Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Intercrop Experiment
2.2. Volatile Collection and Analysis
2.3. Insect Rearing
2.4. Olfactometry
2.5. Statistical Analysis
3. Results
3.1. Intercrop Experiment
3.2. Volatile Analysis
3.3. Olfactometry of Grapholita molesta
3.4. Olfactometry of Trichogramma dendrolimi Females
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pimentel, D. Perspectives of integrated pest management. Crop. Prot. 1982, 1, 5–26. [Google Scholar] [CrossRef]
- Pickett, J.A.; Woodcock, C.M.; Midega, C.A.O.; Khan, Z.R. Push-pull farming systems. Curr. Opin. Biotechnol. 2014, 26, 125–132. [Google Scholar] [CrossRef]
- Alkema, J.T.; Dicke, M.; Wertheim, B. Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 2019, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The functions of biological diversity in an age of extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef]
- Turlings, T.C.J.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Hassanali, A.; Herren, H.; Khan, Z.R.; Pickett, J.A.; Woodcock, C.M. Integrated pest management: The push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- Herz, A.; Cahenzli, F.; Penvern, S.; Pfiffner, L.; Tasin, M.; Sigsgaard, L. Managing floral resources in apple orchards for pest control: Ideas, experiences and future directions. Insects 2019, 10, 247. [Google Scholar] [CrossRef]
- Kirk, H.; Dorn, S.; Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 2013, 13, 12. [Google Scholar] [CrossRef]
- Zhang, Z.; Men, L.; Peng, Y.; Li, J.; Deng, A.; Chen, Y.; Liu, X.; Ma, R. Morphological differences of the reproductive system could be used to predict the optimum Grapholita molesta (Busck) control period. Sci. Rep. 2017, 7, 8198. [Google Scholar] [CrossRef] [PubMed]
- Kanga, L.H.B.; Pree, D.J.; van Lier, J.L.; Walker, G.M. Monitoring for resistance to organophosphorus, carbamate, and pyrethroid insecticides in the oriental fruit moth (Lepidoptera: Tortricidae). Can. Entomol. 1999, 131, 441–450. [Google Scholar] [CrossRef]
- Kanga, L.H.B.; Pree, D.J.; van Lier, J.L.; Walker, G.M. Management of insecticide resistance in oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Manag. Sci. 2003, 59, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, G.H.L.; Vickers, R.A. Biology, ecology and control of the oriental fruit moth. In Tortricid Pests: Their Biology, Natural Enemies, and Control; van der Geest, L.P.S., Evenhuis, H.H., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1991; pp. 389–412. [Google Scholar]
- Zhang, J.; Tang, R.; Fang, H.; Liu, X.; Michaud, J.P.; Zhou, Z.; Zhang, Q.; Li, Z. Laboratory and field studies supporting augmentation biological control of oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), using Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). Pest Manag. Sci. 2021, 77, 2795–2803. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Lucchi, A.; Thomson, D.; Loriatti, C. Sex pheromone aerosol devices for mating disruption: Challenges for a brighter future. Insects 2019, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.L.M.; de Queiroz, A.P.; Gonçalves, J.; Hayashida, R.; Ventura, M.U.; de Freitas Bueno, A. Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotrop. Entomol. 2021, 50, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Wang, S.; Zhang, F.; Desneux, N. Biological control with Trichogramma in China: History, present status, and perspectives. Annu. Rev. Entomol. 2021, 66, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Weisser, W.W.; Hanna, R.; Houmgny, R.; Zytynska, S. Reduced pests, enhance production: Benefits of intercropping at high densities for okra farmers in Cameroon. Pest Manag. Sci. 2017, 73, 2017–2027. [Google Scholar] [CrossRef]
- Luan, F.; Wu, Q.; Yang, Y.; Lv, H.; Liu, D.; Gan, Z.; Zeng, N. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L.: A comprehensive review. Front. Pharmacol. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Dua, V.K.; Pandey, A.C.; Alam, M.F.; Dash, A.P. Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J. Am. Mosq. Control Assoc. 2006, 22, 155–157. [Google Scholar] [CrossRef]
- Rao, M.S.; Rao, C.A.R.; Srinivas, K.; Pratibha, G.; Sekhar, S.M.V.; Vani, G.S.; Venkateswarlu, B. Intercropping for management of insect pests of castor, Ricinus communis, in the semi-arid tropics of India. J. Insect Sci. 2012, 12, 14. [Google Scholar] [PubMed]
- Rana, M.; Dhamija, H.K.; Prashar, B.; Sharma, S. Ricinus communis L.—A review. Int. J. Pharm. Tech. 2012, 4, 1706–1711. [Google Scholar]
- Lima, V.D.S.; Celestino, F.; Pratissoli, D.; Dalvi, L.; de Carvalho, J.; Paes, J. Insecticidal activity of castor oil on Diaphania nitidalis (Stoll) (Lepidoptera: Pyralidae). Rev. Bras. Ciênc. Agrár. (Agrár) 2015, 10, 347–351. [Google Scholar]
- Kodjo, T.A.; Gbénonchi, M.; Sadate, A.; Komi, A.; Yaovi, G.; Dieudonné, M.; Komla, S. Bio-insecticidal effects of plant extracts and oil emulsions of Ricinus communis L. (Malpighiales: Euphorbiaceae) on the diamondback, Plutella xylostella L. (Lepidoptera: Plutellidae) under laboratory and semi-field conditions. J. Appl. Biosci. 2011, 43, 2899–2914. [Google Scholar]
- de Queiroz, V.T.; Campos, N.C.; Nunes, E.T.; Costa, A.V.; Coelho, J.D.; Trivilin, L.O.; de Melo, D.C.A.; Morais, P.A.B.; Martins, I.V.F. 1,8-cineole and castor oil in sodium lauryl ether sulphate disrupt reproduction and ovarian tissue of Rhipicephalus (Boophilus) microplus. Med. Vet. Entomol. 2020, 34, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, W.; Zhang, S.; Chen, H.; Su, H.; Jing, T.; Yang, Y. Behavioral responses of Bemisia tabaci Mediterranean cryptic species to three host plants and their volatiles. Insects 2022, 13, 703. [Google Scholar] [CrossRef] [PubMed]
- Upasani, S.M.; Kotkar, H.M.; Mendki, P.S.; Maheshwari, V.L. Partial characterization and insecticidal properties of Ricinus communis L foliage flavonoids. Pest Manag. Sci. 2003, 59, 1349–1354. [Google Scholar] [CrossRef]
- Salinas-Sánchez, D.O.; Flores-Franco, G.; Avilés-Montes, D.; Valladares-Cisneros, M.G.; Arias-Ataide, D.M.; Mendoza-Catalán, M.A.; Sotelo-Leyva, C. Bioactivity of a linoleic acid-rich fraction of Ricinus communis L. (Euphorbiaceae) leaves against the yellow sugarcane aphid Sipha flava (Hemiptera: Aphididae). J. Food Prot. 2021, 84, 1524–1527. [Google Scholar] [CrossRef]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Mon. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Hu, Z.; Michaud, J.P.; Dong, J.; Zhang, Q.; Liu, X. The ectoparasitoid Scleroderma guani (Hymenoptera: Bethylidae) uses innate and learned chemical cues to locate its host, larvae of the pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae). Fla. Entomol. 2015, 98, 1182–1187. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, H.; Liu, X.; Michaud, J.P.; Xu, H.; Zhao, Z.; Zhang, S.; Li, Z. Laboratory evaluation of the compatibility of Beauveria bassiana with the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) for joint application against the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Pest Manag. Sci. 2022, 78, 3608–3619. [Google Scholar] [CrossRef] [PubMed]
- de Alfonso, I.; Vacas, S.; Primo, J. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). J. Agric. Food Chem. 2014, 62, 11976–11979. [Google Scholar] [CrossRef] [PubMed]
- Martini, X.; Hughes, M.A.; Conover, D.; Smith, J. Use of semiochemicals for the management of the redbay ambrosia beetle. Insects 2020, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Han, J.; Na, J.H.; Chang, P.S.; Chung, M.S.; Park, K.H.; Min, S.C. Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies. J. Food Sci. 2013, 78, E229–E237. [Google Scholar] [CrossRef] [PubMed]
- Zaio, Y.P.; Gatti, G.; Ponce, A.A.; Saavedra Larranlde, N.A.; Martinez, M.J.; Zunino, M.P.; Zygadlo, J.A. Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against Sitophilus zeamais (Motsch). A chemical structure-bioactivity relationship. J. Sci. Food Agric. 2018, 98, 5822–5831. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.C.; Melo, D.R.; Franco, C.T.; Maturano, R.; Fabri, R.L.; Daemon, E. Evaluation of eugenol and (E)-cinnamaldehyde insecticidal activity against larvae and pupae of Musca domestica (Diptera: Muscidae). J. Med. Entomol. 2020, 57, 181–186. [Google Scholar] [CrossRef]
- SPSS, ver. 17.0; SSPS Inc.: Chicago, IL, USA, 2011.
- Roelofs, W.L.; Cardé, R.T. Responses of Lepidoptera to synthetic sex pheromone chemicals and their analogues. Annu. Rev. Entomol. 1977, 22, 377–405. [Google Scholar] [CrossRef]
- Johnson, S.N.; Nielsen, U.N. Foraging in the dark-chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. 2012, 38, 604–614. [Google Scholar] [CrossRef]
- Liu, H.; Guo, S.; Lu, L.; Li, D.; Liang, J.; Huang, Z.; Zhou, Y.M.; Zhang, W.J.; Du, S. Essential oil from Artemisia annua aerial parts: Composition and repellent activity against two storage pests. Nat. Prod. Res. 2021, 35, 822–825. [Google Scholar] [CrossRef]
- Bissinger, B.W.; Apperson, C.S.; Sonenshine, D.E.; Watson, D.W.; Roe, R.M. Efficacy of the new repellent BioUD against three species of ixodid ticks. Exp. Appl. Acarol. 2009, 48, 239–250. [Google Scholar] [CrossRef]
- Gabryś, B.; Dancewicz, K.; Gliszczyńska, A.; Kordan, B.; Wawrzeńczyk, C. Systemic deterrence of aphid probing and feeding by novel β-damascone analogues. J. Pest Sci. 2015, 88, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Culshaw-Maurer, M.; Sih, A.; Rosenheim, J.A. Bugs scaring bugs: Enemy-risk effects in biological control systems. Ecol. Lett. 2020, 23, 1693–1714. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, S.; Anusha, B.A.; Ashwini, L.S.; Negi, P.S. Antibacterial activity of cinnamaldehyde and clove oil: Effect on selected foodborne pathogens in model food systems and watermelon juice. J. Food Sci. Tech. 2015, 52, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Kamari, A.; Yusoff, S.N.M.; Wong, S.T.S.; Yusof, N.; Othman, H.; Hussein, M.Z.; Phillip, E. Development of anti-mosquito spray formulation based on lipid-core nanocapsules loaded with cinnamaldehyde for fabrics application. Fibers Polym. 2022, 23, 2156–2166. [Google Scholar] [CrossRef]
- Choi, I.; Baek, Y.; Chang, Y.; Han, J. Identification of the major active compounds in cinnamon bark with Plodia interpunctella repellent properties and insect-proof activity of poly(vinyl alcohol), xanthan gum, and trans-cinnamaldehyde-based strips and sachets. Food Packag. Shelf Life 2022, 32, 100813. [Google Scholar] [CrossRef]
- Yang, Y.; Isman, M.B.; Tak, J.H. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Narayanankutty, A.; Kunnath, K.; Alfarhan, A.; Rajagopal, R.; Ramesh, V. Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties. Molecules 2021, 26, 6303. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.A.M.; Al-Nagar, N.M.A.; Abou-Taleb, H.K.; Shawir, M.S. Effect of monoterpenes, phenylpropenes and sesquiterpenes on development, fecundity and fertility of Spodoptera littoralis (Boisduval). Int. J. Trop. Insect Sci. 2022, 42, 245–253. [Google Scholar] [CrossRef]
- Eben, A.; Sporer, F.; Vogt, H.; Wetterauer, P.; Wink, M. Search for alternative control strategies of Drosophila suzukii (Diptera: Drosophilidae): Laboratory assays using volatile natural plant compounds. Insects 2020, 11, 811. [Google Scholar] [CrossRef]
- Carran, M.; Shaw, I.C. New Zealand Malayan war veterans’ exposure to dibutylphthalate is associated with an increased incidence of cryptorchidism, hypospadias and breast cancer in their children. N. Z. Med. J. 2012, 125, 52–63. [Google Scholar]
- Kim, H.K.; Tak, J.H.; Ahn, Y.J. Acaricidal activity of Paeonia suffruticosa root bark-derived compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 2004, 52, 7857–7861. [Google Scholar] [CrossRef] [PubMed]
- Saad, K.A.; Roff, M.N.M.; Hallett, R.H.; Idris, A.B. Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sci. Rep. 2015, 5, 13697. [Google Scholar] [CrossRef] [PubMed]
- Biller, O.M.; Adler, L.S.; Irwin, R.E.; McAllister, C.; Palmer-Young, E.C. Possible synergistic effects of thymol and nicotine against Crithidia bombi parasitism in bumble bees. PLoS ONE 2015, 10, e0144668. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.W.N.; Morais, E.M.; de Jesus Lacerda, J.J.; da Silva Araújo, F.D. Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L. Sci. Rep. 2022, 12, 13476. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jaworski, C.C.; Dai, H.J.; Liang, Y.Y.; Guo, X.J.; Wang, S.; Zang, L.S.; Desneux, N. Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems. J. Pest Sci. 2022, 95, 685–697. [Google Scholar] [CrossRef]
- Kurra, S.; Pathipati, U.R. Whitefly, Trialeurodes ricini (Genn) feeding stress induced defense responses in castor, Ricinus communis L. plants. J. Asia-Pac. Entomol. 2015, 18, 425–431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yu, J.; Xu, H.; Michaud, J.P.; Liu, Y.; Liu, X.; Xu, H. Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard. Insects 2023, 14, 885. https://doi.org/10.3390/insects14110885
Li Z, Yu J, Xu H, Michaud JP, Liu Y, Liu X, Xu H. Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard. Insects. 2023; 14(11):885. https://doi.org/10.3390/insects14110885
Chicago/Turabian StyleLi, Zhen, Jianmei Yu, Haoyang Xu, J. P. Michaud, Yanjun Liu, Xiaoxia Liu, and Huanli Xu. 2023. "Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard" Insects 14, no. 11: 885. https://doi.org/10.3390/insects14110885
APA StyleLi, Z., Yu, J., Xu, H., Michaud, J. P., Liu, Y., Liu, X., & Xu, H. (2023). Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard. Insects, 14(11), 885. https://doi.org/10.3390/insects14110885