The Correlation between the Gut Microbiota of Endoclita signifer (Lepidoptera, Hepialidae) Larvae and Their Host Preferences
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Plants and Insects
2.2. Stripping the Gut of E. signifer Larvae
2.3. DNA Extraction and PCR Amplification
2.4. PCR Product Identification, Purification, and Quantification
2.5. Data Analysis and Statistics
3. Results
3.1. Sequencing Information and Quality Analysis of Gut Microbiota
3.2. OTUs
3.3. Alpha and Beta Diversity Analysis
3.4. Composition of Gut Microbiota
3.5. Inter-group Species Diversity Analysis
3.6. KEGG Function Prediction of Gut Microbiota
3.7. Species Relationships among Intestinal Flora
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichler, S.; Schaub, G.A. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 2002, 100, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hongoh, Y.; Sharma, V.K.; Prakash, T.; Noda, S.; Taylor, T.D.; Kudo, T.; Sakaki, Y.; Toyoda, A.; Hattori, M.; Ohkuma, M. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc. Natl. Acad. Sci. USA 2008, 105, 5555–5560. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Li, M.; Zhao, Y.; Zhao, L.P.; Zhang, Y.H.; Huang, Y.P. Bacterial community in midguts of the silkworm larvae estimated by PCR/DGGE and 16S rDNA gene library analysis. Acta Entomol. Sin. 2010, 50, 222–233. [Google Scholar]
- Chen, B.S.; Lu, X.M.; Shao, Y.Q. Diversity of the gut microbiota in lepidopteran insects and their interaction with hosts. Acta Entomol. Sin. 2017, 60, 710–722. [Google Scholar]
- Broderick, N.A.; Raffa, K.F.; Goodman, R.M.; Handelsman, J. Census of the Bacterial Community of the Gypsy Moth Larval Midgut by Using Culturing and Culture-Independent Methods. Appl. Environ. Microb. 2004, 52, 1085–1092. [Google Scholar] [CrossRef]
- Xiang, H.; Wei, G.F.; Jia, S.H.; Huang, J.H.; Miao, X.X.; Zhou, Z.H.; Zhao, L.P.; Huang, Y.P. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 2006, 52, 1085–1092. [Google Scholar] [CrossRef]
- Li, Y.P.; Du, G.Z.; Di, T.; Kong, D.H.; Yang, H.; Yang, J.B.; Yi, X.G.; Zhang, T.F.; Chen, B. Diversity analysis of cultivable intestinal bacteria in different geographic populations of Spodoptera frugiperda (J. E. Smith). J. South. Agric. 2022, 53, 1066–1077. [Google Scholar]
- Saikia, S.S.; Borah, B.K.; Baruah, G.; Rokozeno Deka, M.K. Characterization of the Gut Microbes of Greater Wax Moth (Galleria Mellonella Linnaeus) Shows Presence of Potential Polymer Degraders. Folia Microbiol. 2022, 67, 133–141. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zeng, Z.; Liu, Y.W.; Lu, Y.K.; Wei, W.; Lu, C.; Cui, W.Z.; Bi, L.H.; Wang, P.Y.; Zhang, G.Z. Effects of feed change on intestinal bacterial composition in Bombyx mori larvae and the correlation between the key species and cocoon production performance. Acta Entomol. Sin. 2022, 65, 176–186. [Google Scholar]
- Deng, J.D.; Wang, H.C.; Xu, W.K.; Xu, L.T.; Tang, Y.P.; Zhang, L.W. Effects of different host plants on the diversity of gut bacteria of fall webworm Hyphantria cunea larvae. J. Plant Prot. 2022, 49, 1201–1209. [Google Scholar]
- Priya, N.G.; Ojha, A.; Kajla, M.K.; Raj, A.; Rajagopal, R. Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera. PLoS ONE 2012, 7, e30768. [Google Scholar]
- Yang, Y.J.; Liu, X.G.; Xu, H.X.; Liu, Y.H.; Lu, Z.X. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front. Microbiol. 2022, 10, 824224. [Google Scholar] [CrossRef] [PubMed]
- Mikaelyan, A.; Dietrich, C.; Köhler, T.; Poulsen, M.; Sillam-Dussès, D.; Brune, A. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol. Ecol. 2015, 24, 5284–5295. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cobas, A.E.; Maiques, E.; Angelova, A.; Carrasco, P.; Moya, A.; Latorre, A. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol. Ecol. 2015, 91, Fiv022. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Zhu, T.H.; Lai, C.X. Research advances in symbiotic microorganisms in insects and their functions. Acta Entomol. Sin. 2021, 64, 121–140. [Google Scholar]
- Engel, P.; Moran, N.A. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Wu, X.L.; Xia, X.F.; Chen, J.H.; Gurr, G.M.; You, M.S. Effects of different diets on the diversity of larval gut bacteria of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol. Sin. 2019, 62, 1172–1185. [Google Scholar]
- Xu, L.; Chen, N.M.; Yang, Z.D.; Zhou, H.; Li, Q.; Wei, S.H. Effects of Host Switching on Diversity of Intestinal Bacteria in Batocera lineolata Larvae. Guangdong Agric. Sci. 2022, 49, 64–73. [Google Scholar]
- Yang, X.H. Studies on the Biological and Ecological Characteristics of Endoclita signifie; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Xu, Y.; Qiu, Z.S.; Zhang, Y.J.; Zheng, X.L.; Lu, W.; Hu, P. Volatiles from Eucalyptus Trunks and Forest Floor Humus Influence the Habitat Transfer, Host Selection, and Aggregation of Endoclita signifer Larvae. Forests 2022, 13, 2058. [Google Scholar] [CrossRef]
- Yang, X.H.; Luo, J.T.; Wu, Y.J.; Zou, D.X.; Hu, P.; Wang, J.J. Distribution and Damage of Endoclita signifer Walker, as an important wood borer pest insect on forest. For. Pest Dis. 2021, 40, 34–40. [Google Scholar]
- Fan, Y.; Li, X.; Ning, E.Z.; Wei, Y.; Zhang, L.X.; Wang, X.F.; Wei, P.P.; Cao, L.F. Study on HPLC characteristic chromatogram of Broussonetia papyrifera leaves and content determination of multicomponent. Feed Research 2023, 46, 114–118. [Google Scholar] [CrossRef]
- Cao, L.M.; Wei, K.; Li, X.W.; Wang, X.Y. Research progress in the biodiversity of oak wood and nut borers and their natural enemies in China. J. Plant Prot. 2019, 46, 1174–1185. [Google Scholar]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, H.C.; Sun, L.G.; Qi, G.F.; Chen SZhao, X.Y. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 2017, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Magoč, C.T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial ampliconreads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- Chen, Y.P.; Li, Y.H.; Sun, Z.X.; Du, E.W.; Lu, Z.H.; Li, H.; Gui, F.R. Effects of Host Plants on Bacterial Community Structure in Larvae Midgut of Spodoptera frugiperda. Insects 2022, 13, 373. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Q.; Zhang, X.; Liu, X.Y.; Dong, Y.L.; Yan, Z.Z.; Lv, D.B.; Wang, P. Comparison of gut bacterial communities of Grapholita Molesta (Lepidoptera: Tortricidae) Reared on different host plants. Int. J. Mol. Sci. 2021, 22, 6843. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, S.; Li, R.; Zhang, J.; Liu, Y.; Lv, L.; Zhu, H.; Wu, W.; Li, W. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 2017, 109, 145–155. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Jose, P.A.; Yuval, B.; Jurkevitch, E. Maternal and host effects mediate the adaptive expansion and contraction of the microbiome during ontogeny in a holometabolous, polyphagous insect. Funct. Ecol. 2013, 37, 929–946. [Google Scholar] [CrossRef]
- Smith, C.C.; Srygley, R.B.; Healy, F.; Swaminath, K.; Mueller, U.G. Spatial structure of the mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Front. Microbiol. 2017, 8, 00801. [Google Scholar] [CrossRef]
- Yang, F.Y.; Hafiz, S.A.S.; Chen, J.H.; Ruan, Q.Q.; Liette, V.; He, W.Y.; You, M.S. Differential Profiles of Gut Microbiota and Metabolites Associated with Host Shift of Plutella xylostella. Int. J. Mol. Sci. 2020, 21, 6283. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, R.; Yao, L.; Li, Q.; Lu, S.; Li, G.; Tang, Q. Analysis of the diversity of intestinal microbiomes in fall armyworm Spodoptera frugiperda fed on different host plants. J. Plant Prot. 2022, 49, 1712–1723. [Google Scholar]
- Ge, S.X.; Shi, F.M.; Pei, J.H.; Hou, Z.H.; Zong, S.X.; Ren, L.L. Gut bacteria associated with Monochamus saltuarius (Coleoptera: Cerambycidae) and their possible roles in host plant adaptations. Front. Microbiol. 2021, 12, 687211. [Google Scholar] [CrossRef]
- Li, D.H.; Wang, Y.; Yang, H. Gut microbiome of wood-feeding termites. Acta Microbiol. Sin. 2017, 57, 876–884. [Google Scholar]
- Chen, B.S.; Du, K.Q.; Sun, C.; Vimalanathan, A.; Liang, X.L.; Li, Y.; Wang, B.H.; Lu, X.M.; Li, L.J.; Shao, Y.Q. Gut bacterial and fungal comm-unities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, T.A.; Rasulov, B.A.; Zhang, D.Y. Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: Uncovering plant cell-wall degrading bacteria. Sci. Rep. 2019, 9, 4923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Zhang, Y.X.; Li, J.J.; Liu, M.L.; Liu, Z.W. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response. PLoS ONE 2016, 1, e0155254. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.G.; Moraes, L.A.; Trigo, J.R.; Omoto, C.; Cônsoli, F.L. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE 2017, 12, e0174754. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Lee, J.B.; Huh, Y.R.; Jang, H.A.; Kim, C.H.; Yoo, J.; Lee, B.L. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris. Dev. Comp. Immunol. 2015, 53, 265–269. [Google Scholar] [CrossRef]
- Salanoubat, M.; Genin, S.; Artiguenave, F.; Gouzy, J.; Mangenot, S.; Arlat, M.; Billault, A.; Brottier, P.; Camus, J.C.; Cattolico, L.; et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 2002, 415, 497–502. [Google Scholar] [CrossRef]
- Xia, X.F.; Zheng, D.D.; Lin, H.L.; You, M.S. Isolation and identification of bacteria from the larval midgut of the diamondback moth, Plutella xylostella. Chin. J. Appl. Entomol. 2013, 50, 770–776. [Google Scholar]
- Sun, Z.; Lu, Y.; Zhang, H.; Kumar, D.; Liu, B.; Gong, Y.; Zhu, M.; Zhu, L.; Liang, Z.; Kuang, S.; et al. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria. PLoS ONE 2016, 8, e0146313. [Google Scholar] [CrossRef]
- Liu, L.Y.; Chen, Z.Y.; Zeng, H.X.; Lin, P.B.; Jin, X.B. Isolation and Identification of Endophytic Microbacilli in the Gut of Periplaneta americana and Their Antibacterial Activity. Biotechnol. Bull. 2018, 34, 172–177. [Google Scholar]
- Puntus, I.F.; Borzova, O.V.; Funtikova, T.V.; Suzina Nataliya, E.; Egozarian, N.S. Contribution of soil vacteria isolated from different regions into vrude oil and oil product degradation. J. Soil Sediment. 2019, 19, 3166–3177. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zeng, J.; Cui, Z.; Geng, S.; Song, X.; Zhang, F.; Su, X.; Li, H. Distinct gut bacterial composition in Anoplophora glabripennis reared on two host plants. Front. Microbiol. 2023, 14, 1199994. [Google Scholar] [CrossRef]
- Finnerty, W.R. The biology and genetics of the genus Rhodococcus. Annu. Rev. Microbiol. 1992, 46, 193–218. [Google Scholar] [CrossRef]
- Tinker, K.A.; Ottesen, E.A. The core gut microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts. ASM J. 2016, 27, 0183716. [Google Scholar] [CrossRef]
- Vavre, F.; Kremer, K. Microbial impacts on insect evolutionary diversification: From patterns to mechanisms. Curr. Opin. Insect Sci. 2014, 4, 29–34. [Google Scholar] [CrossRef]
- Hendrycks, W.; Delatte, H.; Moquet, L.; Bourtzis, K.; Mullens, N. Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae). MicrobiologyOpen 2022, 11, e1307. [Google Scholar] [CrossRef]
- Behar, A.; Jurkevitch, E.; Yuval, B. Bringing back the fruit into fruit fly-bacteria interactions. Mol. Ecol. 2008, 17, 1375–1386. [Google Scholar] [CrossRef]
- Blum, J.E.; Fischer, C.N.; Miles, J.; Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 2013, 4, e00860-13. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, H.; Kapila, S.; Kaur, G.; Vij, S.; Malik, R.K. Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int. J. Food Microbiol. 2010, 141, 156–164. [Google Scholar] [CrossRef]
- Umu, O.C.O.; Rudi, K.; Diep, D.B. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Dis. 2017, 28, 1348886. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.F.; Zheng, D.D.; Zhong, H.N.; Qin, B.C.; Gurr, G.M. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 2013, 19, e68852. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.N. Nutrition and culture of entomophagous insects. Annu. Rev. Entomol. 1999, 44, 561–592. [Google Scholar] [CrossRef]
- Li, Z.B.; Chen, P.; Li, D.C.; Liu, J.; Chi, B.J.; Liu, Y.J. Comparison of artificial diets for raising Chrysoperla nipponensis (Okamoto) larvae. Chin. J. Appl. Entomol. 2020, 57, 1436–1441. [Google Scholar]
Sample Grouping | Sample | Original Sequence | Number of Valid Sequences | Effective Rate (%) | Average Length (bp) | OTUs Number | Number of Different Classification Orders (Number) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phylum | Class | Order | Family | Genus | |||||||
Es | E1 | 48280 | 47659 | 98.71 | 428 | 170 | 10 | 16 | 38 | 58 | 112 |
E2 | 34368 | 33798 | 98.34 | 427 | 314 | 14 | 23 | 53 | 87 | 162 | |
E3 | 45944 | 45460 | 98.95 | 429 | 110 | 10 | 18 | 38 | 55 | 79 | |
Ma | M1 | 33350 | 31282 | 93.80 | 414 | 350 | 20 | 36 | 87 | 137 | 224 |
M2 | 35752 | 35096 | 98.17 | 427 | 234 | 19 | 30 | 778 | 127 | 173 | |
M3 | 39971 | 36412 | 91.10 | 422 | 143 | 7 | 13 | 28 | 55 | 91 | |
Bp | B1 | 33255 | 32601 | 98.03 | 413 | 174 | 10 | 14 | 4 | 60 | 105 |
B2 | 41473 | 38502 | 92.84 | 410 | 138 | 12 | 15 | 35 | 62 | 88 | |
B3 | 35377 | 34264 | 96.85 | 417 | 130 | 8 | 10 | 24 | 46 | 80 |
Sample Grouping | Shannon | Simpson | Ace | Chao1 |
---|---|---|---|---|
Es | 1.176 ± 0.264 B | 0.513 ± 0.121 A | 211.651 ± 60.007 A | 215.903 ± 60.590 A |
Ma | 2.376 ± 0.772 AB | 0.341 ± 0.191 A | 259.654 ± 65.440 A | 258.023 ± 65.459 A |
Bp | 3.105 ± 0.182 A | 0.102 ± 0.025 A | 159.093 ± 13.660 A | 159.718 ± 17.285 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Su, X.; Yang, Z.; Hu, P. The Correlation between the Gut Microbiota of Endoclita signifer (Lepidoptera, Hepialidae) Larvae and Their Host Preferences. Insects 2023, 14, 919. https://doi.org/10.3390/insects14120919
Lu J, Su X, Yang Z, Hu P. The Correlation between the Gut Microbiota of Endoclita signifer (Lepidoptera, Hepialidae) Larvae and Their Host Preferences. Insects. 2023; 14(12):919. https://doi.org/10.3390/insects14120919
Chicago/Turabian StyleLu, Jintao, Xiaoyan Su, Zhende Yang, and Ping Hu. 2023. "The Correlation between the Gut Microbiota of Endoclita signifer (Lepidoptera, Hepialidae) Larvae and Their Host Preferences" Insects 14, no. 12: 919. https://doi.org/10.3390/insects14120919
APA StyleLu, J., Su, X., Yang, Z., & Hu, P. (2023). The Correlation between the Gut Microbiota of Endoclita signifer (Lepidoptera, Hepialidae) Larvae and Their Host Preferences. Insects, 14(12), 919. https://doi.org/10.3390/insects14120919