Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Systematic Review
2.2. Data Extraction
2.3. Meta-Analysis
3. Results
3.1. Findings about Western Flower Thrips General Literature
3.2. Literature Related to Semiochemicals Associated with WFT
3.2.1. Kairomones, Attractants, or Lures
3.2.2. Pheromones
3.3. Meta-Analysis of Methyl Isonicotinate (MIN), Lurem-TR, and P-Anisaldehyde
4. Discussion
4.1. Trends in the Literature on WFT
4.2. Identified Compounds and Their Attraction Ratio
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuart, R.R.; Gao, Y.-l.; Lei, Z.-r. Thrips: Pests of Concern to China and the United States. Agric. Sci. China 2011, 10, 867–892. [Google Scholar] [CrossRef]
- Reitz, S. Biology and Ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The Making of a Pest. Fla. Entomol. 2009, 92, 7–13. [Google Scholar] [CrossRef]
- Yudin, L.S.; Cho, J.J.; Mitchell, W.C. Host Range of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), with Special Reference to Leucaena Glauca. Environ. Entomol. 1986, 15, 1292–1295. [Google Scholar] [CrossRef]
- Kirk, W.D.J.; Terry, L.I. The Spread of the Western Flower Thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 2003, 5, 301–310. [Google Scholar] [CrossRef]
- Cloyd, R.A. Western Flower Thrips (Frankliniella occidentalis) Management on Ornamental Crops Grown in Greenhouses: Have We Reached an Impasse? Pest Technol. 2009, 3, 1–9. [Google Scholar]
- Chung, B.K. Analysis of Damage by Frankliniella occidentalis (Thysanoptera: Thripidae) in Eggplants. J. Asia Pac. Entomol. 2001, 4, 149–155. [Google Scholar] [CrossRef]
- Hao, X.; Shipp, J.L.; Wang, K.; Papadopoulos, A.P.; Binns, M.R. Impact of Western Flower Thrips on Growth, Photosynthesis and Productivity of Greenhouse Cucumber. Sci. Hortic. 2002, 92, 187–203. [Google Scholar] [CrossRef]
- Shipp, J.L.; Hao, X.; Papadopoulos, A.P.; Binns, M.R. Impact of Western Flower Thrips (Thysanoptera: Thripidae) on Growth, Photosynthesis and Productivity of Greenhouse Sweet Pepper. Sci. Hortic. 1998, 72, 87–102. [Google Scholar] [CrossRef]
- Rhainds, M.; Shipp, L. Dispersal of Adult Western Flower Thrips (Thysanoptera: Thripidae) on Chrysanthemum Plants: Impact of Feeding-Induced Senescence of Inflorescences. Environ. Entomol. 2003, 32, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Szostek, S.; Rodriguez, P.; Sanchez, J.; Adkins, S.; Naidu, R. Western Flower Thrips Can Transmit Tomato Spotted Wilt Virus from Infected Tomato Fruits. Phytopathology 2016, 106, 205. [Google Scholar] [CrossRef] [Green Version]
- van de Wetering, F.; Goldbach, R.; Peters, D. Tomato Spotted Wilt Tospovirus Ingestion by First Instar Larvae of Frankliniella occidentalis Is a Prerequisite for Transmission. Phytopathology 1996, 86, 900–905. [Google Scholar] [CrossRef]
- Shrestha, A.; Sundaraj, S.; Culbreath, A.K.; Riley, D.G.; Abney, M.R.; Srinivasan, R. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. Environ. Entomol. 2015, 44, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the Insect Supervectors Bemisia Tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Kirk, W.D.J. The Pest and Vector from the West: Frankliniella occidentalis. In Proceedings of the Thrips and Tospoviruses: Proceedings of 7th International Symposium on Thysanoptera, Calabria, Italy, 2–7 July 2001; Marullo, R., Mound, L., Eds.; Australian National Insect Collection: Canberra, Australia, 2002; p. 391. [Google Scholar]
- Duff, J.D.; Church, C.E.; Healey, M.A.; Senior, L. Thrips Incidence in Green Beans and the Degree of Damage Caused. Acta Hortic. 2015, 1105, 19–26. [Google Scholar] [CrossRef]
- Bielza, P. Insecticide Resistance Management Strategies against the Western Flower Thrips, Frankliniella occidentalis. Pest Manag. Sci. 2008, 64, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Mouden, S.; Facun-Sarmiento, K.; Klinkhamer, P.G.L.; Leiss, K.A. Integrated Pest Management in Western Flower Thrips: Past, Present and Future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoddle, M.S.; Robinson, L.; Morgan, D. Attraction of Thrips (Thysanoptera: Thripidae and Aeolothripidae) to Colored Sticky Cards in a California Avocado Orchard. Crop Prot. 2002, 21, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Dethier, V.G.; Browne, B.L.; Smith, C.N. The Designation of Chemicals in Terms of the Responses They Elicit from Insects. J. Econ. Entomol. 1960, 53, 134–136. [Google Scholar] [CrossRef]
- Miller, J.R.; Siegert, P.Y.; Amimo, F.A.; Walker, E.D. Designation of Chemicals in Terms of the Locomotor Responses They Elicit from Insects: An Update of Dethier et al. (1960). J. Econ. Entomol. 2009, 102, 2056–2060. [Google Scholar] [CrossRef] [Green Version]
- Cardé, R.T.; Millar, J.G. Advances in Insect Chemical Ecology; Cardé, R.T., Millar, J.G., Eds.; Cambridge University Press: New York, NY, USA, 2004; ISBN 9780521792752. [Google Scholar]
- Davidson, M.M.; Nielsen, M.-C.; Butler, R.C.; Castañé, C.; Alomar, O.; Riudavets, J.; Teulon, D.A.J. Can Semiochemicals Attract Both Western Flower Thrips and Their Anthocorid Predators? Entomol. Exp. Appl. 2015, 155, 54–63. [Google Scholar] [CrossRef]
- Broughton, S.; Cousins, D.A.; Rahman, T. Evaluation of Semiochemicals for Their Potential Application in Mass Trapping of Frankliniella occidentalis (Pergande) in Roses. Crop Prot. 2015, 67, 130–135. [Google Scholar] [CrossRef]
- Teulon, D.A.J.; Davidson, M.M.; Nielsen, M.C.; Perry, N.B.; van Tol, R.W.H.M.; de Kogel, W.J. The Potential Use of Lures for Thrips Biological Control in Greenhouses: Practice and Theory. In Proceedings of the 3rd International Symposium on Biological Control of Arthropods, Christchurch, New Zealand, 8–13 February 2009; Mason, P.G., Gillespie, D.R., Vincent, C., Eds.; USDA, Forest Health Technology Enterprise Team: Christchurch, New Zealand, 2009; pp. 301–308. [Google Scholar]
- Mfuti, D.K.; Subramanian, S.; van Tol, R.W.; Wiegers, G.L.; de Kogel, W.J.; Niassy, S.; du Plessis, H.; Ekesi, S.; Maniania, N.K. Spatial Separation of Semiochemical Lurem-TR and Entomopathogenic Fungi to Enhance Their Compatibility and Infectivity in an Autoinoculation System for Thrips Management. Pest Manag. Sci. 2016, 72, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teulon, D.A.J.; Castañe, C.; Nielsen, M.-C.; El-Sayed, A.M.; Davidson, M.M.; Gardner-Gee, R.; Poulton, J.; Kean, A.M.; Hall, C.; Butler, R.C.; et al. Evaluation of New Volatile Compounds as Lures for Western Flower Thrips and Onion Thrips in New Zealand and Spain. N. Z. Plant Prot. 2014, 67, 175–183. [Google Scholar] [CrossRef] [Green Version]
- van Tol, R.W.H.M.; de Bruin, A.; Butler, R.C.; Davidson, M.M.; Teulon, D.A.J.; de Kogel, W.J. Methyl Isonicotinate Induces Increased Walking and Take-off Behaviour in Western Flower Thrips, Frankliniella occidentalis. Entomol. Exp. Appl. 2012, 142, 181–190. [Google Scholar] [CrossRef]
- Davidson, M.M.; Butler, R.C.; Winkler, S.; Teulon, D.A.J. Pyridine Compounds Increase Trap Capture of Frankliniella occidentalis (Pergande) in a Covered Crop. N. Z. Plant Prot. 2007, 60, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.C.; Worner, S.P.; Rostás, M.; Chapman, R.B.; Butler, R.C.; de Kogel, W.J.; Teulon, D.A.J. Olfactory Responses of Western Flower Thrips (Frankliniella occidentalis) Populations to a Non-Pheromone Lure. Entomol. Exp. Appl. 2015, 156, 254–262. [Google Scholar] [CrossRef]
- Ranamukhaarachchi, S.L.; Wickramarachchi, K.S. Color Preference and Sticky Traps for Field Management of Thrips Ceratothripoides Claratris (Shumsher) (Thysanoptera: Thripdae) in Tomato in Central Thailand. Int. J. Agric. Biol. 2007, 9, 392–397. [Google Scholar]
- Broughton, S.; Harrison, J. Evaluation of Monitoring Methods for Thrips and the Effect of Trap Colour and Semiochemicals on Sticky Trap Capture of Thrips (Thysanoptera) and Beneficial Insects (Syrphidae, Hemerobiidae) in Deciduous Fruit Trees in Western Australia. Crop Prot. 2012, 42, 156–163. [Google Scholar] [CrossRef]
- Muvea, A.M.M.; Waiganjo, M.M.M.; Kutima, H.L.L.; Osiemo, Z.; Nyasani, J.O.O.; Subramanian, S. Attraction of Pest Thrips (Thysanoptera: Thripidae) Infesting French Beans to Coloured Sticky Traps with Lurem-TR and Its Utility for Monitoring Thrips Populations. Int. J. Trop. Insect Sci. 2014, 34, 197–206. [Google Scholar] [CrossRef]
- Kirk, W.D.J.; de Kogel, W.J.; Koschier, E.H.; Teulon, D.A.J. Semiochemicals for Thrips and Their Use in Pest Management. Annu. Rev. Entomol. 2021, 66, 101–119. [Google Scholar] [CrossRef]
- Cork, A. Commercial Adoption of Pheromones as a Component in the Integrated Crop Management of Rice in Bangladesh. Available online: https://gala.gre.ac.uk/id/eprint/3173/ (accessed on 28 February 2023).
- Davidson, M.M.; Perry, N.B.; Larsen, L.; Green, V.C.; Butler, R.C.; Teulon, D.A.J. 4-Pyridyl Carbonyl Compounds as Thrips Lures: Effectiveness for Western Flower Thrips in Y-Tube Bioassays. J. Agric. Food Chem. 2008, 56, 6554–6561. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohatgi, A. WebPlotDigitizer. Available online: https://automeris.io/WebPlotDigitizer (accessed on 17 April 2021).
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Teulon, D.A.J.; Davidson, M.M.; Perry, N.B.; Nielsen, M.-C.; Castañé, C.; Bosch, D.; Riudavets, J.; van Tol, R.W.H.M.; de Kogel, W.J. Methyl Isonicotinate-A Non-Pheromone Thrips Semiochemical-And Its Potential for Pest Management. Int. J. Trop. Insect Sci. 2017, 37, 50–56. [Google Scholar] [CrossRef]
- Penman, D.R.; Osborne, G.O.; Worner, S.P.; Chapman, R.B.; McLaren, G.F. Ethyl Nicotinate: A Chemical Attractant for Thrips Obscuratus (Thysanoptera: Thripidae) in Stonefruit in New Zealand. J. Chem. Ecol. 1982, 8, 1299–1303. [Google Scholar] [CrossRef]
- de Kogel, W.J.; Koschier, E.H.; Visser, J.H. Y-Tube Olfactometer to Determine the Attractiveness of Plant Volatiles to Western Flower Thrips. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 1999, 10, 131–135. [Google Scholar]
- Koschier, E.H.; de Kogel, W.J.; Visser, J.H. Assessing the Attractiveness of Volatile Plant Compounds to Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2000, 26, 2643–2655. [Google Scholar] [CrossRef]
- Abdullah, Z.S.; Greenfield, B.P.J.; Ficken, K.J.; Taylor, J.W.D.; Wood, M.; Butt, T.M. A New Attractant for Monitoring Western Flower Thrips, Frankliniella occidentalis in Protected Crops. Springerplus 2015, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Niassy, S.; Maniania, N.K.; Subramanian, S.; Gitonga, L.M.; Ekesi, S. Performance of a Semiochemical-Baited Autoinoculation Device Treated with Metarhizium Anisopliae for Control of Frankliniella occidentalis on French Bean in Field Cages. Entomol. Exp. Appl. 2012, 142, 97–103. [Google Scholar] [CrossRef]
- Harbi, A.; Elimem, M.; Chermiti, B. Use of a Synthetic Kairomone to Control Frankliniella occidentalis Pergande (Thysanoptera; Thripidae) in Protected Pepper Crops in Tunisia. Afr. J. Plant Sci. Biotechnol. 2013, 7, 42–47. [Google Scholar]
- Garzon, J.C. Evaluation of the Addition of Chemical Compounds (Pheromones and Kairomones) to Chromatic Traps, on the Capture of Plague Trips in a Crop of Export Flowers. Master Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. (In Spanish). [Google Scholar]
- Muvea, A.M.; Kutima, H.L.; Lagat, Z.O.; Waiganjo, M.; Subramanian, S. Evaluation of Coloured Traps with Kairomone Attractant for Monitoring Thrips Population Dynamics on Tomato Crop in East Africa. Int. J. Trop. Insect Sci. 2017, 37, 89–97. [Google Scholar] [CrossRef]
- Davidson, M.M.; Skill, S.M.; Butler, R.C.; Nielsen, M.-C.; Keenan, S.; Bulman, S.R. Virus Status of Western Flower Thrips (Frankliniella occidentalis) Does Not Affect Their Response to a Thrips Lure or Host Plant Volatiles in a Ytube Olfactometer. N. Z. Plant Prot. 2012, 65, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.M.; Butler, R.C.; Teulon, D.A.J. Starvation Period and Age Affect the Response of Female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to Odor and Visual Cues. J. Insect Physiol. 2006, 52, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.M.; Butler, R.C.; Teulon, D.A.J. Response of Female Frankliniella occidentalis (Pergande) to Visual Cues and Para-Anisaldehyde in a Flight Chamber. J. Insect Behav. 2012, 25, 297–307. [Google Scholar] [CrossRef]
- Teerling, C.R.; Pierce, H.D., Jr.; Borden, J.H.; Gillespie, D.R. Identification and Bioactivity of Alarm Pheromone in the Western Flower Thrips, Frankliniella occidentalis. J. Chem. Ecol. 1993, 19, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Kirk, W.D.J.J. The Aggregation Pheromones of Thrips (Thysanoptera) and Their Potential for Pest Management. Int. J. Trop. Insect Sci. 2017, 37, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Kirk, W.D.J.; Hamilton, J.G.C. Evidence for a Male-Produced Sex Pheromone in the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2004, 30, 167–174. [Google Scholar] [CrossRef]
- Zhang, P.-J.; Zhu, X.-Y.; Lu, Y.-B. Behavioural and Chemical Evidence of a Male-Produced Aggregation Pheromone in the Flower Thrips Frankliniella Intonsa. Physiol. Entomol. 2011, 36, 317–320. [Google Scholar] [CrossRef]
- Hamilton, J.G.C.; Hall, D.R.; Kirk, W.D.J. Identification of a Male-Produced Aggregation Pheromone in the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2005, 31, 1369–1379. [Google Scholar] [CrossRef]
- Milne, M.; Walter, G.H.; Milne, J.R. Mating Aggregations and Mating Success in the Flower Thrips, Frankliniella Schultzei (Thysanoptera: Thripidae), and a Possible Role for Pheromones. J. Insect Behav. 2002, 15, 351–368. [Google Scholar] [CrossRef]
- Dublon, I.; Hamilton, J.; Kirk, W. Quantification of the Release Rate of the Aggregation Pheromone of the Western Flower Thrips, Frankliniella occidentalis (Pergande), Using Solid-Phase Microextraction (SPME). Acta Phytopathol. Entomol. Hung. 2008, 43, 249–256. [Google Scholar] [CrossRef]
- Olaniran, O.A.; Sudhakar, A.V.S.; Drijfhout, F.P.; Dublon, I.A.N.; Hall, D.R.; Hamilton, J.G.C.; Kirk, W.D.J. A Male-Predominant Cuticular Hydrocarbon, 7-Methyltricosane, Is Used as a Contact Pheromone in the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2013, 39, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, A.O.; Kirk, W.D.J. Experienced Males Recognise and Avoid Mating with Non-Virgin Females in the Western Flower Thrips. PLoS ONE 2019, 14, e0224115. [Google Scholar] [CrossRef] [PubMed]
- El-Ghariani, I.M.; Kirk, W.D.J. The Structure of the Male Sternal Glands of the Western Flower Thrips, Frankliniella occidentalis (Pergande). Acta Phytopathol. Entomol. Hung. 2008, 43, 257–266. [Google Scholar] [CrossRef]
- de Bruijn, P.J.A.; Egas, M.; Sabelis, M.W.; Groot, A.T. Context-Dependent Alarm Signalling in an Insect. J. Evol. Biol. 2016, 29, 665–671. [Google Scholar] [CrossRef]
- MacDonald, K.M.; Hamilton, J.G.C.; Jacobson, R.; Kirk, W.D.J. Analysis of Anal Droplets of the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2003, 29, 2385–2389. [Google Scholar] [CrossRef]
- MacDonald, K.M.; Hamilton, J.G.C.; Jacobson, R.; Kirk, W.D.J. Effects of Alarm Pheromone on Landing and Take-off by Adult Western Flower Thrips. Entomol. Exp. Appl. 2002, 103, 279–282. [Google Scholar] [CrossRef]
- Cook, D.F.; Dadour, I.R.; Bailey, W.J. Addition of Alarm Pheromone to Insecticides and the Possible Improvement of the Control of the Western Flower Thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Int. J. Pest Manag. 2002, 48, 287–290. [Google Scholar] [CrossRef]
- Teerling, C.R.; Gillespie, D.R.; Borden, J.H. Utilization of Western Flower Thrips Alarm Pheromone as a Prey-Finding Kairomone by Predators. Can. Entomol. 1993, 125, 431–437. [Google Scholar] [CrossRef]
- Mfuti, D.K.; Niassy, S.; Subramanian, S.; du Plessis, H.; Ekesi, S.; Maniania, N.K. Lure and Infect Strategy for Application of Entomopathogenic Fungus for the Control of Bean Flower Thrips in Cowpea. Biol. Control 2017, 107, 70–76. [Google Scholar] [CrossRef]
- Elimem, M.; Teixeira da Silva, J.A.; Chermiti, B. Double-Attraction Method to Control Frankliniella occidentalis (Pergande) in Pepper Crops in Tunisia. Plant Prot. Sci. 2014, 50, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Sampson, C.; Kirk, W.D.J. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry. PLoS ONE 2013, 8, e80787. [Google Scholar] [CrossRef] [Green Version]
- de Kogel, W.J.; van Deventer, P. Intraspecific Attraction in the Western Flower Thrips, Frankliniella occidentalis; Indications for a Male Sex Pheromone. Entomol. Exp. Appl. 2003, 107, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Teulon, D.A.J.; Penman, D.R.; Ramakers, P.M.J. Volatile Chemicals for Thrips (Thysanoptera: Thripidae) Host Finding and Applications for Thrips Pest Management. J. Econ. Entomol. 1993, 86, 1405–1415. [Google Scholar] [CrossRef]
- Tian, H.; Chen, Y.; Chen, Y.; Chen, X.; Lin, S.; Zhang, J.; Yang, G.; Wei, H. A Mixture of p-anisaldehyde and Ethyl Nicotinate Elicits Positive Antennal and Behavioral Responses in Frankliniella occidentalis. Entomol. Exp. Appl. 2022, 170, 603–611. [Google Scholar] [CrossRef]
- Morse, J.G.; Hoddle, M.S. Invasion Biology of Thrips. Annu. Rev. Entomol. 2006, 51, 67–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustillo Pardey, A.E.; Bustillo, A. Evaluación de Insecticidas Químicos y Biológicos Para Controlar Frankliniella occidentalis (Thysanoptera: Thripidae) En Cultivos de Espárragos. Rev. Colomb. Entomol. 2009, 35, 12–17. [Google Scholar] [CrossRef]
- Chung, B.K.; Kang, S.W.; Kwon, J.H. Chemical Control System of Frankliniella occidentalis (Thysanoptera: Thripidae) in Greenhouse Eggplant. J. Asia Pac. Entomol 2000, 3, 1–9. [Google Scholar] [CrossRef]
- Jensen, S.E. Insecticide Resistance in the Western Flower Thrips, Frankliniella occidentalis. Integr. Pest Manag. Rev. 2000, 5, 131–146. [Google Scholar] [CrossRef]
- Broughton, S.; Herron, G.A. Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) Chemical Control: Insecticide Efficacy Associated with the Three Consecutive Spray Strategy. Aust. J. Entomol. 2007, 46, 140–145. [Google Scholar] [CrossRef]
- Kay, I.R.; Herron, G.A. Evaluation of Existing and New Insecticides Including Spirotetramat and Pyridalyl to Control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on Peppers in Queensland. Aust. J. Entomol. 2010, 49, 175–181. [Google Scholar] [CrossRef]
- Herron, G.A.; Rophail, J.; Gullick, G.C. Laboratory-Based, Insecticide Efficacy Studies on Field-Collected Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Implications for Its Management in Australia. Aust. J. Entomol. 1996, 35, 161–164. [Google Scholar] [CrossRef]
- Helyer, N.L.; Brobyn, P.J. Chemical Control of Western Flower Thrips (Frankliniella occidentalis Pergande). Ann. Appl. Biol. 1992, 121, 219–231. [Google Scholar] [CrossRef]
- Gao, Y.; Lei, Z.; Reitz, S.R. Western Flower Thrips Resistance to Insecticides: Detection, Mechanisms and Management Strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, W.; Brown, J.M.; Knowles, C.O. Insecticide Resistance in Field and Laboratory Strains of Western Flower Thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 1995, 88, 1164–1170. [Google Scholar] [CrossRef]
- Davidson, M.M.; Butler, R.C.; Teulon, D. Pyridine Compounds Increase Thrips (Thysanoptera: Thripidae) Trap Capture in an Onion Crop. J. Econ. Entomol. 2009, 102, 1468–1471. [Google Scholar] [CrossRef]
- Teulon, D.A.J.; Nielsen, M.C.; James, D.E.; Winkler, S.; Mclachlan, A.R.G.; Perry, N.B. Combination of Two Odour Chemical Lures Does Not Increase Thrips Capture in Field Bioassays. N. Z. Plant Prot. 2007, 60, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Teulon, D.A.J.; Davidson, M.M.; Hedderley, D.I.; James, D.E.; Fletcher, C.D.; Larsen, L.; Green, V.C.; Perry, N.B. 4-Pyridyl Carbonyl and Related Compounds as Thrips Lures: Effectiveness for Onion Thrips and New Zealand Flower Thrips in Field Experiments. J. Agric. Food Chem. 2007, 55, 6198–6205. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.M.; Teulon, D.A.J.; Perry, N.B. Insect Behaviour Modifying Compounds. US8962003B2, 24 February 2015. [Google Scholar]
- Pizzol, J.; Nammour, D.; Hervouet, P.; Bout, A.; Desneux, N.; Mailleret, L. Comparison of Two Methods of Monitoring Thrips Populations in a Greenhouse Rose Crop. J. Pest Sci. 2010, 83, 191–196. [Google Scholar] [CrossRef]
- Egger, B.; Spangl, B.; Koschier, E.H. Habituation in Frankliniella occidentalis to Deterrent Plant Compounds and Their Blends. Entomol. Exp. Appl. 2014, 151, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koschier, E.H.; Nielsen, M.C.; Spangl, B.; Davidson, M.M.; Teulon, D.A.J. The Effect of Background Plant Odours on the Behavioural Responses of Frankliniella occidentalis to Attractive or Repellent Compounds in a Y-Tube Olfactometer. Entomol. Exp. Appl. 2017, 163, 160–169. [Google Scholar] [CrossRef]
- Cao, Y.; Zhi, J.; Li, C.; Zhang, R.; Wang, C.; Shang, B.; Gao, Y. Behavioral Responses of Frankliniella occidentalis to Floral Volatiles Combined with Different Background Visual Cues. Arthropod Plant Interact. 2017, 12, 31–39. [Google Scholar] [CrossRef]
- Otieno, J.A.; Stukenberg, N.; Weller, J.; Poehling, H.-M. Efficacy of LED-Enhanced Blue Sticky Traps Combined with the Synthetic Lure Lurem-TR for Trapping of Western Flower Thrips (Frankliniella occidentalis). J. Pest Sci. 2018, 91, 1301–1314. [Google Scholar] [CrossRef]
- Abdullah, Z.S.; Butt, T.M. Preferences of the Peripheral Olfactory System of Western Flower Thrips, Frankliniella occidentalis towards Stereoisomers of Common Plant Volatiles. Chemoecology 2015, 25, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, Z.S.; Ficken, K.J.; Greenfield, B.P.J.; Butt, T.M. Innate Responses to Putative Ancestral Hosts: Is the Attraction of Western Flower Thrips to Pine Pollen a Result of Relict Olfactory Receptors? J. Chem. Ecol. 2014, 40, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Avellaneda, J.; Díaz, M.; Coy-Barrera, E.; Rodríguez, D.; Osorio, C. Rose Volatile Compounds Allow the Design of New Control Strategies for the Western Flower Thrips (Frankliniella occidentalis). J. Pest Sci. 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Bayram, A.; Tonğa, A. Cis-Jasmone Treatments Affect Pests and Beneficial Insects of Wheat (Triticum Aestivum L.): The Influence of Doses and Plant Growth Stages. Crop Prot. 2018, 105, 70–79. [Google Scholar] [CrossRef]
- Bayram, A.; Tonğa, A. Methyl Jasmonate Affects Populations Densities of Phytophagus and Entomophagous Insects in Wheat. Appl. Ecol. Environ. Res. 2018, 16, 181–198. [Google Scholar] [CrossRef]
- Allsopp, E.; Prinsloo, G.J.; Smart, L.E.; Dewhirst, S.Y. Methyl Salicylate, Thymol and Carvacrol as Oviposition Deterrents for Frankliniella occidentalis (Pergande) on Plum Blossoms. Arthropod Plant Interact. 2014, 8, 421–427. [Google Scholar] [CrossRef]
- Arthurs, S.P.; Krauter, P.C.; Gilder, K.; Heinz, K.M. Evaluation of Deltamethrin-Impregnated Nets as a Protective Barrier against Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) under Laboratory and Greenhouse Conditions. Crop Prot. 2018, 112, 227–231. [Google Scholar] [CrossRef]
- Vaello, T.; Casas, J.L.; Pineda, A.; de Alfonso, I.; Marcos-García, M.A.Á. Olfactory Response of the Predatory Bug Orius Laevigatus (Hemiptera: Anthocoridae) to the Aggregation Pheromone of Its Prey, Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 2017, 46, 1115–1119. [Google Scholar] [CrossRef]
- Tian, R.; Izumi, Y.; Sonoda, S.; Yoshida, H.; Takanashi, T.; Nakamuta, K.; Tsumuki, H. Electroantennographic Responses and Field Attraction to Peach Fruit Odors in the Fruit-Piercing Moth, Oraesia Excavata (Butler) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 2008, 43, 265–269. [Google Scholar] [CrossRef]
- Boratyński, F.; Dancewicz, K.; Paprocka, M.; Gabryś, B.; Wawrzeńczyk, C. Chemo-Enzymatic Synthesis of Optically Active γ- and δ-Decalactones and Their Effect on Aphid Probing, Feeding and Settling Behavior. PLoS ONE 2016, 11, e0146160. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Viljoen, A.M. Geraniol—A Review of a Commercially Important Fragrance Material. S. Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Frey, J.E.; Cortada, R.v.; Helbling, H. The Potential of Flower Odours for Use in Population Monitoring of Western Flower Thrips Frankliniella occidentalis Perg. (Thysanoptera: Thripidae). Biocontrol. Sci. Technol. 1994, 4, 177–186. [Google Scholar] [CrossRef]
- Avellaneda, J.; Díaz, M.; Coy-Barrera, E.; Rodríguez, D. Incidence and Preference of Frankliniella occidentalis (Thysanoptera: Thripidae) to Different Rose Cultivars. Arthropod Plant Interact. 2022, 16, 205–214. [Google Scholar] [CrossRef]
- Mainali, B.P.; Lim, U.T. Evaluation of Chrysanthemum Flower Model Trap to Attract Two Frankliniella Thrips (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 2008, 11, 171–174. [Google Scholar] [CrossRef]
- Egger, B.; Koschier, E.H. Behavioural Responses of Frankliniella occidentalis Pergande Larvae to Methyl Jasmonate and Cis-Jasmone. J Pest Sci 2014, 87, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Blassioli-Moraes, M.C.; Laumann, R.A.; Michereff, M.F.F.; Borges, M. Semiochemicals for Integrated Pest Management. In Sustainable Agrochemistry; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 85–112. [Google Scholar]
- Wang, H.; Conchou, L.; Bessière, J.M.; Cazals, G.; Schatz, B.; Imbert, E. Flower Color Polymorphism in Iris Lutescens (Iridaceae): Biochemical Analyses in Light of Plant-Insect Interactions. Phytochemistry 2013, 94, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Stockton, D.G.; Cha, D.H.; Loeb, G.M. Does Habituation Affect the Efficacy of Semiochemical Oviposition Repellents Developed Against Drosophila Suzukii? Environ. Entomol. 2021, 50, 1322–1331. [Google Scholar] [CrossRef]
- Nielsen, M.-C.; Sansom, C.E.; Larsen, L.; Worner, S.P.; Rostas, M.; Chapman, R.B.; Butler, R.C.; de Kogel, W.J.; Davidson, M.M.; Perry, N.B.; et al. Volatile Compounds as Insect Lures: Factors Affecting Release from Passive Dispenser Systems. N. Z. J. Crop Hortic. Sci. 2019, 47, 208–223. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Compound | Type a | Year RA b | AR c | P(IC) d | T e | Ref. |
---|---|---|---|---|---|---|
(−)-(E)-caryophyllene | ST | 2000 | 1.03 | 0.56 * (0.44–0.67) | 1 | [42] |
(−)-α-bisabolol | ST | 2000 | 0.97 | 0.49 (0.38–0.61) | 1 | [42] |
(+) citronellal | MT | 2000 | 0.97 | 0.49 (0.38–0.61) | 1 | [42] |
(+) citronellol | MT | 2000 | 1.88 | 0.65 * (0.53–0.76) | 1 | [42] |
(E)-β-farnesene | ST | 2000 | 1.78 | 0.64 * (0.52–0.75) | 1 | [42] |
(E)-cinnamaldehyde | PP | 2000 | 1.58 | 0.61 * (0.49–0.72) | 1 | [42] |
(S)-(−)-verbenone | MT | 2015 | 2.23 | 0.68 * (0.63–0.73) | 2 | [43] |
2-isobutyl-3-methoxypyrazine | Ar | 2014 | 0.95 | 0.48 (0.32–0.65) | 2 | [26] |
3-phenylpropionaldehyde | Ar | 2000 | 1.56 | 0.56 * (0.44–0.67) | 1 | [42] |
6-amyl-α-pyrone | L | 2014 | 1.30 | 0.54 (0.40–0.67) | 3 | [26] |
benzaldehyde | Ar, AL | 2000 | 2.00 | 0.67 * (0.55–0.77) | 1 | [42] |
cis-jasmone | TD | 2014 | 0.55 | 0.47 (0.15–0.81) | 2 | [26] |
ethyl-2-chloropyridine-4-carboxylate | Py | 2007 | 1.00 | 0.58 * (0.44–0.70) | 2 | [28] |
ethyl isonicotinate | Py | 2007, 2008 | 5.98 | 0.66 * (0.47–0.82) | 3 | [28,35] |
ethyl nicotinate | Py | 2000, 2007, 2014 | 1.81 | 0.65 * (0.58–0.71) | 8 | [26,28,42] |
eucalyptol | MT | 2000 | 1.14 | 0.59 * (0.51–0.66) | 1 | [42] |
eugenol | AB | 2000 | 1.88 | 0.56 * (0.44–0.67) | 1 | [42] |
geraniol | MT | 1999, 2000 | 5.08 | 0.83 * (0.75–0.88) | 3 | [41,42] |
limonene | MT | 2000 | 1.50 | 0.60 * (0.48–0.71) | 1 | [42] |
linalool | MT | 2000 | 3.17 | 0.58 * (0.50–0.66) | 1 | [42] |
Lurem-TR® f | Py | 2012-2016 | 2.57 | 0.75 * (0.74–0.75) | 9 | [23,31,32,43,44,45,46,47] |
Lurem-TR® + Thripline® f | Py, Ph g | 2016 | 1.61 | 0.62 * (0.59–0.65) | 1 | [46] |
m-anisaldehyde | Ar | 2000 | 1.34 | 0.57 * (0.45–0.69) | 1 | [42] |
methyl 4-pyridylketone | Py | 2007 | 3.13 | 0.67 * (0.56–0.76) | 4 | [28] |
methyl anthranilate | Ar | 2014 | 3.55 | 0.70 * (0.36–0.91) | 2 | [26] |
methyl isonicotinate (MIN) | Py | 2007–2008, 2012–2015 | 4.95 | 0.76 * (0.74–0.78) | 14 | [26,28,29,35,48] |
methyl jasmonate | TD | 2014 | 1.55 | 0.52 (0.20–0.82) | 2 | [26] |
methyl pyrazinoate | Py | 2014 | 1.70 | 0.68 * (0.55–0.79) | 2 | [26] |
myrcene | MT | 1999, 2000 | 1.16 | 0.54 * (0.46–0.62) | 2 | [41,42] |
nerol | MT | 2000 | 1.88 | 0.65 * (0.53–0.76) | 1 | [42] |
o-anisaldehyde | Ar | 2000 | 4.00 | 0.80 * (0.69–0.88 | 1 | [42] |
p-anisaldehyde | Ar | 2000, 2006, 2008, 2012 | 2.62 | 0.67 * (0.63–0.70) | 6 | [35,42,48,49,50] |
sabinene | MT | 2000 | 0.63 | 0.39 (0.28–0.51) | 1 | [42] |
trans-β-ocymene | MT | 2000 | 0.85 | 0.47 (0.35–0.58) | 1 | [42] |
γ-decalactone | L | 2014 | 5.17 | 0.71 * (0.53–0.84) | 3 | [26] |
γ-heptalactone | L | 2014 | 1.70 | 0.63 * (0.39–0.83) | 1 | [26] |
γ-nonalactone | L | 2014 | 1.40 | 0.58 * (0.41–0.73) | 1 | [26] |
γ-octalactone | L | 2014 | 1.50 | 0.60 * (0.44–0.74) | 1 | [26] |
δ-decalactone | L | 2014 | 6.57 | 0.61 * (0.47–0.74) | 3 | [26] |
Attractants | Type a | Year RA b | AR c | P(IC) d | T e | Ref. |
---|---|---|---|---|---|---|
(R)-lavandulyl acetate ((R)LA) | E | 2005 | 0.89 | 0.47 (0.38–0.56) | 4 | [55] |
neryl (S)-2-methyl butanoate (N(S)2MB) | E | 2005 | 1.49 | 0.60 * (0.59–0.61) | 4 | [55] |
N(S)2MB + (R)LA | E, E | 2005, 2016 | 1.58 | 0.61 * (0.49–0.72) | 4 | [46,55] |
Thripline® f | CP | 2012-2016 | 2.49 | 0.64 * (0.63–0.64) | 7 | [23,31,46,67,68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, M.A.; Osorio, C.; Coy-Barrera, E.; Rodríguez, D. Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis. Insects 2023, 14, 269. https://doi.org/10.3390/insects14030269
Díaz MA, Osorio C, Coy-Barrera E, Rodríguez D. Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis. Insects. 2023; 14(3):269. https://doi.org/10.3390/insects14030269
Chicago/Turabian StyleDíaz, Marco A., Coralia Osorio, Ericsson Coy-Barrera, and Daniel Rodríguez. 2023. "Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis" Insects 14, no. 3: 269. https://doi.org/10.3390/insects14030269
APA StyleDíaz, M. A., Osorio, C., Coy-Barrera, E., & Rodríguez, D. (2023). Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis. Insects, 14(3), 269. https://doi.org/10.3390/insects14030269