New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Genomic DNA Extraction
2.2. Genome Sequencing and Analysis
2.3. Phylogenetic Analysis
2.4. Divergence Time Estimation
3. Results
3.1. Genome Organization and Base Composition
3.2. Protein-Coding Genes and Codon Usage
3.3. The Control Region and Overlapping Regions
3.4. Transfer RNAs and Ribosomal RNAs
3.5. Phylogenetic Analyses
3.6. Divergence Time Estimation
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oswald, J.D. Lacewing Digital Library. Available online: http://lacewing.tamu.edu/ (accessed on 12 July 2023).
- Brooks, S.J. An overview of the current status of Chrysopidae (Neuroptera) systematics. Dtsch. Entomol. Z. 1997, 44, 267–275. [Google Scholar] [CrossRef]
- Senior, L.J.; McEwen, P.K. Laboratory study of Chrysoperla carnea (Stephens) (Neuropt., Chrysopidae) predation on Trialeurodes vaporariorum (Westwood) (Hom., Aleyrodidae). J. Appl. Entomol. 1998, 122, 99–101. [Google Scholar] [CrossRef]
- New, T.R. Prospects for extending the use of Australian lacewings in biological control. Acta Zool. Acad. Sci. Hung. 2002, 48, 209–216. [Google Scholar] [CrossRef]
- Chen, Z.L.; Jouault, C.; Li, H.Y.; Xu, C.P.; Nel, A.; Huang, D.Y.; Liu, X.Y. A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera: Chrysopidae) from the mid-Cretaceous of Myanmar. Cretaceous Res. 2022, 140, 105326. [Google Scholar] [CrossRef]
- Tauber, C.A. Larval Characteristics and Taxonomic Position of the Lacewing Genus Suarius. Ann. Entomol. Soc. Am. 1975, 68, 695–700. [Google Scholar] [CrossRef]
- Brooks, S.J.; Barnard, P.C. The green lacewings of the world: A generic review (Neuroptera: Chrysopidae). Bull. Br. Mus. (Nat. Hist.) Entomol. 1990, 59, 117–286. [Google Scholar]
- Winterton, S.; de Freitas, S. Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae). Aust. J. Entomol. 2006, 45, 235–243. [Google Scholar] [CrossRef]
- Dai, Y.T.; Winterton, S.L.; Garzon-Orduna, I.J.; Liang, F.Y.; Liu, X.Y. Mitochondrial phylogenomic analysis resolves the subfamily placement of enigmatic green lacewing genus Nothancyla (Neuroptera: Chrysopidae). Austral. Entomol. 2017, 56, 322–331. [Google Scholar] [CrossRef]
- Duelli, P.; Henry, C.S.; Mochizuki, A. The endemic Atlantochrysa atlantica (McLachlan) (Neuroptera: Chrysopidae) on Atlantic Islands: African or American origin? J. Nat. Hist. 2014, 48, 2595–2608. [Google Scholar] [CrossRef]
- Haruyama, N.; Mochizuki, A.; Duelli, P.; Naka, H.; Nomura, M. Green lacewing phylogeny, based on three nuclear genes (Chrysopidae, Neuroptera). Syst. Entomol. 2008, 33, 275–288. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Ma, Y.L.; Fan, F.; Geng, S.; Wang, Y.Y.; Liu, X.Y. The complete mitochondrial genome of Nothochrysa sinica (Neuroptera: Chrysopidae: Nothochrysinae) with a phylogenetic analysis of Chrysopoidea. Mitochondrial DNA Part B 2021, 6, 1632–1633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Garzón-Orduña, I.J.; Winterton, S.L.; Yang, F.; Liu, X. Phylogenetic relationships among tribes of the green lacewing subfamily Chrysopinae recovered based on mitochondrial phylogenomics. Sci. Rep. 2017, 7, 7218. [Google Scholar] [CrossRef] [PubMed]
- Garzón-Orduña, I.J.; Winterton, S.L.; Jiang, Y.; Breitkreuz, L.C.V.; Duelli, P.; Engel, M.S.; Penny, N.D.; Tauber, C.A.; Mochizuki, A.; Liu, X. Evolution of green lacewings (Neuroptera: Chrysopidae): A molecular supermatrix approach. Syst. Entomol. 2018, 44, 499–513. [Google Scholar] [CrossRef]
- Winterton, S.L.; Gillung, J.P.; Garzon-Orduna, I.J.; Badano, D.; Breitkreuz, L.C.V.; Duelli, P.; Engel, M.S.; Liu, X.Y.; Machado, R.J.P.; Mansell, M.; et al. Evolution of green lacewings (Neuroptera: Chrysopidae): An anchored phylogenomics approach. Syst. Entomol. 2019, 44, 514–526. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, R.Y.; Ma, Y.L.; Li, J.; Fan, F.; Liu, X.Y.; Yang, D. Low-Coverage Whole Genomes Reveal the Higher Phylogeny of Green Lacewings. Insects 2021, 12, 857. [Google Scholar] [CrossRef] [PubMed]
- Breitkreuz, L.C.V.; Garzon-Orduna, I.J.; Winterton, S.L.; Engel, M.S. Phylogeny of Chrysopidae (Neuroptera), with emphasis on morphological trait evolution. Zool. J. Linn. Soc. 2022, 194, 1374–1395. [Google Scholar] [CrossRef]
- Brown, J.; Pirrung, M.; McCue, L.A.; Wren, J. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of Nucleotide Composition at Fourfold Degenerate Sites of Animal Mitochondrial Genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Sudhir, K.; Glen, S.; Michael, L.; Christina, K.; Koichiro, T. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Juhling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Putz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 2013, 41, W471–W474. [Google Scholar] [CrossRef]
- Haruyama, N.; Mochizuki, A.; Sato, Y.; Naka, H.; Nomura, M. Complete mitochondrial genomes of two green lacewings, Chrysoperla nipponensis (Okamoto, 1914) and Apochrysa matsumurae Okamoto, 1912 (Neuroptera: Chrysopidae). Mol. Biol. Rep. 2011, 38, 3367–3373. [Google Scholar] [CrossRef]
- He, K.; Chen, Z.; Yu, D.N.; Zhang, J.Y. The complete mitochondrial genome of Chrysopa pallens (Insecta, Neuroptera, Chrysopidae). Mitochondrial DNA 2012, 23, 373–375. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.J.; Zhao, J.; Liu, Z.Q. First complete mitochondrial genome from the brown lacewings (Neuroptera: Hemerobiidae). Mitochondrial DNA Part A 2016, 27, 2763–2764. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, J.; Kim, J.H.; Cho, J.R.; Kim, Y.; Seo, B.Y. The complete mitochondrial genome of Micromus angulatus (Stephens, 1836) (Neuroptera: Hemerobiidae). Mitochondrial DNA Part B 2019, 4, 1467–1469. [Google Scholar] [CrossRef]
- Cameron, S.L.; Sullivan, J.; Song, H.; Miller, K.B.; Whiting, M.F. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool. Scr. 2009, 38, 575–590. [Google Scholar] [CrossRef]
- Chen, T.; Lan, X.E.; Chen, X.N.; You, P. Studies on complete mitochondrial genomes and Neuroptera phylogenesis of three Mantispidae. J. Shaanxi Norm. Univ. 2017, 46, 81–92. [Google Scholar]
- Wu, J.Q.; Wang, S.Z.; Yang, X.Z.; Guo, Y.J.; Weng, X.Q.; Wu, S.Q. The complete mitochondrial genome of Myrmeleon formicarius (Neuroptera: Myrmeleontidae). Mitochondrial DNA Part B 2020, 5, 1798–1799. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Xia, X.H.; Xie, Z.; Salemi, M.; Chen, L.; Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003, 26, 1–7. [Google Scholar] [CrossRef]
- Xia, X.; Lemey, P. Assessing substitution saturation with DAMBE. In The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing; Cambridge University Press: Cambridge, UK, 2009; Volume 2, pp. 615–630. [Google Scholar]
- Lartillot, N.; Brinkmann, H.; Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 2007, 7, S4. [Google Scholar] [CrossRef]
- Li, H.; Shao, R.F.; Song, N.; Song, F.; Jiang, P.; Li, Z.H.; Cai, W.Z. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Sci. Rep. 2015, 5, 8257. [Google Scholar] [CrossRef]
- Song, F.; Li, H.; Jiang, P.; Zhou, X.; Liu, J.; Sun, C.; Vogler, A.P.; Cai, W. Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models. Genome Biol. Evol. 2016, 8, 1411–1426. [Google Scholar] [CrossRef]
- Lartillot, N.; Lepage, T.; Blanquart, S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25, 2286–2288. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree. Institute of Evolutionary Biology; University of Edinburgh: Edinburgh, UK, 2009; Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 25 March 2023).
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Jepson, J.E.; Makarkin, V.N.; Coram, R.A. Lacewings (Insecta: Neuroptera) from the Lower Cretaceous Purbeck Limestone Group of southern England. Cretaceous Res. 2012, 34, 31–47. [Google Scholar] [CrossRef]
- Makarkin, V.N.; Archibald, S.B. A diverse new assemblage of green lacewings (Insecta, Neuroptera, Chrysopidae) from the early Eocene Okanagan Highlands, western North America. J. Paleontol. 2016, 87, 123–146. [Google Scholar] [CrossRef]
- Engel, M.S.; Grimaldi, D.A. The neuropterid fauna of Dominican and Mexican amber (Neuropterida: Megaloptera, Neuroptera). Am. Mus. Novit. 2007, 3587, 1–58. [Google Scholar] [CrossRef]
- Reetz, M.T.; Kahakeaw, D.; Lohmer, R. Addressing the numbers problem in directed evolution. ChemBioChem 2008, 9, 1797–1804. [Google Scholar] [CrossRef]
- Mori, S.; Matsunami, M. Signature of positive selection in mitochondrial DNA in Cetartiodactyla. Genes Genet. Syst. 2018, 93, 65–73. [Google Scholar] [CrossRef]
- Zhang, D.-X.; Szymura, J.M.; Hewitt, G.M. Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. Evol. 1995, 40, 382–391. [Google Scholar] [CrossRef]
- Zhang, D.-X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Breton, S.; Beaupré, H.D.; Stewart, D.T.; Piontkivska, H.; Karmakar, M.; Bogan, A.E.; Blier, P.U.; Hoeh, W.R. Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication. Genetics 2009, 183, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Plazzi, F.; Ribani, A.; Passamonti, M. The complete mitochondrial genome of (Mollusca: Bivalvia) and its relationships with Conchifera. BMC Genom. 2013, 14, 409. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.B.; Beckenbach, A.T. Insect mitochondrial genomics: The complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 2005, 48, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar] [CrossRef]
- Cannone, J.J.; Subramanian, S.; Schnare, M.N.; Collett, J.R.; D’Souza, L.M.; Du, Y.; Feng, B.; Lin, N.; Madabusi, L.V.; Muller, K.M.; et al. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinf. 2002, 3, 2. [Google Scholar] [CrossRef]
- Tjeder, B. Neuroptera-Planipennia. The lace-wings of Southern Africa. 5. family Chrysopidae. In South African Animal Life; Hanström, B., Brinck, P., Rudebec, G., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1966; Volume 12, pp. 228–534. [Google Scholar]
- Archibald, S.B.; Makarkin, V.N.; Greenwood, D.R.; Gunnell, G.F. The red queen and court jester in green lacewing evolution: Bat predation and global climate change. Palaios 2014, 29, 185–191. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- San Mauro, D.; Gower, D.J.; Zardoya, R.; Wilkinson, M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 2006, 23, 227–234. [Google Scholar] [CrossRef]
Node | Mean | Inferior 95% | Superior 95% | ESS | Crown Clade |
---|---|---|---|---|---|
t1 | 231.51 | 179.28 | 297.26 | 425.30 | |
t2 | 137.62 | 89.43 | 189.82 | 759.50 | Myrmeleontidae |
t3 | 205.66 | 162.42 | 263.75 | 378.50 | |
t4 | 150.78 | 108.51 | 200.38 | 516.20 | Mantispidae |
t5 | 186.55 | 148.50 | 240.02 | 378.50 | Hemerobiidae + Chrysopidae |
t6 | 130.15 | 93.80 | 173.69 | 518.10 | Hemerobiidae |
t7 | 135.09 | 103.36 | 174.95 | 360.40 | Chrysopidae |
t8 | 115.36 | 86.37 | 150.55 | 388.80 | Apochrysinae + Nothochrysinae |
t9 | 64.56 | 42.95 | 88.37 | 620.90 | Nothochrysinae |
t10 | 124.52 | 95.39 | 161.98 | 360.10 | Chrysopinae |
t11 | 113.04 | 86.24 | 147.39 | 361.30 | |
t12 | 93.33 | 69.23 | 122.79 | 396.30 | Leucochrysini + Belonopterygini |
t13 | 64.83 | 44.96 | 87.14 | 488.50 | Belonopterygini |
t14 | 101.24 | 76.57 | 132.09 | 368.30 | Ankylopterygini + Chrysopini |
t15 | 82.71 | 60.85 | 108.46 | 398.50 | Ankylopterygini |
t16 | 59.31 | 41.81 | 79.46 | 480.90 | Ankylopterygini |
t17 | 77.77 | 56.76 | 102.66 | 418.60 | Chrysopini |
t18 | 46.08 | 31.14 | 62.89 | 573.30 | Chrysopini |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Jiang, Y.; Lai, Y.; Wang, S.; Liu, X.; Wang, Y. New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae. Insects 2023, 14, 878. https://doi.org/10.3390/insects14110878
Tian S, Jiang Y, Lai Y, Wang S, Liu X, Wang Y. New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae. Insects. 2023; 14(11):878. https://doi.org/10.3390/insects14110878
Chicago/Turabian StyleTian, Shuo, Yunlan Jiang, Yan Lai, Shutong Wang, Xingyue Liu, and Yuyu Wang. 2023. "New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae" Insects 14, no. 11: 878. https://doi.org/10.3390/insects14110878
APA StyleTian, S., Jiang, Y., Lai, Y., Wang, S., Liu, X., & Wang, Y. (2023). New Mitogenomes of the Green Lacewing Tribe Ankylopterygini (Neuroptera: Chrysopidae: Chrysopinae) and Phylogenetic Implications of Chrysopidae. Insects, 14(11), 878. https://doi.org/10.3390/insects14110878