The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aphid Life Cycle
2.2. Primary (Winter) Host
2.3. Wheat (Summer Host)
2.4. Collection and Maintenance of Aphid Clones
2.5. Experiments
3. Results
3.1. The Effects of Morphotypes and Clones on the Reproduction and Dispersal Ability of M. dirhodum (June 2020)
3.2. The Effects of a Clone on the Reproduction/Dispersal Ability of M. dirhodum Apterous Summer Exules over the Course of the Growing Season (June, July, August 2020)
3.3. The Effects of Clones on the Midsummer (July) Reproduction/Dispersal Ability of M. Dirhodum Apterous Exules over Four Consecutive Years (2017–2020)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Moreno, F.; Ammar, K.; Solís, I. Global Changes in Cultivated Area and Breeding Activities of Durum Wheat from 1800 to Date: A Historical Review. Agronomy 2022, 12, 1135. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Cereal aphids as an applied problem. Agric. Zool. Rev. 1987, 2, 1–57. [Google Scholar]
- van Emden, H.F.; Harrington, R. Aphids as Crop Pests; CAB International: Wallingford, UK, 2007. [Google Scholar]
- Vereschagina, A.B.; Gandrabur, E.S.; Ephimov, P.G. Development of the Bird Cherry-Oat Aphid Rhopalosiphum padi (Linnaeus) (Homoptera: Aphididae) Feeding on Unfamiliar Host Plants of the Families Cyperaceae and Juncaceae. Asian J. Microbiol. Biotechnol. Environ. Sci. 2017, 19, 1094–1103. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Farook, U.B.; Khan, Z.H.; Ahad, I.; Maqbool, S.; Yaqoob, M.; Rafieq, I.; Rehman, S.A.; Sultan, N. A review on insect pest complex of wheat (Triticum aestivum L.). J. Entomol. Zool. Stud. 2019, 7, 1292–1298. [Google Scholar]
- Platková, H.; Skuhrovec, J.; Saska, P. Antibiosis to Metopolophium dirhodum (Homoptera: Aphididae) in spring wheat and emmer cultivars. J. Econ. Entomol. 2020, 113, 2979–2985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Men, X.; Hui, C.; Ge, F.; Ouyang, F. Wheat yield losses from pests and pathogens in China. Agric. Ecosyst. Environ. 2022, 326, 107821. [Google Scholar] [CrossRef]
- Dedryver, C.-A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D.; Balog, A.; Biron, D.G. Aphids in Focus: Unravelling Their Complex Ecology and Evolution Using Genetic and Molecular Approaches. Biol. J. Linn. Soc. 2020, 129, 507–531. [Google Scholar] [CrossRef]
- Osler, R.; Amici, A.; Belli, G. Transmission of rice «giallume» by an aphid, Rhopalosiphum padi. Riv. Patol. Veg. 1974, 10, 5–17. [Google Scholar]
- Belay, T.; Araya, A. Grain and biomass yield reduction due to Russian wheat aphid on bread wheat in northern Ethiopia. Afr. Crop Sci. J. 2015, 23, 197–202. [Google Scholar]
- Luo, K.; Zhao, H.; Wang, X.; Kang, Z. Prevalent Pest Management Strategies for Grain Aphids: Opportunities and Challenges. Front. Plant Sci. 2021, 12, 790919. [Google Scholar] [CrossRef]
- Roy, L.; Barrès, B.; Capderrey, C.; Mahéo, F.; Micoud, A.; Hullé, M.; Simon, J.-C. Host plants and insecticides shape the evolution of genetic and clonal diversity in a major aphid crop pest. Evol. Appl. 2022, 15, 1653–1669. [Google Scholar] [CrossRef]
- Peccoud, J.; Simon, J.-C.; von Dolen, C.; Coeur d’Acier, A.; Plantegenest, M.; Vanlerbergue-Masutti, F.; Jousseline, E. Evolutionary history of aphid-plant associations and their role in aphid diversification. Comptes Rendus Biol. 2010, 333, 474–487. [Google Scholar] [CrossRef]
- Vorburger, C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci. 2014, 21, 251–264. [Google Scholar]
- Foster, S.P.; Devine, G.; Devonshire, A.L. Insecticide resistance. In Aphids as Crop Pests, 2nd ed.; Van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017. [Google Scholar]
- Simon, J.C.; Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Curr. Opin. Insect Sci. 2018, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Paulo, F.; Lavandero, B. Effect of the Genotypic Variation of an Aphid Host on the Endosymbiont Associations in Natural Host Populations. Insects 2021, 12, 217. [Google Scholar] [CrossRef] [PubMed]
- Gorur, G.; Lomonaco, C.; Mackenzie, A. Phenotypic plasticity in host choice behavior in black bean aphid, Aphis fabae (Homoptera: Aphididae). Arthropod Plant Interact. 2007, 1, 187–194. [Google Scholar] [CrossRef]
- Bell, J.R.; Pierre, J.S.; Dedryver, C.A. Aphid population dynamics: From fields to landscapes. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: London, UK, 2017. [Google Scholar]
- van Emden, H.F. Host-plant resistance. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017. [Google Scholar]
- Levis, N.A.; Pfennig, D.W. Phenotypic plasticity and the origins of novelty. In Phenotypic Switching: Implications in Biology and Medicine; Levine, H., Jolly, M., Kulkarni, P., Nanjundiah, V., Eds.; Academic Press: New York, NY, USA, 2020. [Google Scholar]
- Kindlmann, P.; Dixon, A.F. Modelling Population Dynamics of Aphids and Their Natural Enemies. In Aphid Biodiversity under Environmental Change; Kindlmann, P., Dixon, A., Michaud, J., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Duffy, C.; Fealy, R.; Fealy, R.M. An improved simulation model to describe the temperature-dependent population dynamics of the grain aphid, Sitobion avenae. Ecol. Modell. 2017, 354, 140–171. [Google Scholar] [CrossRef] [Green Version]
- Miksanek, J.R.; Heimpel, G.E. A matrix model describing host-parasitoid population dynamics: The case of Aphelinus certus and soybean aphid. PLoS ONE 2019, 14, e0218217. [Google Scholar]
- Shaposhnikov, G.C. Evolution of aphids in relation to evolution of plants. In Aphids: Their Biology, Natural Enemies, and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Moran, N.A. The evolution of aphid life cycles. Annu. Rev. Entomol. 1992, 37, 321–348. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Simon, J.C.; Stoeckel, S.; Tagu, D. Evolutionary and functional insights into reproductive strategies of aphids. Comptes Rendus Biol. 2010, 333, 488–496. [Google Scholar] [CrossRef]
- Park, C.-G.; Choi, B.-R.; Cho, J.R.; Kim, J.-H.; Ahn, J.J. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pac. Entomol. 2017, 20, 767–775. [Google Scholar] [CrossRef]
- Brisson, J.A. Aphid wing dimorphotypeisms: Linking environmental and genetic control of trait variation. Philos Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, C.; Fei, X.; Chen, W.; Zhao, Z. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum. Arch. Insect Biochem. Physiol. 2012, 79, 198–206. [Google Scholar] [CrossRef]
- Zhang, R.J.; Chen, J.; Jiang, L.Y.; Qiao, G.X. The genes expression difference between winged and wingless bird cherry-oat aphid Rhopalosiphum padi based on transcriptomic data. Sci. Rep. 2019, 9, 4754. [Google Scholar] [CrossRef] [Green Version]
- Loxdale, H.D. The nature and reality of the aphid clone: Genetic variation, adaptation and evolution. Agric. For. Entomol. 2008, 10, 81–90. [Google Scholar] [CrossRef]
- Özder, N.; Saglam, Ö. The effects of temperature for development time, fecundity and reproduction on some ornamental aphid species. J. Cent. Eur. Agric. 2013, 14, 149–157. [Google Scholar] [CrossRef]
- Lee, K.W.K.; Yam, J.K.H.; Mukherjee, M.; Periasamy, S.; Steinberg, P.D.; Kjelleberg, S.; Rice, S.A. Interspecific diversity reduces and functionally substitutes for intraspecific variation in biofilm communities. ISME J. 2016, 10, 846–857. [Google Scholar]
- Vellichirammal, N.N.; Gupta, P.; Hall, T.A.; Brisson, J.A. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. Proc. Natl. Acad. Sci. USA 2017, 114, 1419–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Shi, X.; Liu, D.; Yang, Y.; Shang, Z. Genetic divergence of two Sitobion Avenae biotypes on barley and wheat in China. Insects 2020, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.-X.; Li, H.-Y.; Quandahor, P.; Gou, Y.-P.; Li, C.-C.; Zhang, Q.-Y.; Haq, I.U.; Ma, Y.; Liu, C.-Z. Responses of Six Wheat Cultivars (Triticum aestivum) to Wheat Aphid (Sitobion avenae) Infestation. Insects 2022, 13, 508. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, C.; Zhu, S.; Li, Q.; Zhang, Y.; Li, X.; Li, G.; Liu, E.; Gao, H.; et al. The Sensitivity of Field Populations of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) to Seven Insecticides in Northern China. Agronomy 2021, 11, 1556. [Google Scholar] [CrossRef]
- Kmieć, K. Dynamics of number of Metopolophium dirhodum (Walk.) (Hemiptera, Aphididae) occurring on shrubs of roses in Lublin. Acta Sci. Pol. 2006, 5, 11–21. [Google Scholar]
- Cannon, R.J.C. Summer population of the cereal aphid Metopolophium dirhodum (Walker) on winter wheat: Three contrasting years. J. Appl. Ecol. 1986, 23, 101–114. [Google Scholar]
- Ma, C.; Xie, P.; Zhang, K.; Yang, J.X.; Li, X.Z.; Liu, F.Y.; Lin, L.; Zhang, H.Z. Contribution of the flag leaf to lead absorption in wheat grain at the grain-filling stage. Ecotox. Environ. Saf. 2021, 225, 112722. [Google Scholar] [CrossRef]
- Sepúlveda, D.A.; Zepeda-Paulo, F.; Ramírez, C.C.; Lavandero, B.; Figueroa, C.C. Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect. Sci. 2017, 24, 511–521. [Google Scholar] [CrossRef]
- Honek, A.; Martinkova, Z.; Saska, P.; Dixon, A.F.G. Aphids (Homoptera: Aphididae) on winter wheat: Predicting maximum abundance of Metopolophium dirhodum. J. Econ. Entomol. 2018, 111, 1751–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, C.; Li, Q.; Zhu, S.; Tian, X.; Zhang, Y.; Li, X.; Gao, H.; Liu, E.; Wang, L.; et al. Field-Evolved Sulfoxaflor Resistance of Three Wheat Aphid Species in China. Agronomy 2021, 11, 2325. [Google Scholar] [CrossRef]
- Honek, A.; Martinkova, Z. Host plant age and population development of a cereal aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Bull. Entomol. Res. 2004, 94, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Krzyźanowski, R. Dynamics of serious pest of Metopolophium dirhodum (Walk.) (Hemiptera: Aphididae) on shrubs of Rosa rugosa Thunb. Herba Polonica 2017, 63, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Vereshchagina, A.B.; Gandrabur, Y.S. Development of Autumnal Generations and Oviposition in Metopolophium dirhodum Walk. (Hemiptera, Sternorrhyncha: Aphididae). Entomol. Rev. 2021, 101, 1024–1033. [Google Scholar] [CrossRef]
- Vereshchagina, A.B.; Gandrabur, E.S. Variability in the developmental parameters of bird cherry–oat aphid Rhopalosiphum padi (L.) (Homoptera, Aphididae) clones during the life cycle as a genotypic adaptation. Entomol. Rev. 2016, 96, 983–996. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Insect Herbivore–Host Dynamics: Tree-Dwelling Aphids; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Li, X.; Gong, P.; Wang, B.; Wang, C.; Li, M.; Zhang, Y.; Li, X.; Gao, H.; Ju, J.; Zhu, X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci. Rep. 2020, 10, 21951. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Lushai, G. Population Genetic Issues: The Unfolding Story Using Molecular Markers. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007. [Google Scholar]
- Asin, L.; Pons, X. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their populations dynamics on the northeastern Iberian peninsula. Environ. Entomol. 2001, 30, 1127–1134. [Google Scholar] [CrossRef]
- Ogawa, K.; Miura, T. Aphid polyphenisms: Trans-generational developmental regulation through viviparity. Front. Physiol. 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Vantaux, A.; Billen, J.; Wenseleers, T. Levels of clonal mixing in the black bean aphid Aphis fabae, a facultative ant mutualist. Mol. Ecol. 2011, 20, 4772–4785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandrabur, E.; Vereshchagina, A. Formation of population structure in aphids and methods of its estimation using the example of Rhopalosiphum padi (Homoptera: Aphididae) (part 1). Plant Prot. News 2018, 3, 18–23. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Gandrabur, E.; Vereschagina, A. Formation of population structure in aphids and methods of its estimation using the case-study of cherry-oat aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae) (part 2). Plant Prot. News. 2018, 4, 13–17. (In Russian) [Google Scholar] [CrossRef]
- Orlov, V.N. Pests of Grain Crops; Bayer Crop Science: Moscow, Russia, 2006; ISBN 5-98467-004-6. (In Russian) [Google Scholar]
- Dixon, A.F.G.; Dharma, T.D. Number of ovarioles and fecundity in the black bean aphid, Aphis fabae. Entomol. Exp. Et Appl. 1980, 28, 1–14. [Google Scholar] [CrossRef]
- Karami, L.; Amir-Maafi, M.; Shahrokhi, S.; Imani, S.; Shojai, M. Demography of the Bird Cherry-oat Aphid, (Rhopalosiphum padi L.) (Hemiptera: Aphididae) on Different Barley Varieties. JAST 2016, 18, 1257–1266. [Google Scholar]
- Vereschagina, A.; Gandrabur, E. Polymorphism and Damage of Aphids. Int. J. Biol. 2014, 6, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Cannon, R.J.C. Colony development and alate production in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) on winter wheat. Bull. Entomol. Res. 1985, 75, 353–365. [Google Scholar] [CrossRef]
- Lei, X.U.; Zhao, T.H.; Xing, X.; Xu, G.Q.; Biao, X.U.; Zhao, J.Q. Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field. J. Integr. Agric. 2023; in press. [Google Scholar] [CrossRef]
- Peccoud, J.; Ollivier, A.; Plantegenest, M.; Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl. Acad. Sci. USA 2009, 106, 7495–7500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Month (Data) | Temperature (Average Values) | ||
---|---|---|---|---|
Max. | Min. | All Period | ||
2017 | July (1–24) | 18.1 | 12.0 | 15.1 |
2018 | July (1–24) | 21.8 | 14.4 | 18.1 |
2019 | July (1–24) | 18.3 | 11.6 | 15.0 |
2020 | July (1–24) | 21.7 | 12.9 | 17.3 |
2020 | June (8–31) | 21.7 | 12.9 | 17.3 |
July (1–24) | 19.4 | 12.6 | 16.0 | |
August (1–24) | 20.9 | 13.0 | 17.0 |
Clone | June | July | August | ||||||
---|---|---|---|---|---|---|---|---|---|
Emigrants ** | Apterous Exules | Alate Exules ** | Apterous Exules | Apterous Exules | |||||
P14 * | P14 | Offspring Composition, % | P14 | P14 | Offspring Composition, % | P14 | |||
Alate Exules | Alatoid Nymphs | Alate Exules | Alatoid Nymphs | ||||||
1 | 57 ± 5 | 83 ± 16 | 3.6 | 1.2 | 160 ± 17 | 294 ± 18 | 0 | 0 | 230 ± 25 |
2 | 38 ± 11 | 105 ± 10 | 8.6 | 0.9 | 137 ± 20 | 440 ± 26 | 0.2 | 0 | 214 ± 20 |
3 | 100 ± 12 | 180 ± 10 | 3.3 | 4.4 | 136 ± 7 | 300 ± 22 | 2.3 | 0 | 274 ± 29 |
4 | 46 ± 9 | 120 ± 19 | 3.3 | 2.5 | 86 ± 9 | 435 ± 25 | 0 | 0 | 219 ± 36 |
5 | 74 ± 15 | 151 ± 12 | 2.6 | 9.3 | 146 ± 28 | 312 ± 16 | 0.3 | 0 | 351 ± 30 |
6 | 56 ± 10 | 138 ± 9 | 5.1 | 3.6 | 195 ± 18 | 259 ± 32 | 0.4 | 0 | 184 ± 34 |
7 | 83 ± 11 | 155 ± 13 | 1.3 | 2.6 | 76 ± 11 | 565 ± 17 | 0 | 0 | 131 ± 19 |
8 | 59 ± 8 | 88 ± 9 | 1.1 | 1.1 | 97 ± 14 | 371 ± 32 | 0.8 | 0.5 | 178 ± 22 |
9 | 35 ± 6 | 111 ± 10 | 0.9 | 3.6 | 65 ± 10 | 421 ± 30 | 0.2 | 0 | 269 ± 25 |
10 | 82 ± 16 | 57 ± 11 | 0 | 0 | 127 ± 9 | 319 ± 39 | 0 | 0.6 | 167 ± 22 |
X ± SE | 63 ± 7 | 119 ± 12 | 3.0 ± 0.8 | 3.0 ± 0.8 | 123 ± 13 | 372 ± 28 | 0.4 ± 0.2 | 0.1 ± 0.1 | 222 ± 20 |
Factor | Effect | ||||
---|---|---|---|---|---|
Df | SS | MS | F | p | |
Clone | 9 | 55,238 | 6138 | 8.9 | <0.001 |
Morphotype | 2 | 89,117 | 44,559 | 64.8 | <0.001 |
Clone-morphotype | 18 | 72,482 | 4027 | 5.9 | <0.001 |
(a) | |||||
Source of Variation | Effect * | ||||
Df | SS | MS | F | p | |
Between groups | 2 | 89,117 | 44,559 | 64.8 | <0.001 |
Within groups | 90 | 61,886 | 688 | 64.8 | <0.001 |
Total | 92 | 151,003 | 64.8 | <0.001 | |
(b) | |||||
Comparison | Absolute Mean Difference | Q 0.01 (Critical Value) | Significant | ||
Emigrants vs. apterous exules | 53 | 31.2 | Yes | ||
Apterous exules vs. alate exules | 4 | 31.2 | No | ||
Emigrants vs. alate exules | 60 | 31.2 | Yes |
Factor | Effect * | ||||
---|---|---|---|---|---|
SS | Df | MS | F | p | |
Clone | 143,555 | 9 | 15,951 | 7.6 | <0.001 |
Morphotypeotype | 1,292,709 | 2 | 646,355 | 306.6 | <0.001 |
Clone-morphotypeotype | 367,643 | 18 | 20,425 | 9.7 | <0.001 |
Clone | 2017 | 2018 | 2019 ** | ||||
---|---|---|---|---|---|---|---|
Offspring Composition, % | Offspring Composition, % | P14 | |||||
P14 | Alate Exules | Alatoid Larvae | P14 | Alate Exules | Alatoid Larvae | ||
1 | 194 ± 17 | 7.2 | 5.2 | 286 ± 24 | 0 | 1.4 | 164 ± 15 |
2 | 298 ± 24 | 0 | 0 | 479 ± 40 | 0.6 | 1.9 | 33 ± 2 |
3 | 349 ± 26 | 4.3 | 3.7 | 390 ± 27 | 0 | 1.5 | 34 ± 2 |
4 | 264 ± 22 | 3.4 | 5.7 | 369 ± 24 | 0 | 0 | 146 ± 10 |
5 | 139 ± 10 | 10.8 | 13.7 | 320 ± 21 | 0 | 1.3 | 50 ± 7 |
6 | 273 ± 7 | 2.2 | 5.5 | 345 ± 31 | 0 | 0 | 104 ± 13 |
7 | 337 ± 27 | 2.1 | 1.2 | 318 ± 28 | 0 | 0.8 | 56 ± 9 |
8 | 127 ± 11 | 3.9 | 1.6 | 232 ± 19 | 0 | 0 | 67 ± 8 |
9 | 293 ± 35 | 0.7 | 1.5 | 186 ± 24 | 0 | 0 | 155 ± 18 |
10 | 360 ± 21 | 2.8 | 3.1 | 533 ± 40 | 0 | 0 | 39 ± 3 |
X ± SE | 263 ± 25 | 3.7 ± 0.1 | 4.1 ± 1.2 | 346 ± 31.6 | 0.7 ± 0.2 | 85 ± 16 |
Factor | Effect * | ||||
---|---|---|---|---|---|
SS | Df | MS | F | p | |
Clone | 290,581 | 9 | 32,287 | 14.9 | <0.001 |
Year | 2,013,809 | 3 | 671,270 | 310.8 | <0.001 |
Clone-year | 771,390 | 27 | 28,570 | 13.2 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandrabur, E.; Terentev, A.; Fedotov, A.; Emelyanov, D.; Vereshchagina, A. The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period. Insects 2023, 14, 271. https://doi.org/10.3390/insects14030271
Gandrabur E, Terentev A, Fedotov A, Emelyanov D, Vereshchagina A. The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period. Insects. 2023; 14(3):271. https://doi.org/10.3390/insects14030271
Chicago/Turabian StyleGandrabur, Elena, Anton Terentev, Alexander Fedotov, Dmitriy Emelyanov, and Alla Vereshchagina. 2023. "The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period" Insects 14, no. 3: 271. https://doi.org/10.3390/insects14030271
APA StyleGandrabur, E., Terentev, A., Fedotov, A., Emelyanov, D., & Vereshchagina, A. (2023). The Peculiarities of Metopolophium dirhodum (Walk.) Population Formation Depending on Its Clonal and Morphotypic Organization during the Summer Period. Insects, 14(3), 271. https://doi.org/10.3390/insects14030271