Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Morphological Identification
2.3. Faunistic Analysis
2.4. Molecular Analysis
3. Results
3.1. Sampling
3.2. Morphological Identification
3.3. Faunistic Analysis
3.4. Molecular Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, C.R.; Deitz, L.L.; Dmitriev, D.A.; Sanborn, A.F.; Soulier-Perkins, A.; Wallace, M.S. The diversity of the true hoppers (Hemiptera: Auchenorrhyncha). In Insect Biodiversity: Science and Society, II; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2018; pp. 501–590. [Google Scholar] [CrossRef]
- Hamilton, K.G.A. Classification, morphology and phylogeny of the family Cicadellidae (Rhynchota: Homoptera). In Proceedings of the 1st International Workshop on Biotaxonomy, Classification and Biology of Leafhoppers and Planthoppers of Economic Importance, London, UK, 4–7 October 1982; Commonwealth Institute of Entomology: London, UK, 1983; pp. 15–37. [Google Scholar]
- Dmitriev, D.A.; Anufriev, G.A.; Bartlett, C.R.; Blanco-Rodríguez, E.; Borodin, O.I.; Cao, Y.-H.; Deitz, L.L.; Dietrich, C.H.; Dmitrieva, M.O.; El-Sonbati, S.A.; et al. World Auchenorrhyncha Database. TaxonPages. 2022. Available online: https://hoppers.speciesfile.org/ (accessed on 28 October 2023).
- Balme, G.R. Phylogeny and Systematics of the Leafhopper Subfamily Typhlocybinae (Insecta: Hemiptera: Typhlocybinae). Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2007; pp. 1–149. Available online: http://www.lib.ncsu.edu/resolver/1840.16/5358 (accessed on 1 March 2023).
- Xu, Y.E.; Wang, Y.; Dietrich, C.H.; Fletcher, M.J.; Qin, D. Review of Chinese species of the leafhopper genus Amrasca Ghauri (Hemiptera, Cicadellidae, Typhlocybinae), with description of a new species, species checklist and notes on the identity of the Indian cotton leafhopper. Zootaxa 2017, 4353, 360–370. [Google Scholar] [CrossRef]
- Dietrich, C.H.; Perreira, W.D. Eight leafhoppers (Hemiptera: Cicadellidae) newly recorded from Hawaii, including a new species. Ann. Entomol. Soc. Am. 2019, 112, 281–287. [Google Scholar] [CrossRef]
- Zhou, X.; Dietrich, H.C.; Huang, M. Characterization of the Complete Mitochondrial Genomes of Two Species with Preliminary Investigation on Phylogenetic Status of Zyginellini (Hemiptera: Cicadellidae: Typhlocybinae). Insects 2020, 11, 684. [Google Scholar] [CrossRef]
- Backus, E.A.; Serrano, M.S.; Ranger, C.M. Mechanisms of hopperburn: An overview of insect taxonomy, behavior, and physiology. Annu. Rev. Entomol. 2005, 50, 125–151. [Google Scholar] [CrossRef]
- Trivellone, V.; Filippin, L.; Jermini, M.; Angelini, E. Molecular characterization of phytoplasma strains in leafhoppers inhabiting the vineyard agroecosystem in Southern Switzerland. Phytopathogenic Mollicutes 2015, 5 (Suppl. S1), S45–S46. [Google Scholar] [CrossRef]
- Tacoli, F.; Pavan, F.; Cargnus, E.; Tilatti, E.; Pozzebon, A.; Zandigiacomo, P. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol. 2017, 110, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Duso, C.; Zanettin, G.; Gherardo, P.; Pasqualotto, G.; Raniero, D.; Rossetto, F.; Tirello, P.; Pozzebon, A. Colonization Patterns, Phenology and Seasonal Abundance of the Nearctic Leafhopper Erasmoneura vulnerata (Fitch), a New Pest in European Vineyards. Insects 2020, 11, 731. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, A.; Battelli, R.; Conedera, M.; Jermini, M. First record of Erasmoneura vulnerata Fitch, 1851 (Hemiptera, Cicadellidae, Typhlocybinae) in Switzerland. Alp. Entomol. 2020, 4, 151–156. [Google Scholar] [CrossRef]
- EPPO. First Report of Erasmoneura vulnerata in Romania and Switzerland and Record of Damage on Grapevine in Italy; EPPO Reporting Service no. 08-2021, Num. article 2021/174; European and Mediterranean Plant Protection Organization: Paris, France, 2021. [Google Scholar]
- Xu, Y.; Dietrich, C.H.; Zhang, Y.-L.; Dmitriev, D.A.; Zhang, L.; Wang, Y.-M.; Lu, S.-H.; Qin, D.-Z. Phylogeny of the tribe Empoascini (Hemiptera: Cicadellidae: Typhlocybinae) based on morphological characteristics, with reclassification of the Empoasca generic group. Syst. Entomol. 2021, 46, 266–286. [Google Scholar] [CrossRef]
- Leopold, R.A.; Freeman, T.P.; Buckner, J.S.; Dennis, R.N. Mouthpart morphology and stylet penetration of host plants by the glassy-winged sharpshooter, Homalodisca coagulata (Homoptera: Cicadellidae). Arthropod Struct. Dev. 2003, 32, 189–199. [Google Scholar] [CrossRef]
- Lehmann, F.; Schirra, K.J.; Louis, F.; Zebitz, C.P.W. The green leafhopper Empoasca vitis Goethe—Population dynamics in different zones of foliation and effects of insecticide treatments in vineyards. IOBC/WPRS Bull. 2001, 24, 231–235. [Google Scholar]
- Mazzoni, V.; Anfora, G.; Ioriatti, C.; Lucchi, A. Role of Winter Host Plants in Vineyard Colonization and Phenology of Zygina rhamni (Hemiptera: Cicadellidae: Typhlocybinae). Ann. Entomol. Soc. Am. 2008, 101, 1003–1009. [Google Scholar] [CrossRef]
- Fornasiero, D.; Pavan, F.; Pozzebon, A.; Picotti, P.; Duso, C. Relative Infestation Level and Sensitivity of Grapevine Cultivars to the Leafhopper Empoasca vitis (Hemiptera: Cicadellidae). J. Econ. Entomol. 2016, 109, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Ramila, G.K.; Samira, S.; Samira, M.; Bahia, D.M. Impact of Jacobiasca lybica’s attacks on the physiology of the vine leaf. Adv. Environ. Biol. 2016, 10, 133–143. [Google Scholar]
- Del-Campo-Sanchez, A.I.; Ballesteros, R.; Hernandez-Lopez, D.; Fernando Ortega, J.; Moreno, M.A. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. PLoS ONE 2019, 14, e0215521. [Google Scholar] [CrossRef]
- Tirello, P.; Marchesini, E.; Gherardo, P.; Raniero, D.; Rossetto, F.; Pozzebon, A.; Duso, C. The Control of the American Leafhopper Erasmoneura vulnerata (Fitch) in European Vineyards: Impact of Synthetic and Natural Insecticides. Insects 2021, 12, 85. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (EFSA PLH Panel); Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; et al. Pest categorisation of non-EU viruses and viroids of Vitis L. EFSA J. 2019, 17, e05669. [Google Scholar] [CrossRef]
- Kunz, G.; Roschatt, C.; Schweigkofler, W. Biodiversity of planthoppers (Auchenorrhyncha) in vineyards infected by the Bois noir phytoplasma. Gredleriana 2010, 10, 89–108. [Google Scholar]
- Galetto, L.; Marzachì, C.; Demichelis, S.; Bosco, D. Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae). J. Econ. Entomol. 2011, 104, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Abou-Jawdah, Y.; Abdel Sater, A.; Jawhari, M.; Sobh, H.; Abdul-Nour, H.; Bianco, P.A.; Molino Lova, M.; Alma, A. Asymmetrasca decedens (Cicadellicae, Typhlocybinae), a natural vector of ‘Candidatus Phytoplasma phoenicium’. Ann. Appl. Biol. 2014, 165, 395–403. [Google Scholar] [CrossRef]
- EPPO. Studies on Potential Vectors of ‘Candidatus Phytoplasma Phoenicium’ in Lebanon; EPPO Reporting Service no. 05-2015, Num. article 2015/097; European and Mediterranean Plant Protection Organization: Paris, France, 2015. [Google Scholar]
- Heck, M. Insect Transmission of Plant Pathogens: A Systems Biology Perspective. mSystems 2018, 3, e00168-17. [Google Scholar] [CrossRef] [PubMed]
- Tamborindeguy, C.; Hata, F.T.; Molina, R.d.O.; Nunes, W.M.d.C. A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, D.A. 3I Interactive Keys and Taxonomic Databases. 2003. Available online: http://dmitriev.speciesfile.org/ (accessed on 30 June 2021).
- Behura, S.K. Insect Phylogenomics. Insect Mol. Biol. 2015, 24, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Abbot, P. Individual and population variation in invertebrates revealed by inter-simple sequence repeats (ISSRs). J. Insect Sci. 2001, 1, 8. [Google Scholar] [CrossRef]
- Avise, J.C. Molecular Markers. In Natural History and Evolution, 2nd ed.; Sinauer Associates Inc. Publishers: Sunderland, MA, USA, 2004; p. 684. [Google Scholar]
- Evans, N.; Paulay, G. DNA Barcoding Methods for Invertebrates. In DNA Barcodes. Methods in Molecular Biology; Kress, W.J., Erickson, D.L., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 858, pp. 47–77. [Google Scholar] [CrossRef]
- Patwardhan, A.; Ray, S.; Roy, A. Molecular Markers in Phylogenetic Studies—A Review. J. Phylogenetics Evol. Biol. 2014, 2, 131. [Google Scholar] [CrossRef]
- Sun, W.; Dong, H.; Gao, Y.B.; Su, Q.F.; Qian, H.T.; Bai, H.Y.; Cong, B. Genetic Variation and Geographic Differentiation among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China. J. Insect Sci. 2015, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Toparslan, E.; Karabag, K.; Bilge, U. A workflow with R: Phylogenetic analyses and visualizations using mitochondrial cytochrome b gene sequences. PLoS ONE 2020, 15, e0243927. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Pentinsaari, M.; Salmela, H.; Mutanen, M.; Roslin, T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci. Rep. 2016, 6, 35275. [Google Scholar] [CrossRef] [PubMed]
- Demichelis, S.; Manino, A.; Sartor, C.; Cifuentes, D.; Patetta, A. Specific identification of some female Empoascini (Hemiptera: Cicadellidae), using morphological characters of the ovipositor and isozyme and mtCOI Sequence Analyses. Can. Entomol. 2010, 142, 513–531. [Google Scholar] [CrossRef]
- Lu, L.; Dietrich, C.H.; Cao, Y.; Zhang, Y. A multi-gene phylogenetic analysis of the leafhopper subfamily Typhlocybinae (Hemiptera: Cicadellidae) challenges the traditional view of the evolution of wing venation. Mol. Phylogenet. Evol. 2021, 165, 107299. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, R.; Niedringhaus, R. The Plant- and Leafhoppers of Germany. In Identification Key to All Species; WABV Fründ: Scheeßel, Germany, 2009; p. 409. [Google Scholar]
- Dietrich, C.; Simutnik, S.; Perkovsky, E. Typhlocybinae leafhoppers (Hemiptera, Cicadellidae) from Eocene Rovno amber reveal a transition in wing venation and a defensive adaptation. J. Paleontol. 2023, 97, 366–379. [Google Scholar] [CrossRef]
- Curry, J.P. The arthropods associated with the decomposition of some common grass and weed species in the soil. Soil Biol. Biochem. 1973, 5, 645–657. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W.; Hebert, P.D. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 2006, 103, 968–971. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Rodrigues, I.; Rebelo, M.T.; Baptista, P.; Pereira, J.A. Cicadomorpha Community (Hemiptera: Auchenorrhyncha) in Portuguese Vineyards with Notes of Potential Vectors of Xylella fastidiosa. Insects 2023, 14, 251. [Google Scholar] [CrossRef]
- Pavan, F.; Cargnus, E.; Tacoli, F.; Zandigiacomo, P. Standardization and criticism of sampling procedures using sticky card traps: Monitoring sap-sucking insect pests and Anagrus atomus inhabiting European vineyards. Bull. Insectology 2021, 74, 291–306. [Google Scholar]
- Abdollahi, T.; Jalalizand, A.R.; Mozaffarian, F.; Wilson, M. A faunistic study on the leafhoppers of northwestern Iran (Hemiptera, Cicadellidae). ZooKeys 2015, 496, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Helbing, F.; Fartmann, T.; Löffler, F.; Poniatowski, D. Effects of local climate, landscape structure and habitat quality on leafhopper assemblages of acidic grasslands. Agric. Ecosyst. Environ. 2017, 246, 94–101. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Chi, Y.; Su, D.; Song, Y. Diversity and Community Structure of Typhlocybinae in the Typical Karst Rocky Ecosystem, Southwest China. Diversity 2023, 15, 387. [Google Scholar] [CrossRef]
AA | AD | HD | HV | JL | ZR | |
---|---|---|---|---|---|---|
Dominance | 27 | 31 | 12 | 9 | 2 | 19 |
Frequency | 6 | 7 | 9 | 4 | 1 | 11 |
Species | # Seq | G + C | d ± SE | Vs | k | h | GenBank Coding |
---|---|---|---|---|---|---|---|
AA | 47 | 0.344 | 0.011 ± 0.003 | 15 | 6.68270 | 15 | OQ389577-OQ389591 |
AD | 34 | 0.311 | 0.003 ± 0.001 | 4 | 1.83957 | 4 | OQ381252-OQ381255 |
HD | 34 | 0.288 | 0.008 ± 0.003 | 12 | 5.06595 | 10 | OQ381258-OQ381267 |
HV | 29 | 0.316 | 0.001 ± 0.001 | 2 | 0.70936 | 3 | OQ381269-OQ381271 |
JL | 10 | 0.280 | 0.014 ± 0.004 | 16 | 8.55556 | 6 | OQ381272-OQ381277 |
ZR | 64 | 0.309 | 0.003 ± 0.001 | 5 | 1.68974 | 10 | OQ389567-OQ389576 |
Haps | 48 | 0.312 | 0.171 ± 0.012 | 237 | 100.85018 | 48 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelou, V.; Lytra, I.; Krokida, A.; Antonatos, S.; Georgopoulou, I.; Milonas, P.; Papachristos, D.P. Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece. Insects 2023, 14, 894. https://doi.org/10.3390/insects14110894
Evangelou V, Lytra I, Krokida A, Antonatos S, Georgopoulou I, Milonas P, Papachristos DP. Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece. Insects. 2023; 14(11):894. https://doi.org/10.3390/insects14110894
Chicago/Turabian StyleEvangelou, Vasiliki, Ioanna Lytra, Afroditi Krokida, Spyridon Antonatos, Iro Georgopoulou, Panagiotis Milonas, and Dimitrios P. Papachristos. 2023. "Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece" Insects 14, no. 11: 894. https://doi.org/10.3390/insects14110894
APA StyleEvangelou, V., Lytra, I., Krokida, A., Antonatos, S., Georgopoulou, I., Milonas, P., & Papachristos, D. P. (2023). Insights into the Diversity and Population Structure of Predominant Typhlocybinae Species Existing in Vineyards in Greece. Insects, 14(11), 894. https://doi.org/10.3390/insects14110894