Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Xyleborus affinis Origin and Molecular Identification
2.2. Beauveria Bassiana Strains Source
2.3. Effect of Beauveria bassiana on Xyleborus affinis Adults’ Mortality and Offspring Impact
2.4. Conidial Removal from Beauveria bassiana-Inoculated Beetles
2.5. Data Analysis
3. Results
3.1. Xyleborus affinis Molecular Identification
3.2. Xyleborus affinis Females’ Mortality
3.3. Beauveria bassiana Effect on Xyleborus affinis Offspring
3.4. Conidial Removal from Beauveria bassiana-Inoculated Beetles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E.; Hofstetter, R.W. (Eds.) Academic Press: London, UK, 2014; ISBN 978-0-124-17156-5. [Google Scholar]
- Popa, V.; Déziel, E.; Lavallée, R.; Bauce, E.; Guertin, C. The complex symbiotic relationships of bark beetles with microorganisms: A potential practical approach for biological control in forestry. Pest Manag. Sci. 2012, 68, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Hulcr, J. Scolytus and other economically important bark and ambrosia beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: New York, NY, USA, 2015; pp. 495–531. [Google Scholar] [CrossRef]
- Haack, R.A.; Rabaglia, R.J. Exotic bark and ambrosia beetles in the USA: Potential and current invaders. In Potencial Invasive Pest of Agricultural Crops; Peña, J., Ed.; CAB International: London, UK, 2013; pp. 48–74. [Google Scholar]
- Hughes, M.A.; Smith, J.A.; Ploetz, R.C.; Kendra, P.E.; Mayfield, A.E., III; Hanula, J.L.; Hulcr, J.; Stelinski, L.L.; Cameron, S.; Riggins, J.J. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Progr. 2015, 16, 173–210. [Google Scholar] [CrossRef]
- Fraedrich, S.W.; Harrington, T.C.; Rabaglia, R.J.; Ulyshen, M.D.; Mayfiel, A.E.; Hanula, J.L.; Eickwort, J.M.; Miller, D.R. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis. 2008, 92, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.; Fraedrich, S.; Aghayeva, D. Raffaelea lauricola a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 2008, 104, 399–404. [Google Scholar]
- Sobel, L.; Lucky, A.; Hulcr, J. An ambrosia beetle Xyleborus affinis Eichhof, 1868 (Insecta: Coleoptera: Curculionidae: Scolitynae). Entomol. Nematol. UF/IFAS Ext. 2015, 627, 1–4. Available online: https://edis.ifas.ufl.edu/publication/IN1094 (accessed on 3 February 2023).
- Castrejón-Antonio, J.E.; Montesinos-Matías, R.; Acevedo-Reyes, N.; Tamez-Guerra, P.; Ayala-Zermeño, M.Á.; Berlanga-Padilla, A.M.; Arredondo-Bernal, H.C. Especies de Xyleborus (Coleoptera: Curculionidae: Scolytinae) asociados a huertos de aguacate en Colima, México. Acta Zool. Mex. 2017, 33, 146–150. (In Spanish) [Google Scholar] [CrossRef]
- Angeles-Restrepo, M.; Ochoa-Ascencio, S.; Fernández-Pavía, S.; Vázquez-Marrufo, G.; Equihua-Martínez, A.; Barrieto-Priego, A.F.; Correa-Suarez, M.; Saucedo-Carabez, J.R. Identificación de escarabajos ambrosiales (Coleópteros: Curculionidae) asociados a árboles de aguacate en Michoacán, México. Folia Entomol. Mex. 2019, 5, 80–88. (In Spanish) [Google Scholar]
- Carrillo, D.; Dunca, R.; Ploetz, R.; Peña, J.E. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol. 2014, 63, 54–62. [Google Scholar] [CrossRef]
- Lira-Noriega, A.; Soberón, J.; Equihua, J. Potential invasion of exotic ambrosia beetles Xyleborus glabratus and Euwallacea sp. in Mexico: A major threat for native and cultivated forest ecosystems. Sci. Rep. 2018, 8, 10179. [Google Scholar] [CrossRef]
- Carrillo, D.; Dunlap, C.; Avery, P.; Navarrete, J.; Dunca, R.; Jackson, M.; Peña, J.E. Entomopathogenic fungi as biological control agents for the vector of the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biol. Control 2015, 81, 44–50. [Google Scholar] [CrossRef]
- Jones, M.E.; Paine, T.D. Potential pesticides for control of a recently introduced ambrosia beetle (Euwallacea sp.) in southern California. J. Pest. Sci. 2018, 91, 237–246. [Google Scholar] [CrossRef]
- Kreutz, J.; Zimmermann, G.; Vaupel, O. Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci. Technol. 2004, 14, 837–848. [Google Scholar] [CrossRef]
- Srei, N.; Lavallée, R.; Guertin, C. Susceptibility of Dendroctonus simplex to Hypocreales fungi: Towards the development of a biological control strategy. J. Appl. Entomol. 2017, 141, 487–495. [Google Scholar] [CrossRef]
- Castrillo, L.A.; Griggs, M.H.; Ranger, C.M.; Reding, M.E.; Vandenberg, J.D. Virulence of commercial strain of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosabndrus germanus (Coleoptera: Curculionidae) and impact on brood. Biol. Control 2011, 58, 121–126. [Google Scholar] [CrossRef]
- Castrillo, L.A.; Griggs, M.H.; Vandenberg, J.D. Granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae), survival and brood production following exposure to entomopathogenic and mycoparasitic fungi. Biol. Control 2013, 67, 220–226. [Google Scholar] [CrossRef]
- Selvasundaram, R.; Muraleedharan, N. Occurrence of the entomogenous fungus Beauveria bassiana on the shot hole borer of tea. J. Plant. Crops 2000, 28, 229–230. [Google Scholar]
- Wegensteiner, R.; Wermelinger, B.; Herrmann, M. Natural enemies of bark beetles: Predators, parasitoids, pathogens, and nematodes. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: New York, NY, USA, 2015; pp. 247–304. [Google Scholar]
- Montesinos-Matías, R.; Gallou, A.; Berlanga-Padilla, A.M.; Serna-Domínguez, M.G.; Laureano-Ahuelicán, B.; Ayala-Zermeño, M.A.; Ordáz-Hernández, A.; López-Buenfil, J.A.; Arredondo-Bernal, H.C. Characterization of Beauveria bassiana Isolates Associated with Euwallacea sp. nr. fornicates in Populus sp. Southwest. Entomol. 2019, 44, 423–429. [Google Scholar] [CrossRef]
- Castrejón-Antonio, J.E.; Tamez-Guerra, P.; Montesinos-Matías, R.; Ek-Ramos, M.J.; Garza-López, P.M.; Arredondo-Bernal, H.C. Selection of Beauveria bassiana (Hypocreales: Cordycipitaceae) strains to control Xyleborus affinis (Curculionidae: Scolytinae) females. PeerJ 2020, 8, e9472. [Google Scholar] [CrossRef]
- Serna-Domínguez, M.G.; Andrade-Michel, G.Y.; Rosas-Valdez, R.; Castro-Félix, P.; Arredondo-Bernal, H.C.; Gallou, A. High genetic diversity of the entomopathogenic fungus Beauveria bassiana in Colima, Mexico. J. Invertebr. Pathol. 2019, 163, 67–74. [Google Scholar] [CrossRef]
- Truett, G.E.; Heeger, P.; Mynatt, R.L.; Truett, A.A.; Walker, J.A.; Warman, M.L. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 2000, 29, 52–54. [Google Scholar] [CrossRef]
- Normark, B.; Jordal, B.; Farrell, B. Origin of a haplodiploid beetle lineage. Proc. R. Soc. B Biol. 1999, 266, 2253–2259. [Google Scholar] [CrossRef]
- Montesinos-Matías, R.; Ordaz-Hernández, A.; Angel-Cuapio, A.; Colin-Bonifacio, Y.; Garcia-Garcia, R.E.; Angel-Sahagun, C.A. Principal component analysis of the biological characteristics of entomopathogenic fungi in nutrient-limited and cuticle-based media. J. Basic Microbiol. 2021, 61, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Feng, J.; Fan, Y.; Zhang, Y.; Bidochka, M.J.; Leger, R.J.S.; Pei, Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 2009, 102, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Netto, M.C.B.; Rocha, L.F.N. In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 2007, 164, 39–47. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Gohli, J.; Selvarajah, T.; Kirkendall, L.R.; Jordal, B. Globally distributed Xyleborus species reveal recurrent intercontinental dispersal in a landscape of ancient worldwide. BMC Evol. Biol. 2016, 16, 37. [Google Scholar] [CrossRef]
- Castrillo, L.A.; Griggs, M.H.; Liu, H.; Bauer, L.S.; Vandenberg, J.D. Assessing deposition and persistence of Beauveria bassiana GHA (Ascomycota: Hypocreales) applied for control of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in a commercial tree nursery. Biol. Control 2010, 54, 61–67. [Google Scholar] [CrossRef]
- Draganova, S.A.; Doychev, D.D.; Pilarska, D.K.; Takov, D.I. Bioassays of entomopathogenic fungi against xylophagous insects in Bulgaria: Laboratory and field experiments. Acta Zool. Bulg. 2017, 69, 411–419. [Google Scholar]
- Tuncer, C.; Kushiyev, R.; Erper, I.; Ozdemir, I.O.; Saruhan, I. Efficacy of native isolates of Metarhizium anisopliae and Beauveria bassiana against the invasive ambrosia beetle, Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egypt. J. Biol. Pest Control 2019, 29, 28. [Google Scholar] [CrossRef]
- Reynoso-López, E.A.; Méndez-Hernández, J.E.; Ek-Ramos, J.; Montesinos-Matías, R.; Loera, O. Metarhizium robertsii in combination with Trichoderma asperellum reduce the malathion doses used to control ambrosia beetles: The case of Xyleborus affinis. Biocontrol Sci. Technol. 2021, 31, 1080–1097. [Google Scholar] [CrossRef]
- Adamo, S.A.; Davies, G.; Easy, R.; Kovalko, I.; Turnbull, K.F. Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta. J. Exp. Biol. 2016, 219, 706–718. [Google Scholar] [CrossRef]
- Deans, C.A.; Behmer, S.T.; Tessnow, A.E.; Tamez-Guerra, P.; Pusztai, M.; Sword, G.A. Nutrition affects insect susceptibility to Bt toxins. Sci. Rep. 2017, 7, 39705. [Google Scholar] [CrossRef]
- Prior, C.; Jollands, P.; Le Patourel, G. Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). J. Invertebr. Pathol. 1988, 52, 66–72. [Google Scholar] [CrossRef]
- Bateman, R.P.; Carey, M.; Moore, D.E.; Prior, C. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann. Appl. Biol. 1993, 122, 145–152. [Google Scholar] [CrossRef]
- Perazzo, A.; Preziosi, V.; Guido, S. Phase inversion emulsification: Current understanding and applications. Adv. Colloid Interface Sci. 2015, 222, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Batta, Y.A. Biocontrol of almond bark beetle (Scolytus amygdali Geurin-Meneville, Coleoptera: Scolytidae) using Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes). J. Appl. Microbiol. 2007, 103, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Batta, Y.A.; Rahman, M.; Powis, K.; Baker, G.; Schmidt, O. Formulation and application of the entomopathogenic fungus: Zoophthora radicans (Brefeld) Batko (Zygomycetes: Entomophthorales). J. Appl. Microbiol. 2011, 110, 831–839. [Google Scholar] [CrossRef]
- Batta, Y.A. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi. MethodsX 2016, 3, 119–127. [Google Scholar] [CrossRef]
- Avery, P.B.; Bojorque, V.; Gámez, C.; Duncan, R.E.; Carrillo, D.; Cave, R.D. Spore acquisition and survival of ambrosia beetles associated with the laurel wilt pathogen in avocados after exposure to entomopathogenic fungi. Insects 2018, 9, 49. [Google Scholar] [CrossRef]
- Morales, R. Estructura de los nidos y comportamiento subsocial de Xyleborus volvulus (Fabricius)(Coleoptera, Scolytidae). Folia Entomol. Mex. 1984, 61, 35–47. (In Spanish) [Google Scholar]
- Brar, G.S.; Capinera, J.L.; McLean, S.; Peña, J.E. Life cycle, development and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla. Entomol. 2013, 96, 1158–1167. [Google Scholar] [CrossRef]
- Garza-López, P.M.; Konigsberg, M.; Gómez-Quiroz, L.E.; Loera, O. Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J. Microbiol. Biotechnol. 2012, 28, 353–359. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, N.; Tlecuitl-Beristain, S.; Favela-Torres, E.; Loera, O. Production and quality of conidia by Metarhizium anisopliae var. lepidiotum: Critical oxygen level and period of mycelium competence. Appl. Microbiol. Biotechnol. 2015, 99, 2783–2791. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, D.; Marcial-Quino, J.; Loera, O. Modulation of conidia production and expression of the gene bbrgs1 from Beauveria bassiana by oxygen pulses and light. J. Invertebr. Pathol. 2015, 130, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Paradza, V.M.; Khamis, F.M.; Yusuf, A.A.; Subramanian, S.; Akutse, K.S. Virulence and horizontal transmission of Metarhizium anisopliae by the adults of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and the efficacy of oil formulations against its nymphs. Heliyon 2021, 7, e08277. [Google Scholar] [CrossRef]
- Shang, Y.; Feng, P.; Wang, C. Fungi that infect insects: Altering host behavior and beyond. PLoS Pathog. 2015, 11, e1005037. [Google Scholar] [CrossRef]
- Cheraghi, A.; Habibpour, B.; Mossadegh, M.S.; Sharififard, M. Horizontal transmission of the entomopathogen fungus Metarhizium anisopliae in Microcerotermes diversus groups. Insects 2012, 3, 709–718. [Google Scholar] [CrossRef]
- Reyes-Villanueva, F.; Garza-Hernandez, J.A.; Garcia-Munguia, A.M.; Tamez-Guerra, P.; Howard, A.; Rodriguez-Perez, M.A. Dissemination of Metarhizium anisopliae of low and high virulence by mating behavior in Aedes aegypti. Parasit. Vectors 2011, 4, 171. [Google Scholar] [CrossRef]
- Kendra, P.E.; Guillén, L.; Tabanca, N.; Montgomery, W.S.; Schnell, E.Q.; Deyrup, M.A.; Cloonan, K.R. Risk assessment of Hass avocado and Mexican Lauraceae forattack by redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Agric. For. Entomol. 2023, 25, 285–302. [Google Scholar] [CrossRef]
Strains Code (CHE-CNRCB) | GenBank Accession Number a | Collection Year | Host | Geographical Origin | Reference |
---|---|---|---|---|---|
44 | MH203469.1 | 2012 | Hypothenemus hampei | Colima, México | [16] |
171 | MH203481.1 | 2012 | H. hampei | Colima, México | [16] |
431 | MH203492.1 | 2014 | H. hampei | Colima, México | [16] |
485 | ON885945.1 | 2015 | Galleria mellonella | Michoacán, México | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrejón-Antonio, J.E.; Tamez-Guerra, P.; García-Ortiz, N.; Muñiz-Paredes, F.; Sánchez-Rangel, J.C.; Montesinos-Matías, R. Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model. Insects 2023, 14, 477. https://doi.org/10.3390/insects14050477
Castrejón-Antonio JE, Tamez-Guerra P, García-Ortiz N, Muñiz-Paredes F, Sánchez-Rangel JC, Montesinos-Matías R. Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model. Insects. 2023; 14(5):477. https://doi.org/10.3390/insects14050477
Chicago/Turabian StyleCastrejón-Antonio, Jesús E., Patricia Tamez-Guerra, Nohemi García-Ortiz, Facundo Muñiz-Paredes, Juan Carlos Sánchez-Rangel, and Roberto Montesinos-Matías. 2023. "Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model" Insects 14, no. 5: 477. https://doi.org/10.3390/insects14050477
APA StyleCastrejón-Antonio, J. E., Tamez-Guerra, P., García-Ortiz, N., Muñiz-Paredes, F., Sánchez-Rangel, J. C., & Montesinos-Matías, R. (2023). Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model. Insects, 14(5), 477. https://doi.org/10.3390/insects14050477