Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Occurrence Records of Diuraphis noxia
2.2. Selection of Bioclimatic Variables
2.3. Model Optimization, Construction, and Evaluation
2.4. Threshold Classification and Centroid Migration
3. Results
3.1. Model Performance
3.2. Significant Bioclimatic Variables
3.3. Potential Global Geographical Distribution under the Current Climatic Scenario
3.4. Potential Global Geographical Distribution under Future Climatic Scenarios
3.5. Changes in the Potential Suitable Areas under Different Climatic Scenarios
3.6. Migration of Centroid in the Potential Suitable Areas of Diuraphis noxia under Climate Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nyamukondiwa, C.; Machekano, H.; Chidawanyika, F.; Mutamiswa, R.; Ma, G.; Ma, C.S. Geographic dispersion of invasive crop pests: The role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Curr. Opin Insect Sci. 2022, 50, 100878. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; Barro, P.J.D.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.C.; Fraser, R.W.; Paini, D.R.; Warden, A.C.; Lonsdale, W.M.; de Barro, P.J. Biosecurity and yield improvement technologies are strategic complements in the fight against food insecurity. PLoS ONE 2011, 6, e26084. [Google Scholar] [CrossRef]
- Lindell, C.; Eaton, R.A.; Howard, P.H.; Roels, S.M.; Shave, M.E. Enhancing agricultural landscapes to increase crop pest reduction by vertebrates. Agric. Ecosyst. Environ. 2018, 257, 1–11. [Google Scholar] [CrossRef]
- Blas, S.G.; Obholz, G.; Dias, F.M.S.; Specht, A.; Casagrande, M.M.; Mielke, O.H.H. Global potential distribution of the South American cutworm pest Agrotis Robusta (Lepidoptera: Noctuidae). Neotrop. Entomol. 2022, 51, 188–198. [Google Scholar] [CrossRef] [PubMed]
- International Plant Protection Convention: Detection of Russian wheat aphid (Diuraphis noxia) in South Australia and Victoria. Available online: https://www.ippc.int/es/countries/australia/pestreports/2016/06/detection-of-russian-wheat-aphid-diuraphis-noxia-in-south-australia-and-victoria/ (accessed on 24 August 2022).
- Rubio-Melendez, M.E.; Barrios-SanMartin, J.; Pina-Castro, F.E.; Figueroa, C.C.; Ramirez, C.C. Asexual reproduction of a few genotypes favored the invasion of the cereal aphid Rhopalosiphum padi in Chile. PeerJ 2019, 7, e7366. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.F.G. Parthenogenetic reproduction and the rate of increase in aphids. In Aphids: Their Biology, Natural Enemies, and Control; Elsevier: Amsterdam, The Netherlands, 1987; pp. 269–287. [Google Scholar]
- Hullé, M.; Chaubet, B.; Turpeau, E.; Simon, J.C. Encyclop’Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2020, 40, 97–101. [Google Scholar] [CrossRef]
- Mondal, H.A. Aphid saliva: A powerful recipe for modulating host resistance towards aphid clonal propagation. Arthropod. Plant Interact. 2020, 14, 547–558. [Google Scholar] [CrossRef]
- Holt, J.R.; Malacrino, A.; Medina, R.F. Quantifying the impacts of symbiotic interactions between two invasive species: The tawny crazy ant (Nylanderia fulva) tending the sorghum aphid (Melanaphis sorghi). PeerJ 2022, 10, e14448. [Google Scholar] [CrossRef]
- Messing, R.H.; Tremblay, M.N.; Mondor, E.B.; Foottit, R.G.; Pike, K.S. Invasive aphids attack native Hawaiian plants. Biol. Invasions 2006, 9, 601–607. [Google Scholar] [CrossRef]
- Zust, T.; Agrawal, A.A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2016, 2, 15206. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, L.S.; Pirtle, E.; Umina, P. Responses of the Russian wheat aphid (Diuraphis noxia) and bird cherry oat aphid (Rhopalosiphum padi) to insecticide seed treatments in wheat. Crop Pasture Sci. 2018, 69, 966–973. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology: An Optimization Approach; Springer: New York, NY, USA, 1998. [Google Scholar]
- Tonnang, H.E.; Sokame, B.M.; Abdel-Rahman, E.M.; Dubois, T. Measuring and modelling crop yield losses due to invasive insect pests under climate change. Curr. Opin. Insect Sci. 2022, 50, 100873. [Google Scholar] [CrossRef] [PubMed]
- Skendzic, S.; Zovko, M.; Zivkovic, I.P.; Lesic, V.; Lemic, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Rebetez, M.; Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; Wiley: Chichester, UK, 2000. [Google Scholar]
- Shufran, K.A.; Kirkman, L.R.; Puterka, G.J. Absence of mitochondrial DNA sequence variation in Russian wheat aphid (Hemiptera: Aphididae) populations consistent with a single introduction into the United States. J. Kans. Entomol. Soc. 2007, 80, 319–326. [Google Scholar] [CrossRef]
- Zhang, B.; Edwards, O.R.; Kang, L.; Fuller, S.J. Russian wheat aphids (Diuraphis noxia) in China: Native range expansion or recent introduction? Mol. Ecol. 2012, 21, 2130–2144. [Google Scholar] [CrossRef]
- Schotzko, D.J.; Smith, G.M. Effects of preconditioning host plants on population development of Russian wheat aphids (Homoptera: Aphididae). J. Econ. Entomol. 1991, 84, 1083–1087. [Google Scholar] [CrossRef]
- Puterka, G.J.; Black, W.C.; Steiner, W.M.; Burton, R.L. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 1993, 70, 604–618. [Google Scholar] [CrossRef]
- Gilchrist, L.I.; Rodriguez, R.; Burnett, P.A.; Cuellar, E. The extent of freestate streak and Diuraphis noxia in Mexico. In Barley Yellow Dwarf; Burnett, P., Havener, R.R., Eds.; International Maize and Wheat Improvement Center (CIMMYT): Mexico City, Mexico, 1984; pp. 157–163. [Google Scholar]
- Ward, S.; Helden, M.; Heddle, T.; Ridland, P.M.; Pirtle, E.; Umina, P.A. Biology, ecology and management of Diuraphis noxia (Hemiptera: Aphididae) in Australia. Aust. Entomol. 2020, 59, 238–252. [Google Scholar] [CrossRef]
- FAO. Scientific Review of the Impact of Climate Change on Plant Pests—A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems; FAO: Rome, Italy, 2021. [Google Scholar]
- Jankielsohn, A.; Masupha, P.; Mohase, L. Field screening of Lesotho and South African wheat cultivars for Russian wheat aphid resistance. Adv. Entomol. 2016, 4, 268–278. [Google Scholar] [CrossRef]
- Yazdani, M.; Baker, G.; DeGraaf, H.; Henry, K.; Hill, K.; Kimber, B.; Malipatil, M.; Perry, K.; Valenzuela, I.; Nash, M.A. First detection of Russian wheat aphid Diuraphis noxia Kurdjumov (Hemiptera: Aphididae) in Australia: A major threat to cereal production. Aust. Entomol. 2018, 57, 410–417. [Google Scholar] [CrossRef]
- Smith, C.M.; Liu, X.; Wang, L.J.; Liu, X.; Chen, M.S.; Starkey, S.; Bai, J. Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J. Chem Ecol. 2010, 36, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.D.; Maywald, G.F. Forecasting the favourableness of the Australian environment for the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae), and its potential impact on Australian wheat yields. Bull. Entomol. Res. 1990, 80, 165–175. [Google Scholar] [CrossRef]
- Damsteegt, V.D.; Gildow, F.E.; Hewings, A.D.; Carroll, T.W. A clone of the Russian wheat aphid (Diuraphis noxia) as a vector of the barley yellow dwarf, barley stripe mosaic, and brome mosaic viruses. Plant Dis. 1992, 76, 1155–1160. [Google Scholar] [CrossRef]
- Nicholson, S.J.; Nickerson, M.L.; Dean, M.; Song, Y.; Hoyt, P.R.; Rhee, H.; Kim, C.; Puterka, G.J. The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genom. 2015, 16, 429. [Google Scholar] [CrossRef] [PubMed]
- Nicolis, V.F.; Burger, N.F.V.; Botha, A.M. Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genom. 2022, 23, 493. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.P.; Peairs, F.B. Response model concept and economic impact. In Response Model for an Introduced Pest-the Russian Wheat Aphid; Thomas Say Publications in Entomology; Entomological Society of America: Annapolis, MD, USA, 1998. [Google Scholar]
- Byeon, D.; Jung, S.; Lee, W.H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia Pac. Biodivers. 2018, 11, 325–333. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Ning, Y.; Lei, J.R.; Song, X.Q.; Han, S.M.; Zhong, Y.F. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chin. J. Plant Ecol. 2018, 42, 946–954. [Google Scholar] [CrossRef]
- Zhu, Z.J. Potential geographical distribution and habitat suitability analysis for two mirid predators Tytthus chinensis and Cyrtorhinus lividipennis (Hemiptera: Miridae) in rice fields based on MaxEnt model. Acta Entomol. Sin. 2017, 60, 335–346. [Google Scholar]
- Li, M.; Xian, X.Q.; Zhao, H.X.; Xue, L.; Chen, B.X.; Huang, H.K.; Wan, F.H.; Liu, W.X. Predicting the potential suitable area of the invasive ant Linepithema humile in China under future climatic scenarios based on optimized MaxEnt. Diversity 2022, 14, 921. [Google Scholar] [CrossRef]
- Zhao, H.X.; Xian, X.Q.; Zhao, Q.; Zhang, Z.H.; Zhang, G.F.; Liu, W.X.; Wan, F.H. Climate change increases the expansion risk of Helicoverpa zea in China according to potential geographical distribution estimation. Insects 2022, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.P.; Zhang, Q.; Zhang, D.F.; Xie, C.X.; Liu, X. Prediction for the potential distribution area of Codonopsis pilosula at global scale based on Maxent model. Chin. J. Appl. Ecol. 2017, 28, 992–1000. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.X.; Xu, C.Y. The potential geographical distribution of Alsophila spinulosain under climate change in China. Chin. J. Ecol. 2021, 40, 968–979. [Google Scholar]
- William, T.B.; Robert, S.; Justin, S.B. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 2012, 35, 250–258. [Google Scholar]
- He, X.L.; Veronesi, E.; Stephen, W.; Zhu, Z.R.; Gao, Y.L.; Zhou, W.W. The risk posed by the potato psyllid Bactericera cockerelli (Hemiptera: Triozidae) an important invasive pest of solanaceous crops. Chin. J. Appl. Entomol. 2019, 56, 1422–1429. [Google Scholar]
- Puterka, G.J. More virulent offspring result from hybridization of invasive aphid species, Diuraphis noxia (Hemiptera: Aphididae), with Diuraphis tritici endemic to the United States. J. Econ. Entomol. 2017, 110, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Jankielsohn, A. Changes in the Russian wheat aphid (Hemiptera: Aphididae) biotype complex in South Africa. J. Econ. Entomol. 2016, 109, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Monteith, K.L.; Klaver, R.W.; Hersey, K.R.; Holland, A.A.; Thomas, T.P.; Kauffman, M.J. Effects of climate and plant phenology on recruitment of moose at the southern extent of their range. Oecologia 2015, 178, 1137–1148. [Google Scholar] [CrossRef]
- Reed, D.A.; Ganjisaffar, F.; Palumbo, J.C.; Perring, T.M. Effects of temperatures on immature development and survival of the invasive stink bug (Hemiptera: Pentatomidae). Environ. Entomol. 2017, 110, 2497–2503. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Bauerfeind, S.S.; Fischer, K. Integrating temperature and nutrition-environmental impacts on an insect immune system. J. Insect Physiol. 2014, 64, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Kiritani, K. Impacts of global warming on Nezara viridula and its native congeneric species. J. Asia Pac. Entomol. 2011, 14, 221–226. [Google Scholar] [CrossRef]
- Zhang, R.A.; Liang, H.B.; Zhang, J. Development, survival and reproduction of the Russia wheat aphid at constant temperatures. Acta Ecol. Sin. 1999, 42, 35–39. [Google Scholar]
- Kieckhefer, R.W.; Elliott, N.C. Effect of fluctuating temperatures on development of immature Russian wheat aphid (Homoptera: Aphididae) and demographic statistics. J. Econ. Entomol. 1989, 82, 119–122. [Google Scholar] [CrossRef]
- Girma, M.; Wilde, G.; Reese, J.C. Influence of temperature and plant growth stage on development, reproduction, life span, and intrinsic rate of increase of the Russian wheat aphid (Homoptera: Aphididae). Environ. Entomol. 1990, 19, 1438–1442. [Google Scholar] [CrossRef]
- Michels, G.J.; Behle, R.W. Influence of temperature on reproduction, development, and intrinsic rate of increase of Russian wheat aphid, greenbug, and bird cherry-oat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1989, 82, 439–444. [Google Scholar] [CrossRef]
- Behle, R.W.; Michels, G.J., Jr. Russian wheat aphid development, reproduction and survival on wheat and rye grown in four host-plant media. Southwest. Entomol. 1990, 15, 109–121. [Google Scholar]
- Butts, R.A.; Schaalje, G.B. Impact of subzero temperatures on survival, longevity, and natality of adult Russian wheat aphid (Homoptera: Aphididae). Environ. Entomol. 1997, 26, 661–667. [Google Scholar] [CrossRef]
- Butts, R.A. Cold hardiness and its relationship to overwintering of the Russian wheat aphid (Homoptera: Aphididae) in southern Alberta. J. Econ. Entomol. 1992, 85, 1140–1145. [Google Scholar] [CrossRef]
- Armstrong, S.; Peairs, F.; Nielsen, D.; Roberts, E.; Holtzer, T.; Stushnoff, C. The overwintering biology of Diuraphis noxia on the Northeastern Plains of Colorado. Great Plains Agric. Council Publ. 1992, 142, 211–212. [Google Scholar]
- Yan, Y.W.; Wang, Y.C.; Feng, C.C.; Wan, P.H.M.; Chang, K.T.T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- Fand, B.B.; Choudhary, J.S.; Kumar, M.; Bal, S.K. Phenology modelling and GIS applications in pest management: A tool for studying and understanding insect-pest dynamics in the context of global climate change. In Approaches to Plant Stress and Their Management; Springer: Berlin/Heidelberg, Germany, 2014; pp. 107–124. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Zhao, H.X.; Xian, X.Q.; Guo, J.Y.; Zhang, G.F.; Wang, R.; Liu, W.X.; Wan, F.H. Prediction of the potential geographical distribution of Spodoptera littoralis based on the optimal MaxEnt model. Plant Prot. 2022, 48, 16–22. [Google Scholar]
- Liang, L.; Xian, X.Q.; Zhao, H.X.; Guo, J.Y.; Liu, W.X. Estimation of the potential geographical distribution of Naupactus leucoloma (Coleoptera: Curculionidae) based on the MaxEnt model. Acta Ecol. Sin. 2022, 65, 1334–1342. [Google Scholar]
- Li, Z.P.; Zhang, X.Y.; Wang, M.M.; Chen, H.; Zhao, J. A habitat risk assessment model for mixed Bemisia tabaci that outperforms a single MaxEnt. Acta Entomol. Sin. 2023, 43. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.; Li, Y.; Tong, B.; Harris, M.; Zhu-Salzman, K.; Ge, F. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Glob. Chang. Biol. 2013, 19, 3210–3223. [Google Scholar] [CrossRef]
- Liang, H.B.; Zhang, R.Z.; Zhang, G.X. Prediction of suitable areas for Russian wheat aphid survival in China. Acta Ecol. Sin. 1999, 42, 55–61. [Google Scholar]
- Aubrey, A.W.; Frank, B.P.; Terri, L.R.; Lauren, M.K. Seasonal presence of Russian Wheat Aphid (Hemiptera: Aphididae) on alternate hosts in Colorado. Southwest. Entomol. 2009, 34, 121–129. [Google Scholar]
- Lukašová, H.; Basky, Z.; Stary, P. Flight patterns of Russian wheat aphid, Diuraphis noxia (Kurdj.) during its expansion to Central Europe (Horn., Aphididae). Anz. Schädlingskunde. 1999, 72, 41–44. [Google Scholar] [CrossRef]
- Bouabida, N.; Benoufella-Kitous, K.; Amar, S.A.; Medjdoub-Bensaad, F. Aphid diversity in two food legume crops: Fava bean and pea in Naciria region, and first record of Melanaphis sacchari (Zehntner, 1897) in Algeria. J. Entomol. Acarol. Res. 2020, 52, 54–60. [Google Scholar] [CrossRef]
- Clement, S.L.; Lester, D.G.; Wilson, A.D.; Pike, K.S. Behavior and performance of Diuraphis noxia (Homoptera: Aphididae) on fungal endophyte-infected and uninfected perennial rye grass. J. Econ. Entomol. 1992, 85, 583–588. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. Diuraphis noxia (Russian Wheat Aphid). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.9887 (accessed on 22 August 2022).
Index | Description | Unit |
---|---|---|
Bio1 | Annual Mean Temperature | °C |
Bio2 | Mean Diurnal Temperature Range | °C |
Bio7 | Temperature Annual Range | °C |
Bio8 | Mean Temperature of Wettest Quarter | °C |
Bio12 | Annual Precipitation | mm |
Bio15 | Precipitation Seasonality | mm |
Bio17 | Precipitation of Driest Quarter | mm |
Bio18 | Precipitation of Warmest Quarter | mm |
Bio19 | Precipitation of Coldest Quarter | mm |
Period | Decreased | Increased | Unchanged |
---|---|---|---|
2030s, SSP1-2.6 | 189.37 | 432.87 | 2168.47 |
2030s, SSP2-4.5 | 192.63 | 345.92 | 2165.64 |
2030s, SSP5-8.5 | 251.77 | 516.22 | 2105.98 |
2050s, SSP1-2.6 | 246.48 | 445.19 | 2111.17 |
2050s, SSP2-4.5 | 225.94 | 694.56 | 2132.05 |
2050s, SSP5-8.5 | 286.38 | 882.91 | 2072.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, K.; Li, M.; Zhao, H.; Guo, J.; Yang, N.; Yang, M.; Xian, X.; Liu, W. Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios. Insects 2023, 14, 425. https://doi.org/10.3390/insects14050425
Jing K, Li M, Zhao H, Guo J, Yang N, Yang M, Xian X, Liu W. Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios. Insects. 2023; 14(5):425. https://doi.org/10.3390/insects14050425
Chicago/Turabian StyleJing, Kaiting, Ming Li, Haoxiang Zhao, Jianyang Guo, Nianwan Yang, Ming Yang, Xiaoqing Xian, and Wanxue Liu. 2023. "Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios" Insects 14, no. 5: 425. https://doi.org/10.3390/insects14050425
APA StyleJing, K., Li, M., Zhao, H., Guo, J., Yang, N., Yang, M., Xian, X., & Liu, W. (2023). Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios. Insects, 14(5), 425. https://doi.org/10.3390/insects14050425