssef, N.N.; Oliver, J.B. Worker Size, Geographical Distribution, and Introgressive Hybridization of Invasive Solenopsis invicta and Solenopsis richteri (Hymenoptera: Formicidae) in Tennessee. Environ. Entomol. 2019, 48, 727–732. [Google Scholar] [CrossRef]
- Mossa, A.-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, I.; Paunescu, A. The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Z. Naturforsch. C J. Biosci. 2020, 75, 183–204. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Lee, J. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. J. Appl. Microbiol. 2017, 123, 1420–1428. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Naghdi Badi, H.; Abdollahi, M.; Mehrafarin, A.; Ghorbanpour, M.; Tolyat, S.; Qaderi, A.; Ghiaci Yekta, M. An overview on two valuable natural and bioactive compounds, thymol and carvacrol, in medicinal plants. J. Med. Plants 2017, 16, 1–32. [Google Scholar]
- Ma, Y.; Li, M.; Zhang, H.; Sun, H.; Su, H.; Wang, Y.; Du, Z. Bioassay-guided isolation of active compounds from Adenosma buchneroides essential oil as mosquito repellent against Aedes albopictus. J. Ethnopharmacol. 2019, 231, 386–393. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 1–7. [Google Scholar]
- Tabari, M.A.; Youssefi, M.R.; Barimani, A.; Araghi, A. Carvacrol as a potent natural acaricide against Dermanyssus gallinae. Parasitol. Res. 2015, 114, 3801–3806. [Google Scholar] [CrossRef]
- Zahran, H.E.-D.M.; Abdelgaleil, S.A. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J. Asia Pac. Entomol. 2011, 14, 46–51. [Google Scholar] [CrossRef]
- Porte, A.; Godoy, R.L. Chemical composition of Thymus vulgaris L. (Thyme) essential oil from the Rio de Janeiro state, Brazil. J. Serbian Chem. Soc. 2008, 73, 307–310. [Google Scholar] [CrossRef]
- Konig, I.F.M.; Reis, A.C.; Gonçalves, R.R.P.; Oliveira, M.V.S.; Silva, C.M.; de Sousa Melo, D.; Peconick, A.P.; Thomasi, S.S.; Remedio, R.N. Repellent activity of acetylcarvacrol and its effects on salivary gland morphology in unfed Rhipicephalus sanguineus sensu lato ticks (Acari: Ixodidae). Ticks Tick Borne Dis. 2021, 12, 101760. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Pengsook, A.; Tharamak, S.; Keosaeng, K.; Koul, O.; Bullangpoti, V.; Kumrungsee, N.; Pluempanupat, W. Insecticidal and growth inhibitory effects of some thymol derivatives on the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and their impact on detoxification enzymes. Pest Manag. Sci. 2022, 78, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Chen, J.; Khan, I.A. Toxicity and repellency of Magnolia grandiflora seed essential oil and selected pure compounds against the workers of hybrid imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2022, 115, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.G.; Meer, R.K.V.; Fletcher, D.J.; Vargo, E.L. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 1987, 41, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Ditzen, M.; Pellegrino, M.; Vosshall, L.B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 2008, 319, 1838–1842. [Google Scholar] [CrossRef]
- Oi, D.H.; Williams, D.F. Toxicity and repellency of potting soil treated with bifenthrin and tefluthrin to red imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 1996, 89, 1526–1530. [Google Scholar] [CrossRef]
- Costa, H.S.; Greenberg, L.; Klotz, J.; Rust, M.K. Response of Argentine ants and red imported fire ants to permethrin-impregnated plastic strips: Foraging rates, colonization of potted soil, and differential mortality. J. Econ. Entomol. 2005, 98, 2089–2094. [Google Scholar] [CrossRef]
- Chen, J. Assessment of repellency of nine phthalates against red imported fire ant (Hymenoptera: Formicidae) workers using ant digging behavior. J. Entomol. Sci. 2005, 40, 368–377. [Google Scholar] [CrossRef]
- Chen, J. Repellency of an over-the-counter essential oil product in China against workers of red imported fire ants. J. Agric. Food Chem. 2009, 57, 618–622. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, L.; Hu, W.; Wang, K.; Zhou, Y.; Li, H.; Huang, C.; Chun, J.; Zhang, Z. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae). J. Insect Sci. 2014, 14, 241. [Google Scholar] [CrossRef]
- Kafle, L.; Shih, C.J. Toxicity and repellency of compounds from clove (Syzygium aromaticum) to red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). J. Econ. Entomol. 2013, 106, 131–135. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Xu, Y. Safe chemical repellents to prevent the spread of invasive ants. Pest Manag. Sci. 2019, 75, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, J. Fatty amines from little black ants, Monomorium minimum, and their biological activities against red imported fire ants, Solenopsis invicta. J. Chem. Ecol. 2015, 41, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Xiong, H.; Wen, Y.; Wen, X.; Wang, H.; Fang, Y.; Ma, T.; Sun, Z.; Chen, X.; Wang, C. Laboratory and field evaluation of the repellency of six preservatives to red imported fire ants (Hymenoptera: Formicidae). J. Asia Pac. Entomol. 2017, 20, 535–540. [Google Scholar] [CrossRef]
- Masoumi, F.; Youssefi, M.R.; Tabari, M.A. Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae). Parasitol. Res. 2016, 115, 4239–4243. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.P.; Polissiou, M.G.; Emmanouel, N. Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol. Res. 2018, 117, 1953–1964. [Google Scholar] [CrossRef]
- Rozman, V.; Kalinovic, I.; Liska, A. Bioactivity of 1, 8-cineole, camphor and carvacrol against rusty grain beetle (Cryptolestes ferrugineus Steph.) on stored wheat. In Proceedings of the 9th International Working Conference on Stored Product Protection, Sao Paulo, Brazil, 15–18 October 2006; pp. 15–18. [Google Scholar]
- Bendre, R.; Bagul, S.; Rajput, J. Carvacrol: An excellent natural pest control agent. Nat. Prod. Chem. Res. 2018, 6, 349. [Google Scholar]
- Pandey, S.; Upadhyay, S.; Tripathi, A. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol. Res. 2009, 105, 507–512. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Veerakumar, K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 3713–3721. [Google Scholar] [CrossRef]
- Karpouhtsis, I.; Pardali, E.; Feggou, E.; Kokkini, S.; Scouras, Z.G.; Mavragani-Tsipidou, P. Insecticidal and genotoxic activities of oregano essential oils. J. Agric. Food Chem. 1998, 46, 1111–1115. [Google Scholar] [CrossRef]
- Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Gooderham, N.J.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.; Rosol, T.J.; Davidsen, J.M.; Harman, C.L.; et al. FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food Chem. Toxicol. 2021, 155, 112378. [Google Scholar] [CrossRef]
Dose (µg/g) | Mean ± SE * | F-Value | p-Value | Mean ± SE * | F-Value | p-Value | Mean ± SE * | F-Value | p-Value |
---|---|---|---|---|---|---|---|---|---|
Red imported fire ants (Solenopsis invicta) | Black imported fire ants (Solenopsis richteri) | Hybrid imported fire ants (S. invicta × S. richteri) | |||||||
Carvacrol | |||||||||
Control | 1.10 ± 0.05 a | 420.32 | <0.0001 | 1.18 ± 0.22 a | 27.57 | <0.001 | 2.10 ± 0.10 a | 34.55 | <0.0001 |
125 | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.03 ± 0.02 b | ||||||
62.5 | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.26 ± 0.24 b | ||||||
31.25 | 0.01 ± 0.01 b | 0.00 ± 0.00 b | 0.62 ± 0.18 b | ||||||
Control | 1.25 ± 0.09 a | 16.8 | 0.0008 | 2.88 ± 0.11 a | 58.99 | <0.0001 | 2.14 ± 0.16 a | 7.43 | 0.0106 |
15.6 | 0.13 ± 0.06 b | 0.03 ± 0.18 c | 0.70 ± 0.35 b | ||||||
7.8 | 0.25 ± 0.15 b | 1.39 ± 0.15 b | 0.59 ± 0.22 b | ||||||
3.9 | 0.52 ± 0.16 b | 2.05 ± 0.13 a | 1.12 ± 0.26 b | ||||||
Control | 0.74 ± 0.03 a | 6.64 | 0.0146 | 2.65 ± 0.48 a | 1.52 | 0.2821 | 1.76 ± 0.11 a | 5.55 | 0.0235 |
1.95 | 0.20 ± 0.14 bc | 1.99 ± 0.47 a | 1.03 ± 0.17 b | ||||||
0.98 | 0.05 ± 0.30 c | 2.36 ± 0.16 a | 0.98 ± 0.16 b | ||||||
0.49 | 0.62 ± 0.21 ab | 2.65 ± 0.07 a | 1.49 ± 0.19 ab | ||||||
Thymol | |||||||||
Control | 1.00 ± 0.09 a | 22.51 | <0.001 | 1.20 ± 0.34 a | 11.82 | 0.003 | 2.51 ± 0.37 a | 16.92 | 0.0008 |
125 | 0.10 ± 0.10 b | 0.00 ± 0.00 b | 0.04 ± 0.04 b | ||||||
62.5 | 0.13 ± 0.13 b | 0.00 ± 0.00 b | 0.68 ± 0.35 b | ||||||
31.25 | 0.12 ± 0.02 b | 0.00 ± 0.00 b | 0.39 ± 0.18 b | ||||||
Control | 0.99 ± 0.26 a | 3.52 | 0.068 | 0.89 ± 0.31 a | 1.03 | 0.43 | 2.26 ± 0.06 a | 5.46 | 0.0245 |
15.6 | 0.30 ± 0.14 a | 0.28 ± 0.18 a | 1.39 ± 0.13 b | ||||||
7.8 | 0.49 ± 0.08 a | 0.52 ± 0.28 a | 1.10 ± 0.36 b | ||||||
3.9 | 0.53 ± 0.04 a | 0.44 ± 0.22 a | 1.49 ± 0.17 ab | ||||||
Carvacrol acetate | |||||||||
Control | 1.25 ± 0.06 a | 14.4 | <0.001 | 1.21 ± 0.17 a | 44.9 | <0.001 | 1.87 ± 0.25 a | 16.09 | 0.0009 |
125 | 0.03 ± 0.03 b | 0.00 ± 0.00 b | 0.10 ± 0.10 b | ||||||
62.5 | 0.19 ± 0.14 b | 0.00 ± 0.00 b | 0.33 ± 0.17 b | ||||||
31.25 | 0.48 ± 0.23 b | 0.04 ± 0.04 b | 0.47 ± 0.27 b | ||||||
Control | 0.90 ± 0.05 a | 1.86 | 0.21 | 0.77 ± 0.38 a | 0.904 | 0.48 | 2.18 ± 0.07 a | 4.6 | 0.0374 |
15.6 | 0.37 ± 0.11 a | 0.25 ± 0.25 a | 1.29 ± 0.19 b | ||||||
7.8 | 0.48 ± 0.24 a | 0.19 ± 0.14 a | 1.64 ± 0.20 ab | ||||||
3.9 | 0.60 ± 0.19 a | 0.62 ± 0.35 a | 1.74 ± 0.19 ab | ||||||
Thymol acetate | |||||||||
Control | 0.91 ± 0.26 a | 4.79 | <0.001 | 1.30 ± 0.94 a | 126.80 | <0.001 | 1.59 ± 0.3 a | 4.09 | 0.0492 |
125 | 0.11± 0.11 b | 0.01 ± 0.01 b | 0.30 ± 0.06 b | ||||||
62.5 | 0.18 ± 0.11 b | 0.06 ± 0.06 b | 0.67 ± 0.42 ab | ||||||
31.25 | 0.33 ± 0.13 ab | 0.00 ± 0.00 b | 1.13 ± 0.19 ab | ||||||
Control | - | 1.42 ± 0.18 a | 4.37 | 0.042 | - | - | - | ||
15.6 | - | 0.63 ± 0.31 ab | - | - | - | ||||
7.8 | - | 0.25 ± 0.18 b | - | - | - | ||||
3.9 | - | 0.32 ± 0.31 b | - | - | - | ||||
DEET | |||||||||
Control | 1.43 ± 0.19 a | 16.24 | 0.001 | 1.38 ± 0.25 a | 8.9 | 0.006 | 1.58 ± 0.11 a | 9.71 | 0.0050 |
125 | 0.08 ± 0.04 c | 0.00 ± 0.00 b | 0.42 ± 0.25 b | ||||||
62.5 | 0.74 ± 0.18 b | 1.22 ± 0.04 a | 0.87 ± 0.13 b | ||||||
31.25 | 1.14 ± 0.10 ab | 0.79 ± 0.33 a,b | 0.84 ± 0.04 b | ||||||
Control | - | - | 1.26 ± 0.19 a | 0.24 | 0.8700 | ||||
15.6 | - | - | 0.98 ± 0.49 a | ||||||
7.8 | - | - | 1.37 ± 0.28 a | ||||||
3.9 | - | - | 1.16 ± 0.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, P.; Shah, F.M.; Guddeti, D.K.; Ali, A.; Chen, J.; Khan, I.A.; Li, X.-C. Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants. Insects 2023, 14, 790. https://doi.org/10.3390/insects14100790
Paudel P, Shah FM, Guddeti DK, Ali A, Chen J, Khan IA, Li X-C. Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants. Insects. 2023; 14(10):790. https://doi.org/10.3390/insects14100790
Chicago/Turabian StylePaudel, Pradeep, Farhan Mahmood Shah, Dileep Kumar Guddeti, Abbas Ali, Jian Chen, Ikhlas A. Khan, and Xing-Cong Li. 2023. "Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants" Insects 14, no. 10: 790. https://doi.org/10.3390/insects14100790
APA StylePaudel, P., Shah, F. M., Guddeti, D. K., Ali, A., Chen, J., Khan, I. A., & Li, X.-C. (2023). Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants. Insects, 14(10), 790. https://doi.org/10.3390/insects14100790