Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fly Stock and Maintenance
2.3. Total Lipid Extraction
2.4. Liquid Chromatography–Mass Spectrometry (LC-MS)
2.5. Statistical Analysis
3. Results
3.1. Overall Lipidome Compositions
3.2. Average Carbon and Double Bond Contents
3.3. Associations between Carbon and Double Bond Contents
3.4. Individually Common Chains
3.5. Possible Sampling Biases in the Ether Lipid Data
3.6. Non-Random Combinations of Acyl Chains in Ester Lipids
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busta, L.; Chapman, K.D.; Cahoon, E.B. Better together: Protein partnerships for lineage-specific oil accumulation. Curr. Opin. Plant Biol. 2022, 66, 102191. [Google Scholar] [CrossRef] [PubMed]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rojo, N.; Riezman, H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 2019, 593, 2378–2389. [Google Scholar] [CrossRef]
- Magnusson, C.D.; Haraldsson, G.G. Ether lipids. Chem. Phys. Lipids 2011, 164, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Renne, M.F.; de Kroon, A. The role of phospholipid molecular species in determining the physical properties of yeast membranes. FEBS Lett. 2018, 592, 1330–1345. [Google Scholar] [CrossRef]
- Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Valentine, W.J.; Yanagida, K.; Kawana, H.; Kono, N.; Noda, N.N.; Aoki, J.; Shindou, H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases, which create membrane phospholipid diversity. J. Biol. Chem. 2022, 298, 101470. [Google Scholar] [CrossRef] [PubMed]
- Heier, C.; Kühnlein, R.P. Triacylglycerol metabolism in Drosophila melanogaster. Genetics 2018, 210, 1163–1184. [Google Scholar] [CrossRef]
- Palm, W.; Sampaio, J.L.; Brankatschk, M.; Carvalho, M.; Mahmoud, A.; Shevchenko, A.; Eaton, S. Lipoproteins in Drosophila melanogaster—Assembly, function, and influence on tissue lipid composition. PLoS Genet. 2012, 8, e1002828. [Google Scholar] [CrossRef]
- Ernst, R.; Ejsing, C.S.; Antonny, B. Homeoviscous adaptation and the regulation of membrane lipids. J. Mol. Biol. 2016, 428, 4776–4791. [Google Scholar] [CrossRef]
- Rangholia, N.; Leisner, T.M.; Holly, S.P. Bioactive ether lipids: Primordial modulators of cellular signaling. Metabolites 2021, 11, 41. [Google Scholar] [CrossRef]
- Rawicz, W.; Olbrich, K.C.; McIntosh, T.; Needham, D.; Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 2000, 79, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, S. Mammalian lipids: Structure, synthesis and function. Essays Biochem. 2021, 65, 813–845. [Google Scholar] [CrossRef] [PubMed]
- Ballweg, S.; Sezgin, E.; Doktorova, M.; Covino, R.; Reinhard, J.; Wunnicke, D.; Hanelt, I.; Levental, I.; Hummer, G.; Ernst, R. Regulation of lipid saturation without sensing membrane fluidity. Nat. Commun. 2020, 11, 756. [Google Scholar] [CrossRef]
- Chown, S.L.; Hoffmann, A.A.; Kristensen, T.N.; Angilletta, M.J.; Stenseth, N.C.; Pertoldi, C. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 2010, 43, 3–15. [Google Scholar] [CrossRef]
- Chown, S.L.; Terblanche, J.S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Phys. 2006, 33, 50–152. [Google Scholar] [CrossRef]
- Fast, P.G. A comparative study of the phospholipids and fatty acids of some insects. Lipids 1966, 1, 209–215. [Google Scholar] [CrossRef]
- Fast, P.G. Insect lipids. Prog. Chem. Fats Other Lipids 1971, 11, 179–242. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgro, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Beenakkers, A.M.; Van der Horst, D.J.; Van Marrewijk, W.J. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 1985, 24, 19–67. [Google Scholar] [CrossRef]
- Haunerland, N.H. Transport and utilization of lipids in insect flight muscles. Comp. Biochem. Physiol. 1997, 117B, 475–482. [Google Scholar] [CrossRef]
- Van der Horst, D.J.; Rodenburg, K.W. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J. Insect Physiol. 2010, 56, 844–853. [Google Scholar] [CrossRef]
- Musselman, L.P.; Fink, J.L.; Ramachandran, P.V.; Patterson, B.W.; Okunade, A.L.; Maier, E.; Brent, M.R.; Turk, J.; Baranski, T.J. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J. Biol. Chem. 2013, 288, 8028–8042. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.F.A.; de Albuquerque, C.M.R.; Oliva, L.O.; de Melo-Santos, M.A.V.; Ayres, C.F.J. Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites Vectors 2017, 10, 310. [Google Scholar] [CrossRef]
- Lu, K.; Zhang, X.; Chen, X.; Li, Y.; Li, W.; Cheng, Y.; Zhou, J.; You, K.; Zhou, Q. Adipokinetic hormone receptor mediates lipid mobilization to regulate starvation resistance in the brown planthopper, Nilaparvata lugens. Front. Physiol. 2018, 9, 1730. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Meeting the energetic demands of insect diapause: Nutrient storage and utilization. J. Insect Physiol. 2007, 53, 760–773. [Google Scholar] [CrossRef]
- Hahn, D.A.; Denlinger, D.L. Energetics of insect diapause. Annu. Rev. Entomol. 2011, 56, 103–121. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Marshall, K.E. The many roles of fats in overwintering insects. J. Exp. Biol. 2018, 121, jeb161836. [Google Scholar] [CrossRef] [PubMed]
- Slotsbo, S.; Sorensen, J.G.; Holmstrup, M.; Kostal, V.; Kellermann, V.; Overgaard, J. Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Funct. Ecol. 2016, 30, 759–768. [Google Scholar] [CrossRef]
- Scheitz, C.J.F.; Guo, Y.; Early, A.M.; Harshman, L.G.; Clark, A.G. Heritability and inter-population differences in lipid profiles of Drosophila melanogaster. PLoS ONE 2013, 8, e72726. [Google Scholar] [CrossRef]
- Ohtsu, T.; Kimura, M.T.; Katagiri, C. How Drosophila species acquire cold tolerance—Qualitative changes of phospholipids. Eur. J. Biochem. 1998, 252, 608–611. [Google Scholar] [CrossRef]
- Ohtsu, T.; Katagiri, C.; Kimura, M.T. Biochemical aspects of climatic adaptations in Drosophila curviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae). Environ. Entomol. 1999, 28, 968–972. [Google Scholar] [CrossRef]
- Weldon, C.W.; Boardman, L.; Marlin, D.; Terblanche, J.S. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Front. Zool. 2016, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.G.; Chippindale, A.K.; Rose, M.R. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 1997, 200, 1821–1832. [Google Scholar] [CrossRef] [PubMed]
- Telonis-Scott, M.; Guthridge, K.M.; Hoffmann, A.A. A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: Response to selection, physiology and correlated responses. J. Exp. Biol. 2006, 209, 1837–1847. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Hallas, R.; Sinclair, C.; Mitrovski, P. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: Patterns for desiccation, starvation, cold resistance, and associated traits. Evolution 2001, 55, 1621–1630. [Google Scholar] [CrossRef]
- Sisodia, S.; Singh, B.N. Resistance to environmental stress in Drosophila ananassae: Latitudinal variation and adaptation among populations. J. Evol. Biol. 2010, 23, 1979–1988. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Harshman, L.G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 1999, 83 Pt 6, 637–643. [Google Scholar] [CrossRef]
- Musselman, L.P.; Fink, J.L.; Narzinski, K.; Ramachandran, P.V.; Hathiramani, S.S.; Cagan, R.L.; Baranski, T.J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Models Mech. 2011, 4, 842–849. [Google Scholar] [CrossRef]
- Overgaard, J.; Sorensen, J.G.; Petersen, S.O.; Loeschcke, V.; Holmstrup, M. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J. Insect Physiol. 2005, 51, 1173–1182. [Google Scholar] [CrossRef]
- Overgaard, J.; Sorensen, J.G.; Petersen, S.O.; Loeschcke, V.; Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 2006, 31, 328–335. [Google Scholar] [CrossRef]
- Overgaard, J.; Tomčala, A.; Sørensen, J.G.; Holmstrup, M.; Krogh, P.H.; Šimek, P.; Koštál, V. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J. Insect Physiol. 2008, 54, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, H.F.; Heier, C.; Sen Saji, A.K.; Kühnlein, R.P. Lipidome remodeling in aging normal and genetically obese Drosophila males. Insect Biochem. Mol. Biol. 2021, 133, 103498. [Google Scholar] [CrossRef] [PubMed]
- Gamo, S.; Kawabe, A.; Kohara, H.; Yamaguchi, H.; Tanaka, Y.; Yagi, S. Fast atom bombardment tandem mass spectrometric analysis of phospholipids in Drosophila melanogaster. J. Mass Spectrom. 1999, 34, 590–600. [Google Scholar] [CrossRef]
- Masood, M.A.; Yuan, C.; Acharya, J.K.; Veenstra, T.D.; Blonder, J. Quantitation of ceramide phosphorylethanolamines containing saturated and unsaturated sphingoid base cores. Anal. Biochem. 2010, 400, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.S.; Hammad, L.A.; Fisher, N.P.; Karty, J.A.; Montooth, K.L. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster. Evolution 2012, 66, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.S.; Hammad, L.A.; Montooth, K.L. Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster. Funct. Ecol. 2014, 28, 886–894. [Google Scholar] [CrossRef]
- Parisi, M.; Li, R.; Oliver, B. Lipid profiles of female and male Drosophila. BMC Res. Notes 2011, 4, 198. [Google Scholar] [CrossRef]
- Brankatschk, M.; Gutmann, T.; Knittelfelder, O.; Palladini, A.; Prince, E.; Grzybek, M.; Brankatschk, B.; Shevchenko, A.; Coskun, U.; Eaton, S. A temperature-dependent switch in feeding preference improves Drosophila development and survival in the cold. Dev. Cell 2018, 46, 781–793.e784. [Google Scholar] [CrossRef]
- Tuthill, B.F., 2nd; Searcy, L.A.; Yost, R.A.; Musselman, L.P. Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI. J. Lipid Res. 2020, 61, 275–290. [Google Scholar] [CrossRef]
- Carvalho, M.; Sampaio, J.L.; Palm, W.; Brankatschk, M.; Eaton, S.; Shevchenko, A. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 2012, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.L.; Cestra, G.; Shui, G.; Kuhrs, A.; Schittenhelm, R.B.; Hafen, E.; van der Goot, F.G.; Robinett, C.C.; Gatti, M.; Gonzalez-Gaitan, M.; et al. Biochemical membrane lipidomics during Drosophila development. Dev. Cell 2013, 24, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Colinet, H.; Renault, D.; Javal, M.; Berková, P.; Šimek, P.; Koštál, V. Uncovering the benefits of fluctuating thermal regimes on cold tolerance of Drosophila flies by combined metabolomic and lipidomic approach. Biochim. Biophys. Acta Mol. Cell Biol. 2016, 1861, 1736–1745. [Google Scholar] [CrossRef]
- Ko, L.; Harshman, L.; Hangartner, S.; Hoffmann, A.; Kachman, S.; Black, P. Changes in lipid classes of Drosophila melanogaster in response to selection for three stress traits. J. Insect Physiol. 2019, 117, 103890. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Colinet, H. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Drosophila suzukii (Matsumara). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R751–R763. [Google Scholar] [CrossRef]
- Barletta, A.B.; Alves, L.R.; Silva, M.C.; Sim, S.; Dimopoulos, G.; Liechocki, S.; Maya-Monteiro, C.M.; Sorgine, M.H. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus. Sci. Rep. 2016, 6, 19928. [Google Scholar] [CrossRef]
- Molloy, J.C.; Sommer, U.; Viant, M.R.; Sinkins, S.P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito Cells. Appl. Environ. Microbiol. 2016, 82, 3109–3120. [Google Scholar] [CrossRef]
- Pinch, M.; Mitra, S.; Rodriguez, S.D.; Li, Y.; Kandel, Y.; Dungan, B.; Holguin, F.O.; Attardo, G.M.; Hansen, I.A. Fat and happy: Profiling mosquito fat body lipid storage and composition post-blood meal. Front. Insect Sci. 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Sushchik, N.N.; Yurchenko, Y.A.; Gladyshev, M.I.; Belevich, O.E.; Kalachova, G.S.; Kolmakova, A.A. Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect Sci. 2013, 20, 585–600. [Google Scholar] [CrossRef]
- Ravinder, T.; Kaki, S.S.; Kunduru, K.R.; Kanjilal, S.; Rao, B.V.S.K.; Swain, S.K.; Prasad, R.B.N. Isolation and characterization of phospholipids of eri-pupal oil from pupae grown on castor and tapioca leaves. Int. J. Curr. Res. Rev. 2016, 8, 27. [Google Scholar]
- Zhu, F.; Song, D.; Chen, H.; Tang, Q.; Huo, S.; Liu, X.; Chen, K. A lipidome map of the silkworm Bombyx mori: Influences of viral infection. J. Proteome Res. 2021, 20, 695–703. [Google Scholar] [CrossRef]
- Thorat, L.; Nath, B.B. Insects with survival kits for desiccation tolerance under extreme water deficits. Front. Physiol. 2018, 9, 1843. [Google Scholar] [CrossRef] [PubMed]
- Bateman, M.A. The ecology of fruit flies. Annu. Rev. Entomol. 1972, 17, 493–518. [Google Scholar] [CrossRef]
- Clarke, A.R.; Powell, K.S.; Weldon, C.W.; Taylor, P.W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management? Ann. Appl. Biol. 2011, 158, 26–54. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Daniels, D.; Mapson, R. Review of the outbreak threshold for Queensland fruit fly (‘Bactrocera tryoni’ Froggatt). Plant Prot. Q. 2011, 26, 141–147. [Google Scholar]
- Fletcher, B.S. The Biology of dacine fruit-flies. Annu. Rev. Entomol. 1987, 32, 115–144. [Google Scholar] [CrossRef]
- Gilchrist, A.S.; Meats, A.W. The genetic structure of populations of an invading pest fruit fly, Bactrocera tryoni, at the species climatic range limit. Heredity 2010, 105, 165–172. [Google Scholar] [CrossRef]
- Popa-Báez, Á.D.; Lee, S.F.; Yeap, H.L.; Prasad, S.S.; Schiffer, M.; Mourant, R.G.; Castro-Vargas, C.; Edwards, O.R.; Taylor, P.W.; Oakeshott, J.G. Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genet. 2020, 21, 135. [Google Scholar] [CrossRef]
- Yeap, H.L.; Lee, S.F.; Robinson, F.; Mourant, R.G.; Sved, J.A.; Frommer, M.; Papanicolaou, A.; Edwards, O.R.; Oakeshott, J.G. Separating two tightly linked species-defining phenotypes in Bactrocera with hybrid recombinant analysis. BMC Genet. 2020, 21, 132. [Google Scholar] [CrossRef]
- Moadeli, T.; Taylor, P.W.; Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest. Sci. 2017, 90, 507–520. [Google Scholar] [CrossRef]
- Zhou, B.; Xiao, J.F.; Tuli, L.; Ressom, H.W. LC-MS-based metabolomics. Mol. Biosyst. 2012, 8, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Rampler, E.; Criscuolo, A.; Zeller, M.; El Abiead, Y.; Schoeny, H.; Hermann, G.; Sokol, E.; Cook, K.; Peake, D.A.; Delanghe, B.; et al. A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies. Ana.l Chem. 2018, 90, 6494–6501. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, M.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Chasalow, S. Combinat: Combinatorics Utilities; R Package Version 0.0-8; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Li, M.; Baughman, E.; Roth, M.R.; Han, X.; Welti, R.; Wang, X. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. Plant J. 2014, 77, 160–172. [Google Scholar] [CrossRef]
- Chwastek, G.; Surma, M.A.; Rizk, S.; Grosser, D.; Lavrynenko, O.; Rucinska, M.; Jambor, H.; Saenz, J. Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Rep. 2020, 32, 108165. [Google Scholar] [CrossRef]
- Hazel, J.R. Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 1995, 57, 19–42. [Google Scholar] [CrossRef]
- Koštál, V. Cell structural modifications in insects at low temperatures. In Low Temperature Biology of Insects; Denlinger, D.L., Lee, R.E., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 116–140. [Google Scholar]
- Bartz, R.; Li, W.H.; Venables, B.; Zehmer, J.K.; Roth, M.R.; Welti, R.; Anderson, R.G.; Liu, P.; Chapman, K.D. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 2007, 48, 837–847. [Google Scholar] [CrossRef]
- Drechsler, R.; Chen, S.W.; Dancy, B.C.; Mehrabkhani, L.; Olsen, C.P. HPLC-based mass spectrometry characterizes the phospholipid alterations in ether-linked lipid deficiency models following oxidative stress. PLoS ONE 2016, 11, e0167229. [Google Scholar] [CrossRef]
- Shi, X.; Tarazona, P.; Brock, T.J.; Browse, J.; Feussner, I.; Watts, J.L. A Caenorhabditis elegans model for ether lipid biosynthesis and function. J. Lipid Res. 2016, 57, 265–275. [Google Scholar] [CrossRef]
- Snyder, F. Ether-linked lipids and their bioactive species: Occurrence, chemistry, metabolism, regulation, and function. In New Comprehensive Biochemistry; Vance, D.E., Vance, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 31, pp. 183–210. [Google Scholar]
- McIntyre, T.M.; Snyder, F.; Marathe, G.K. Ether-linked lipids and their bioactive species. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Vance, D.E., Vance, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 245–276. [Google Scholar]
- Staps, P.; Rizzo, W.B.; Vaz, F.M.; Bugiani, M.; Giera, M.; Heijs, B.; van Kampen, A.H.C.; Pras-Raves, M.L.; Breur, M.; Groen, A.; et al. Disturbed brain ether lipid metabolism and histology in Sjogren-Larsson syndrome. J. Inherit. Metab. Dis. 2020, 43, 1265–1278. [Google Scholar] [CrossRef]
- Ivanova, P.T.; Milne, S.B.; Brown, H.A. Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J. Lipid Res. 2010, 51, 1581–1590. [Google Scholar] [CrossRef]
- Mueller, H.W.; O’Flaherty, J.T.; Wykle, R.L. Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids. Lipids 1982, 17, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Dancy, B.C.; Chen, S.W.; Drechsler, R.; Gafken, P.R.; Olsen, C.P. 13C- and 15N-labeling strategies combined with mass spectrometry comprehensively quantify phospholipid dynamics in C. elegans. PLoS ONE 2015, 10, e0141850. [Google Scholar] [CrossRef] [PubMed]
- Schlame, M.; Ren, M.; Xu, Y.; Greenberg, M.L.; Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids 2005, 138, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Stanley-Samuelson, D.W.; Jurenka, R.A.; Cripps, C.; Blomquist, G.J.; Derenobales, M. Fatty-acids in insects—Composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 1988, 9, 1–33. [Google Scholar] [CrossRef]
- Downer, R.G.H. Lipid metabolism. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol 10 Biochemistry; Kerkut, G.A., Gilbert, L.I., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 77–113. [Google Scholar]
- Nelson, D.R. Methyl-branched lipids in insects. In Insect Lipids: Chemistry, Biochemistry, and Biology; Stanley-Samuelson, D.W., Nelson, D.R., Eds.; University of Nebraska Press: Lincoln, NE, USA, 1993; pp. 271–315. [Google Scholar]
- Jones, H.E.; Harwood, J.L.; Bowen, I.D.; Griffiths, G. Lipid composition of subcellular membranes from larvae and prepupae of Drosophila melanogaster. Lipids 1992, 27, 984–987. [Google Scholar] [CrossRef]
- Madariaga, M.A.; Mata, F.; Municio, A.M.; Ribera, A. Changes in the fatty acid patterns of glycerolipids of Dacus oleae during metamorphosis and development. Insect Biochem. 1974, 4, 151–160. [Google Scholar] [CrossRef]
- Pagani, R.; Suarez, A.; Municio, A.M. Fatty acid patterns of the major lipid classes during development of Ceratitis capitata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1980, 67, 511–518. [Google Scholar] [CrossRef]
- Christie, W.W. Ether Lipids. Available online: https://lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/complex/ethers/index.htm (accessed on 26 July 2023).
- Hammad, L.A.; Cooper, B.S.; Fisher, N.P.; Montooth, K.L.; Karty, J.A. Profiling and quantification of Drosophila melanogaster lipids using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2959–2968. [Google Scholar] [CrossRef]
- Aboshi, T.; Nishida, R.; Mori, N. Identification of plasmalogen in the gut of silkworm (Bombyx mori). Insect Biochem. Mol. Biol. 2012, 42, 596–601. [Google Scholar] [CrossRef]
- Matsuo, N.; Nagao, K.; Suito, T.; Juni, N.; Kato, U.; Hara, Y.; Umeda, M. Different mechanisms for selective transport of fatty acids using a single class of lipoprotein in Drosophila. J. Lipid Res. 2019, 60, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.N.; Loeschcke, V.; Tan, Q.; Pertoldi, C.; Mengel-From, J. Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Sci. Rep. 2019, 9, 12305. [Google Scholar] [CrossRef] [PubMed]
- Nyamukondiwa, C.; Terblanche, J.S. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status. J. Therm. Biol. 2009, 34, 406–414. [Google Scholar] [CrossRef]
- Gibellini, F.; Smith, T.K. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010, 62, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Han, G.S.; Carman, G.M. Phospholipid synthesis in Yeast. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 478–481. [Google Scholar]
- Horn, A.; Jaiswal, J.K. Structural and signaling role of lipids in plasma membrane repair. Curr. Top. Membr. 2019, 84, 67–98. [Google Scholar] [CrossRef]
- Patton-Vogt, J.; de Kroon, A. Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158462. [Google Scholar] [CrossRef]
- Shindou, H.; Shimizu, T. Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 2009, 284, 1–5. [Google Scholar] [CrossRef]
- Xu, Y.; Condell, M.; Plesken, H.; Edelman-Novemsky, I.; Ma, J.; Ren, M.; Schlame, M. A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 11584–11588. [Google Scholar] [CrossRef]
- Ye, C.; Shen, Z.; Greenberg, M.L. Cardiolipin remodeling: A regulatory hub for modulating cardiolipin metabolism and function. J. Bioenerg. Biomembr. 2016, 48, 113–123. [Google Scholar] [CrossRef]
- Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 2008, 49, 1607–1620. [Google Scholar] [CrossRef]
- Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 2017, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Oemer, G.; Koch, J.; Wohlfarter, Y.; Alam, M.T.; Lackner, K.; Sailer, S.; Neumann, L.; Lindner, H.H.; Watschinger, K.; Haltmeier, M.; et al. Phospholipid acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins. Cell Rep. 2020, 30, 4281–4291.e4284. [Google Scholar] [CrossRef]
- Renne, M.F.; Bao, X.; De Smet, C.H.; de Kroon, A.I. Lipid acyl chain remodeling in Yeast. Lipid Insights 2015, 8, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, A.S.; Duffy, J.; Wang, M.C. Lipid metabolism and lipid signals in aging and longevity. Dev. Cell 2021, 56, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.W.; Pérez-Staples, D.; Weldon, C.W.; Collins, S.R.; Fanson, B.G.; Yap, S.; Smallridge, C. Post-teneral nutrition as an influence on reproductive development, sexual performance and longevity of Queensland fruit flies. J. Appl. Entomol. 2013, 137, 113–125. [Google Scholar] [CrossRef]
- Meats, A.; Holmes, H.M.; Kelly, G.L. Laboratory adaptation of Bactrocera tryoni (Diptera: Tephritidae) decreases mating age and increases protein consumption and number of eggs produced per milligram of protein. Bull. Entomol. Res. 2004, 94, 517–524. [Google Scholar] [CrossRef]
- Koch, J.; Watschinger, K.; Werner, E.R.; Keller, M.A. Tricky isomers—The evolution of analytical strategies to characterize plasmalogens and plasmanyl ether Lipids. Front. Cell Dev. Biol. 2022, 10, 864716. [Google Scholar] [CrossRef]
- Han, X.L.; Gross, R.W. Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry 1990, 29, 4992–4996. [Google Scholar] [CrossRef]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2018, 9, 196–206. [Google Scholar] [CrossRef]
- Dorninger, F.; König, T.; Scholze, P.; Berger, M.L.; Zeitler, G.; Wiesinger, C.; Gundacker, A.; Pollak, D.D.; Huck, S.; Just, W.W.; et al. Disturbed neurotransmitter homeostasis in ether lipid deficiency. Hum. Mol. Genet. 2019, 28, 2046–2061. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Monera-Girona, A.J.; Pajares-Martinez, E.; Bastida-Martinez, E.; Del Rey Navalon, I.; Perez-Castano, R.; Galbis-Martinez, M.L.; Fontes, M.; Elias-Arnanz, M. Plasmalogens and photooxidative stress signaling in Myxobacteria, and how it unmasked CarF/TMEM189 as the delta1’-desaturase PEDS1 for human plasmalogen biosynthesis. Front. Cell Dev. Biol. 2022, 10, 884689. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.M.; Tiberti, M.L.; Pagnotta, S.; Barelli, H.; Gautier, R.; Antonny, B. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage. eLife 2018, 7, e34394. [Google Scholar] [CrossRef] [PubMed]
- Mita, M.; Ueta, N. Fatty chain composition of phospholipids in sea urchin spermatozoa. Comp. Biochem. Physiol. B 1989, 92, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Kraffe, E.; Soudant, P.; Marty, Y.; Kervarec, N.; Jehan, P. Evidence of a tetradocosahexaenoic cardiolipin in some marine bivalves. Lipids 2002, 37, 507–514. [Google Scholar] [CrossRef]
- Kraffe, E.; Soudant, P.; Marty, Y.; Kervarec, N. Docosahexaenoic acid- and eicosapentaenoic acid-enriched cardiolipin in the Manila clam Ruditapes philippinarum. Lipids 2005, 40, 619–625. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, N.; Zhao, J.; Xie, Z.; Yang, Z.; Tian, B. Advances in the biosynthetic pathways and application potential of plasmalogens in medicine. Front. Cell Dev. Biol. 2020, 8, 765. [Google Scholar] [CrossRef]
- Stillwell, W. Membrane biogenesis: Phospholipids, sphingolipids, plasmalogens, and cholesterol. In An Introduction to Biological Membrane, 2nd ed.; Stillwell, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 331–347. [Google Scholar]
- Wanders, R.J.A.; Brites, P. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: New insights into an old problem. Clin. Lipidol. 2010, 5, 379–386. [Google Scholar] [CrossRef]
- Tracey, T.J.; Steyn, F.J.; Wolvetang, E.J.; Ngo, S.T. Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 2018, 11, 10. [Google Scholar] [CrossRef]
- Vance, J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Ridgway, N.D. Phospholipid synthesis in mammalian cells. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Ridgway, N.D., McLeod, R.S., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 209–236. [Google Scholar]
- Shindou, H.; Hishikawa, D.; Harayama, T.; Yuki, K.; Shimizu, T. Recent progress on acyl CoA: Lysophospholipid acyltransferase research. J. Lipid Res. 2009, 50, S46–S51. [Google Scholar] [CrossRef]
- Garapati, P.V.; Zhang, J.; Rey, A.J.; Marygold, S.J. Towards comprehensive annotation of Drosophila melanogaster enzymes in FlyBase. Database 2019, 2019, bay144. [Google Scholar] [CrossRef] [PubMed]
- Heier, C.; Klishch, S.; Stilbytska, O.; Semaniuk, U.; Lushchak, O. The Drosophila model to interrogate triacylglycerol biology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158924. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Airola, M.V.; Reue, K. How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Hollenback, D.; Bonham, L.; Law, L.; Rossnagle, E.; Romero, L.; Carew, H.; Tompkins, C.K.; Leung, D.W.; Singer, J.W.; White, T. Substrate specificity of lysophosphatidic acid acyltransferase beta—Evidence from membrane and whole cell assays. J. Lipid Res. 2006, 47, 593–604. [Google Scholar] [CrossRef]
- Vance, J.E.; Vance, D.E. Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 2004, 82, 113–128. [Google Scholar] [CrossRef]
- Gilchrist, A.S.; Shearman, D.C.; Frommer, M.; Raphael, K.A.; Deshpande, N.P.; Wilkins, M.R.; Sherwin, W.B.; Sved, J.A. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: Resources for the genomic analysis of hybridising species. BMC Genom. 2014, 15, 1153. [Google Scholar] [CrossRef]
- Bayega, A.; Djambazian, H.; Tsoumani, K.T.; Gregoriou, M.E.; Sagri, E.; Drosopoulou, E.; Mavragani-Tsipidou, P.; Giorda, K.; Tsiamis, G.; Bourtzis, K.; et al. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genom. 2020, 21, 259. [Google Scholar] [CrossRef]
Class | Diversity | Abundance (±SE) | ||
---|---|---|---|---|
Day 1 | Day 19 | Day 1 | Day 19 | |
Neutral lipids | 213 | 196 | 36.5 ± 2.7 | 30.1 ± 2.0 |
DG | 11 | 16 | 0.4 ± 0.05 | 0.4 ± 0.04 |
TG | 202 | 180 | 36.1 ± 2.7 | 29.7 ± 2.1 |
Phospholipids | 125 | 148 | 57.6 ± 2.5 | 65.9 ± 1.8 |
CL | 36 | 34 | 4.1 ± 0.2 | 5.1 ± 0.2 |
PC | 26 | 27 | 9 ± 0.4 | 8.6 ± 0.2 |
PE | 19 | 27 | 29.1 ± 1.4 | 36 ± 1.1 |
PG | 9 | 9 | 3.5 ± 0.2 | 4.7 ± 0.1 |
PI | 12 | 15 | 7.2 ± 0.3 | 5.4 ± 0.2 |
PS | 9 | 21 | 3.4 ± 0.2 | 4.1 ± 0.4 |
LPC | 14 | 15 | 1.3 ± 0.1 | 2 ± 0.2 |
Ether neutral lipids | 15 | 15 | 1.6 ± 0.1 | 0.6 ± 0.1 |
DGe | 6 | 6 | 1.3 ± 0.1 | 0.5 ± 0.1 |
TGe | 9 | 9 | 0.3 ± 0.03 | 0.2 ± 0.02 |
Ether phospholipids | 22 | 19 | 4.3 ± 0.2 | 3.5 ± 0.2 |
PCe | 1 | 1 | 0.01 ± 0 | 0.03 ± 0 |
PEe | 13 | 11 | 1.7 ± 0.1 | 1.2 ± 0.1 |
PEp | 7 | 6 | 2.4 ± 0.1 | 2.2 ± 0.1 |
PSe | 1 | 1 | 0.1 ± 0.01 | 0.04 ± 0.01 |
Class | Mean Number of Carbons | Mean Number of Double Bonds | ||
---|---|---|---|---|
Day 1 | Day 19 | Day 1 | Day 19 | |
Neutral lipids | ||||
DG | 16.8 ± 0.8 | 17.1 ± 0.6 | 1.2 ± 0.3 | 1.5 ± 0.3 |
TG | 16.3 ± 0.3 | 16.5 ± 0.3 | 0.8 ± 0.1 | 0.6 ± 0.1 |
Phospholipids | ||||
CL | 17.5 ± 0.2 | 17.0 ± 0.2 | 2.1 ± 0.1 | 1.7 ± 0.1 |
PC | 16.8 ± 0.3 | 16.6 ± 0.4 | 1.0 ± 0.3 | 0.9 ± 0.2 |
PE | 17.4 ± 0.2 | 17.4 ± 0.3 | 1.3 ± 0.3 | 1.1 ± 0.3 |
PG | 17.1 ± 1.1 | 16.8 ± 0.9 | 1.4 ± 0.4 | 1.2 ± 0.3 |
PI | 17.5 ± 0.2 | 17.2 ± 0.2 | 1.4 ± 0.3 | 1.2 ± 0.3 |
PS | 17.9 ± 0.1 | 18.1 ± 0.2 | 1.5 ± 0.3 | 1.2 ± 0.2 |
LPC | 17.3 ± 0.5 | 17.1 ± 0.7 | 1.4 ± 0.5 | 1.1 ± 0.4 |
Ether neutral lipids | ||||
TGe acyl chains | 16.9 ± 0.7 | 17.2 ± 0.3 | 1.0 ± 0.3 | 0.6 ± 0.2 |
TGe alkyl chain | 18.5 ± 1.2 | 18.8 ± 0.5 | 0.4 ± 0.5 | 0.7 ± 0.6 |
Ether phospholipids | ||||
PCe acyl chain | 14 | 14 | 1 | 1 |
PCe alkyl chain | 20 | 20 | 0 | 0 |
PEe acyl chain | 21.3 ± 1.9 | 20.2 ± 1.6 | 2.3 ± 0.8 | 1.8 ± 0.4 |
PEe alkyl chain | 15.5 ± 2.4 | 16.2 ± 1.9 | 0.1 ± 0.2 | 0.2 ± 0.2 |
PEp acyl chain | 22.5 ± 1.6 | 23 ± 1.4 | 1.4 ± 0.6 | 1.0 ± 0.6 |
PEp alkenyl chain | 13.3 ± 1.7 | 12.8 ± 1.5 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Class | Excess | Deficit | ||||
---|---|---|---|---|---|---|
Combination | Day 1 | Day 19 | Combination | Day 1 | Day 19 | |
Neutral lipids | ||||||
DG | S0_LX | 27.4 ± 10.8 (7) | 9.6 ± 1.3 (7.5) | M0_M1 | 0.1 ± 0.1 (−10.9) | 0.7 ± 0.3 (−2.4) |
M1_L0 | 1.9 ± 0.3 (9) | 2.4 ± 0.3 (7.6) | ||||
TG | S0_M0_M1 | 1.4 ± 0.2 (1.8) | 1.5 ± 0.1 (3.7) | M0_M1_MX | 0.3 ± 0.1 (−5.6) | 0.9 ± 0.1 (−1.2) |
M0_M0_M1 | 1.6 ± 0.2 (8.2) | 1.3 ± 0.2 (6.4) | ||||
Phospholipids | ||||||
CL | S0_M1_MX_LX | 5.2 ± 0.4 (5.4) | 6.1 ± 0.9 (4.5) | M1_MX_MX_LX | 0.2 ± 0.0 (−6.8) | 0.3 ± 0.0 (−3.8) |
MX_MX_MX_MX | 2.1 ± 0.1 (13.5) | 3.4 ± 0.2 (5.9) | ||||
PC | M0_MX | 1.5 ± 0.0 (9.8) | 1.7 ± 0.1 (2.7) | M0_M0 | 0.4 ± 0.0 (−9.1) | 0.6 ± 0.0 (−2.4) |
M1_MX | 0.3 ± 0.0 (−12) | 0.5 ± 0.0 (−5.1) | ||||
PE | M0_MX | 1.4 ± 0.0 (8.7) | 2.3 ± 0.1 (20.9) | M0_M0 | 0.1 ± 0.0 (−9.5) | 0.0 ± 0.0 (−9.3) |
M1_MX | 0.7 ± 0.0 (−7.4) | 0.4 ± 0.0 (−12.6) | ||||
MX_MX | 0.9 ± 0.1 (−0.7) | 0.5 ± 0.0 (−3.2) | ||||
PG | SX_LX | 9.7 ± 0.9 (18.4) | 10.6 ± 0.7 (17.1) | SX_M0 | 0.0 ± 0.0 (−6.5) | 0.0 ± 0.0 (−6) |
M0_M1 | 1.5 ± 0.1 (4.6) | 1.8 ± 0.1 (13.4) | M0_M0 | 0.0 ± 0.0 (−9.9) | 0.0 ± 0.0 (−10.1) | |
M0_MX | 2.3 ± 0.1 (28.1) | 2.3 ± 0.1 (18.9) | M0_LX | 0.0 ± 0.0 (−6.5) | 0.0 ± 0.0 (−6) | |
MX_MX | 0.2 ± 0.0 (−9.3) | 0.2 ± 0.0 (−4.3) | ||||
PI | M0_MX | 1.6 ± 0.1 (17.1) | 1.6 ± 0.1 (15.4) | M0_M0 | 0.0 ± 0.0 (−9.4) | 0.0 ± 0.0 (−12.3) |
M1_M1 | 0.2 ± 0.0 (−5.4) | 0.7 ± 0.0 (−3.1) | ||||
MX_MX | 0.3 ± 0.0 (−13.1) | 0.5 ± 0.0 (−6.1) | ||||
PS | M0_M1 | 1.8 ± 0.1 (11.7) | 1.7 ± 0.1 (7.4) | |||
MX_MX | 1.4 ± 0.1 (4.6) | 2.5 ± 0.2 (7.4) |
Enzyme (EC,sn#) | H. sapiens | D. melanogaster | B. tryoni | |||
---|---|---|---|---|---|---|
Hs gene-isoform (NM#) | Dm gene-isoform | Dm/Hs % ID | Bt gene (LOC#) | Bt isoform (XP#) | Dm/Bt % ID | |
GPAT (2.3.1.15,sn1) | GPAT4 (178819) | Gpat4-PB | 46 | 120770141 | 39953264 | 77 |
GPAT3 (001256421) | Gpat4-PC | 46 | 39953263 | 74 | ||
CG15450-PA | 39 | 39953264 | 37 | |||
GPAT1 (001244949) | mino-PA | 25 | 120777159 | 39964647 | 62 | |
GPAT2 (207328) | mino-PC | 21 | 39965461 | 63 | ||
DHAPAT (2.3.1.42,sn1) | GNPAT (001316350) | Gnpat-PC | 23 | 120775111 | 39961065 | 57 |
ADHAP-S (2.5.1.26,sn1) | AGPS (003659) | ADPS-PA | 47 | 120771366 | 39955259 | 66 |
AGPAT/AAGPAT (2.3.1.51,sn2) | LPLAP1/APGAT1 (032741) | Agpat1-PA | 32 | 120775056 | 39960970 | 68 |
LPLAP2/APGAT2 (006412) | 28 | |||||
- | Agpat2-PD | - | 120781541 | 39969707 | 62 | |
LPLAP3/APGAT3 (001037553) | Agpat3-PE | 39 | 120777449 | 39964700 | 61 | |
LPLAP4/APGAT4 (020133) | 37 | |||||
LPLAP5/APGAT5 (018361) | Agpat4-PB | 22 | 57 | |||
DGAT (2.3.1.20,sn3) | DGAT1 (012079.6) | mdy-PE | 34 | 120767901 | 39950180 | 76 |
MOGAT2 (025098) | Dgat2-PA | 38 | 120772092 | 39956430 | 62 | |
CG1941-PC | 36 | 62 | ||||
CG1946-PA | 38 | 62 | ||||
Delta-1-desaturase (1.14.19.77,sn1) | PEDS1/TMEM189 (199129) | Kua-PA | 48 | 120768982 | 39951731 | 69 |
PLA1 (3.1.1.32,sn1) | DDHD2 (015214) | PAPLA1-PD | 14 | 120775130 | 39961092 | 43 |
PLA2 (3.1.1.4,sn2) Ca2+ independent | PLB1 (001170585) | CG7365-PA | 10 | 120778470 | 39966215 | 63 |
CG11029-PA | 10 | 120769296 | 39952159 | 46 | ||
PLA2G6 (001004426) | iPLA2-VIA-PB | 32 | 120777471 | 39964729 | 77 | |
PLA2 (3.1.1.4,sn2) secreted | - | CG3009-PD | - | 120775860 | 39962164 | 79 |
PLA2G1B (000928) | CG14507-PC | 13 | 120773488 | 39958366 | 44 | |
- | CG30503-PA | - | 120771404 | 39955313 | 40 | |
- | CG42237-PA | - | 120775514 | 39961656 | 60 | |
PLA2G3 (015715) | GIIIspla2-PB | 15 | 120774912 | 39960718 | 31 | |
PLA2G12A (030821) | GXIVsPLA2-PA | 22 | 120779188 | 39967384 | 72 | |
- | sPLA2-PB | - | 120771404 | 39955313 | 37 | |
PLB (3.1.1.5,sn1,2) | OVCA2 (080822) | CG5412-PA | 28 | 120773391 | 39958163 | 70 |
ABHD12 (015600) | CG15111-PA | 31 | 120772418 | 39956961 | 61 | |
PNPLA7 (152286) | sws-PA | 40 | 120773795 | 39958830 | 64 | |
LPLAT (2.3.1.-,sn1) | LPLAP6/LCLAT1 (182551) | Agpat4-PB | 24 | 120777449 | 39964700 | 57 |
LPLAP7/LPGAT1 (014873) | - | - | - | - | - | |
LPLAP8/LPCAT1 (024830) | LPCAT-PB | 33 | 120775046 | 39960955 | 67 | |
LPLAP9/LPCAT2 (017839) | 33 | |||||
LPLAP10/LPCAT4 (153613) | 30 | |||||
LPLAP11/MBOAT7 (024298) | frj-PB | 32 | 120769360 | 39952255 | 69 | |
LPLAP12/LPCAT3 (005768) | nes-PA | 34 | 120776802 | 39963730 | 52 | |
LPLAP13/MBOAT2 (138799) | oys-PA | 29 | 120772337 | 39956816 | 69 | |
LPLAP14/MBOAT1(001080480) | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.S.; Taylor, M.C.; Colombo, V.; Yeap, H.L.; Pandey, G.; Lee, S.F.; Taylor, P.W.; Oakeshott, J.G. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. Insects 2023, 14, 873. https://doi.org/10.3390/insects14110873
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. Insects. 2023; 14(11):873. https://doi.org/10.3390/insects14110873
Chicago/Turabian StylePrasad, Shirleen S., Matthew C. Taylor, Valentina Colombo, Heng Lin Yeap, Gunjan Pandey, Siu Fai Lee, Phillip W. Taylor, and John G. Oakeshott. 2023. "Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly" Insects 14, no. 11: 873. https://doi.org/10.3390/insects14110873
APA StylePrasad, S. S., Taylor, M. C., Colombo, V., Yeap, H. L., Pandey, G., Lee, S. F., Taylor, P. W., & Oakeshott, J. G. (2023). Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. Insects, 14(11), 873. https://doi.org/10.3390/insects14110873