Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. The Circadian Activity of P. vindemmiae
2.3. Identification of Clock Systems from Parasitoid Wasps
2.4. Sequence Alignment and Phylogenetic Analysis
2.5. Quantitative Real-Time PCR (qPCR)
2.6. Data Analysis
3. Results
3.1. The Circadian Activity of P. vindemmiae
3.2. Core Clock Genes in P. vindemmiae and Other Parasitoid Wasps
3.3. CLK
3.4. CYC
3.5. PER
3.6. TIMEOUT
3.7. CRY2
3.8. VRILLE and PDP1
3.9. CWO
3.10. Expression Profiles of Clock Genes in P. vindemmiae Females and Males
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Q.; Metterville, D.; Briscoe, A.D.; Reppert, S.M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 2007, 24, 948–955. [Google Scholar] [CrossRef]
- Barbosa, P.; Frongillo, E.A. Influence of light-intensity and temperature on locomotory and flight activity of Brachymeria intermedia [Hym.: Chalcididae] a pupal parasitoid of gypsy moth. Entomophaga 1977, 22, 405–411. [Google Scholar] [CrossRef]
- Nishimura, T.; Fujii, T.; Sakamoto, K.; Maeto, K. Daily locomotor activity of the parasitoid wasp Meteorus pulchricornis (Hymenoptera: Braconidae) that attacks exposed lepidopteran larvae. Appl. Entomol. Zool. 2015, 50, 525–531. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Tanaka, T. Time and location of larval emergence of the endoparasitoid Cotesia kariyai (Hymenopter: Braconidae) from the lepidopteran host Pseudaletia separata (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1999, 92, 101–107. [Google Scholar] [CrossRef]
- Pompanon, F.; Fouillet, P.; Bouletreau, M. Emergence rhythms and protandry in relation to daily patterns of locomotor activity in Trichogramma species. Evol. Ecol. 1995, 9, 467–477. [Google Scholar] [CrossRef]
- Bertossa, R.C.; van Dijk, J.; Beersma, D.G.; Beukeboom, L.W. Circadian rhythms of adult emergence and activity but not eclosion in males of the parasitic wasp Nasonia vitripennis. J. Insect Physiol. 2010, 56, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Fleury, F.; Allemand, R.; Vavre, F.; Fouillet, P.; Bouletreau, M. Adaptive significance of a circadian clock: Temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc. Biol. Sci. 2000, 267, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Hanan, A.; He, X.Z.; Shakeel, M.; Wang, Q. Diurnal rhythms of emergence, host feeding and oviposition of Eretmocerus warrae (Hymenoptera: Aphelinidae). New Zealand Plant Prot. 2009, 62, 156–160. [Google Scholar] [CrossRef]
- Chen, C.; He, X.Z.; Zhou, P.; Wang, Q. Tamarixia triozae, an important parasitoid of Bactericera cockerelli: Circadian rhythms and their implications in pest management. Biocontrol 2020, 65, 537–546. [Google Scholar] [CrossRef]
- Tomioka, K.; Matsumoto, A. The circadian system in insects: Cellular, molecular, and functional organization. Adv. Insect Physiol. 2019, 56, 73–115. [Google Scholar]
- Ikeda, K.; Daimon, T.; Sezutsu, H.; Udaka, H.; Numata, H. Involvement of the clock gene period in the circadian rhythm of the silkmoth Bombyx mori. J. Biol. Rhythm 2019, 34, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Tobback, J.; Boerjan, B.; Vandersmissen, H.P.; Huybrechts, R. Male reproduction is affected by RNA interference of period and timeless in the desert locust Schistocerca gregaria. Insect. Biochem. Molec. Biol. 2012, 42, 109–115. [Google Scholar] [CrossRef]
- Moriyama, Y.; Kamae, Y.; Uryu, O.; Tomioka, K. Gb’Clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. J. Biol. Rhythm 2012, 27, 467–477. [Google Scholar] [CrossRef]
- Uryu, O.; Karpova, S.G.; Tomioka, K. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus. J. Insect Physiol. 2013, 59, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, Y.; Sakamoto, T.; Karpova, S.G.; Matsumoto, A.; Noji, S.; Tomioka, K. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. J. Biol. Rhythm 2008, 23, 308–318. [Google Scholar] [CrossRef]
- Zhan, S.; Merlin, C.; Boore, J.L.; Reppert, S.M. The monarch butterfly genome yields insights into long-distance migration. Cell 2011, 147, 1171–1185. [Google Scholar] [CrossRef]
- Cyran, S.A.; Buchsbaum, A.M.; Reddy, K.L.; Lin, M.C.; Glossop, N.R.J.; Hardin, P.E.; Young, M.W.; Storti, R.V.; Blau, J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 2003, 112, 329–341. [Google Scholar] [CrossRef]
- Narasaki-Funo, Y.; Tomiyama, Y.; Nose, M.; Bando, T.; Tomioka, K. Functional analysis of Pdp1 and vrille in the circadian system of a cricket. J. Insect Physiol. 2020, 127, 104156. [Google Scholar] [CrossRef] [PubMed]
- Ingram, K.K.; Kutowoi, A.; Wurm, Y.; Shoemaker, D.; Meier, R.; Bloch, G. The molecular clockwork of the fire ant Solenopsis invicta. PLoS ONE 2012, 7, e45715. [Google Scholar] [CrossRef]
- Rivas, G.B.S.; Zhou, J.; Merlin, C.; Hardin, P.E. CLOCKWORK ORANGE promotes CLOCK-CYCLE activation via the putative Drosophila ortholog of CLOCK INTERACTING PROTEIN CIRCADIAN. Curr. Biol. 2021, 31, 4207–4218. [Google Scholar] [CrossRef]
- Tomioka, K.; Matsumoto, A. Circadian molecular clockworks in non-model insects. Curr. Opin. Insect Sci. 2015, 7, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Sauman, I.; Reppert, S.M. Circadian clock neurons in the silkmoth Antheraea pernyi: Novel mechanisms of Period protein regulation. Neuron 1996, 17, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Sehadová, H.; Markova, E.P.; Sehnal, F.; Takeda, M. Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm, Bombyx mori. J. Biol. Rhythm 2004, 19, 466–482. [Google Scholar] [CrossRef]
- Rubin, E.B.; Shemesh, Y.; Cohen, M.; Elgavish, S.; Robertson, H.M.; Bloch, G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 2006, 16, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Kotwica-Rolinska, J.; Chodakova, L.; Smykal, V.; Damulewicz, M.; Provaznik, J.; Wu, B.C.H.; Hejnikova, M.; Chvalova, D.; Dolezel, D. Loss of timeless underlies an evolutionary transition within the circadian clock. Mol. Biol. Evol. 2022, 39, msab346. [Google Scholar] [CrossRef]
- Zhu, H.; Sauman, I.; Yuan, Q.; Casselman, A.; Emery-Le, M.; Emery, P.; Reppert, S.M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 2008, 6, 138–155. [Google Scholar] [CrossRef]
- Benetta, E.D.; Beukeboom, L.W.; van de Zande, L. Adaptive differences in circadian clock gene expression patterns and photoperiodic diapause induction in Nasonia vitripennis. Am. Nat. 2019, 193, 881–896. [Google Scholar] [CrossRef]
- Bertossa, R.C.; van de Zande, L.; Beukeboom, L.W.; Beersma, D.G.M. Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis. Chronobiol. Int. 2014, 31, 749–760. [Google Scholar] [CrossRef]
- Mukai, A.; Goto, S.G. The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Appl. Entomol. Zool. 2016, 51, 185–194. [Google Scholar] [CrossRef]
- Benetta, E.D.; van de Zande, L.; Beukeboom, L.W. Courtship rhythm in Nasonia vitripennis is affected by the clock gene period. Behaviour 2021, 158, 685–704. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.B.; Qiu, L.M.; Wan, B.; Yang, Y.; Liu, M.M.; Wang, F.; Fang, Q.; Stanley, D.W.; Ye, G.Y. Functional characterization of a venom protein calreticulin in the ectoparasitoid Pachycrepoideus vindemiae. Insects 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Tormos, J.; Beitia, F.; Bockmann, E.A.; Asis, J.D.; Fernandez, S. The preimaginal phases and development of Pachycrepoideus vindemmiae (Hymenoptera, Pteromalidae) on mediterranean fruit fly, Ceratitis capitata (Diptera, Tephritidae). Microsc. Microanal. 2009, 15, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Hogg, B.N.; Biondi, A.; Daane, K.M. Plasticity of body growth and development in two cosmopolitan pupal parasitoids. Biol. Control 2021, 163, 104738. [Google Scholar] [CrossRef]
- Da Silva, C.S.B.; Price, B.E.; Soohoo-Hui, A.; Walton, V.M. Factors affecting the biology of Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), a parasitoid of spotted-wing drosophila (Drosophila suzukii). PLoS ONE 2019, 14, e0218301. [Google Scholar]
- Sadanandappa, M.K.; Sathyanarayana, S.H.; Bosco, G. Parasitoid wasp culturing and assay to study parasitoid-induced reproductive modifications in Drosophila. Bio. Protoc. 2023, 13, e4582. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Paddibhatla, I.; Rajwani, R.; Govind, S. An introduction to parasitic wasps of Drosophila and the antiparasite immune response. J. Vis. Exp. 2012, e3347. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Teng, Z.W.; Wu, H.Z.; Ye, X.H.; Fang, Q.; Zhou, H.X.; Ye, G.Y. An endoparasitoid uses its egg surface proteins to regulate its host immune response. Insect Sci. 2022, 29, 1030–1046. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Allada, R.; White, N.E.; So, W.V.; Hall, J.C.; Rosbash, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998, 93, 791–804. [Google Scholar] [CrossRef]
- Takahata, S.; Ozaki, T.; Mimura, J.; Kikuchi, Y.; Sogawa, K.; Fujii-Kuriyama, Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000, 5, 739–747. [Google Scholar] [CrossRef]
- Chang, D.C.; McWatters, H.G.; Williams, J.A.; Gotter, A.L.; Levine, J.D.; Reppert, S.M. Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi. J. Biol. Chem. 2003, 278, 38149–38158. [Google Scholar] [CrossRef] [PubMed]
- Saez, L.; Young, M.W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 1996, 17, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.C.; Reppert, S.M. A novel C-terminal domain of Drosophila PERIOD inhibits dCLOCK: CYCLE-mediated transcription. Curr. Biol. 2003, 13, 758–762. [Google Scholar] [CrossRef]
- Zhu, L.; Feng, S.; Gao, Q.; Liu, W.; Ma, W.H.; Wang, X.P. Host population related variations in circadian clock gene sequences and expression patterns in Chilo suppressalis. Chronobiol. Int. 2019, 36, 969–978. [Google Scholar] [CrossRef]
- Hirayama, J.; Nakamura, H.; Ishikawa, T.; Kobayashi, Y.; Todo, T. Functional and structural analyses of cryptochrome- Vertebrate cry regions responsible for interaction with the CLOCK: BMAL1 heterodimer and its nuclear localization. J. Biol. Chem. 2003, 278, 35620–35628. [Google Scholar] [CrossRef]
- Werckenthin, A.; Derst, C.; Stengl, M. Sequence and expression of per, tim1, and cry2 genes in the madeira cockroach Rhyparobia maderae. J. Biol. Rhythm 2012, 27, 453–466. [Google Scholar] [CrossRef]
- Rego, N.D.C.; Chahad-Ehlers, S.; Campanini, E.B.; Torres, F.R.; de Brito, R.A. VRILLE shows high divergence among Higher Diptera flies but may retain role as transcriptional repressor of clock. J. Insect Physiol. 2021, 133, 104284. [Google Scholar] [CrossRef] [PubMed]
- Nesbit, K.T.; Christie, A.E. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock. Comp. Biochem. Physiol. Part D 2014, 12, 16–44. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.R.; Turner, D.L.; Weintraub, H.; Parkhurst, S.M. Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol. Cell. Biol. 1995, 15, 6923–6931. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Jiang, H.X.; Zhang, X.C.; Shelton, A.M.; Feng, J.N. Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae), a new insect pest in China. PLoS ONE 2014, 9, e87725. [Google Scholar] [CrossRef] [PubMed]
- Bertossa, R.C.; van Dijk, J.; Diao, W.; Saunders, D.; Beukeboom, L.W.; Beersma, D.G.M. Circadian rhythms differ between sexes and closely related species of Nasonia wasps. PLoS ONE 2013, 8, e60167. [Google Scholar] [CrossRef] [PubMed]
- Forsse, E.; Smith, S.M.; Bourchier, R.S. Flight initiation in the egg parasitoid Trichogramma minutum: Effects of ambient temperature, mates, food, and host eggs. Entomol. Exp. Appl. 1992, 62, 147–154. [Google Scholar] [CrossRef]
- Vanlenteren, J.C.; Szabo, P.; Huisman, P.W.T. The parasite-host relationship between Encarsia formosa gahan (Hymenoptera, Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae). XXXVII. Adult emergence and initial dispersal pattern of E. formosa. J. Appl. Entomol. 1992, 114, 392–399. [Google Scholar] [CrossRef]
- Pompanon, F.; Fouillet, P.; Bouletreau, M. Physiological and genetic factors as sources of variation in locomotion and activity rhythm in a parasitoid wasp (Trichogramma brassicae). Physiol. Entomol. 1999, 24, 346–357. [Google Scholar] [CrossRef]
- Vogt, E.A.; Nechols, J.R. Diel activity patterns of the squash bug egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Ann. Entomol. Soc. Am. 1991, 84, 303–308. [Google Scholar] [CrossRef]
- Miranda, M.; Sivinski, J.; Rull, J.; Cicero, L.; Aluja, M. Niche breadth and interspecific competition between Doryctobracon crawfordi and Diachasmimorpha longicaudata (Hymenoptera: Braconidae), native and introduced parasitoids of Anastrepha spp. fruit flies (Diptera: Tephritidae). Biol. Control 2015, 82, 86–95. [Google Scholar] [CrossRef]
- Merlin, C.; Beaver, L.E.; Taylor, O.R.; Wolfe, S.A.; Reppert, S.M. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 2013, 23, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Rakshit, K.; Krishnan, N.; Guzik, E.M.; Pyza, E.; Giebultowicz, J.M. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol. Int. 2012, 29, 5–14. [Google Scholar] [CrossRef]
- Gu, H.F.; Xiao, J.H.; Niu, L.M.; Wang, B.; Ma, G.C.; Dunn, D.W.; Huang, D.W. Adaptive evolution of the circadian gene timeout in insects. Sci. Rep. 2014, 4, 4212. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.F.; Xiao, J.H.; Dunn, D.W.; Niu, L.-M.; Wang, B.; Jia, L.Y.; Huang, D.W. Evidence for the circadian gene period as a proximate mechanism of protandry in a pollinating fig wasp. Biol. Lett. 2014, 10, 20130914. [Google Scholar] [CrossRef]
- Li, C.J.; Yun, X.P.; Yu, X.J.; Li, B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. Insect Sci. 2018, 25, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Rund, S.S.C.; Hou, T.Y.; Ward, S.M.; Collins, F.H.; Duffield, G.E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2011, 108, E421–E430. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.D.; Vega-Rodriguez, J.; Diabate, A.; Liu, J.N.; Cui, C.L.; Nignan, C.; Dong, L.; Li, F.; Ouedrago, C.O.; Bandaogo, A.M.; et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 2021, 371, 411–415. [Google Scholar] [CrossRef]
- Takekata, H.; Numata, H.; Shiga, S.; Goto, S.G. Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. J. Insect Physiol. 2014, 68, 16–22. [Google Scholar] [CrossRef]
- Fergus, D.J.; Shaw, K.L. Circadian rhythms and period expression in the Hawaiian cricket genus Laupala. Behav. Genet. 2013, 43, 241–253. [Google Scholar] [CrossRef]
Protein Name | Molecular Weight (kDa) | Accession Number | Blast Information (E-Value; Genbank No.; Species) |
---|---|---|---|
Pv_CLK | 84.49 | OQ145164 | 0.0; XP_032452987.1; Nasonia vitripennis |
Pv_CYC | 107.74 | OQ145166 | 0.0; XP_008215805.1; N. vitripennis |
Pv_PER | 134.99 | OQ145167 | 0.0; XP_008209246.1; N. vitripennis |
Pv_TIMEOUT | 69.32 | OQ145168 | 0.0; XP_031783081.1; N. vitripennis |
Pv_CRY2 | 65.57 | OQ145169 | 0.0; XP_001606405.2; N. vitripennis |
Pv_VRILLE | 42.54 | OQ145170 | 1 × 10−163; KOX68987.1; Melipona quadrifasciata |
Pv_PDP1 | 27.71 | OQ145171 | 0.0; XP_031779953.1; N. vitripennis |
Pv_CWO | 40.75 | OQ145172 | 1 × 10−153; XP_043263793.1; Colletes gigas |
Species | Clock Gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Clk | cyc | per | tim | timeout | cry1 | cry2 | vrille | Pdp1 | cwo | |
Apocrypta bakeri | + | + | + | nd | + | nd | + | + | + | + |
Aphidius ervi | + | + | + | nd | + | nd | + | + | + | + |
Aphidius gifuensis | + | + | + | nd | + | nd | + | + | + | + |
Asobara japonica | + | + | + | nd | + | nd | nd | + | + | + |
Belonocnema treatae | + | + | + | nd | + | nd | + | + | + | + |
Cotesia chilonis | + | + | + | nd | + | nd | + | + | + | + |
Cotesia congregata | + | + | + | nd | + | nd | + | + | + | + |
Cotesia flavipes | + | nd | + | nd | + | nd | + | + | + | + |
Copidosoma floridanum | + | + | + | nd | + | nd | + | + | + | + |
Cotesia glomerata | + | + | + | nd | + | nd | + | + | + | + |
Chelonus insularis | + | + | + | nd | + | nd | + | + | + | + |
Cotesia rubecula | + | nd | + | nd | + | nd | + | + | + | + |
Cotesia sesamiae | + | nd | + | nd | + | nd | + | + | + | + |
Ceratosolen solmsi | + | + | + | nd | + | nd | + | + | + | + |
Campoletis sonorensis | + | + | + | nd | + | nd | + | + | + | + |
Cotesia vestalis | + | + | + | nd | + | nd | + | + | + | + |
Diachasma alloeum | + | + | nd | nd | + | nd | + | + | + | + |
Diadromus collaris | + | nd | + | nd | + | nd | nd | + | + | + |
Diadegma semiclausum | + | nd | + | nd | + | nd | + | + | + | + |
Eumacrocentrus americanus | + | + | + | nd | + | nd | + | + | + | + |
Fopius arisanus | + | + | + | nd | + | nd | + | + | + | + |
Gonatopus flavifemur | + | nd | + | nd | + | nd | + | + | + | + |
Goniozus legneri | + | + | + | nd | + | nd | + | + | + | + |
Hyposoter didymator | + | + | + | nd | + | nd | + | + | + | + |
Leptopilina boulardi | + | + | + | nd | + | nd | + | + | + | + |
Leptopilina clavipes | + | + | + | nd | + | nd | + | + | + | + |
Lysiphlebus fabarum | + | nd | + | nd | + | nd | + | + | + | + |
Leptopilina heterotoma | + | + | + | nd | + | nd | + | + | + | + |
Macrocentrus cingulum | + | + | + | nd | + | nd | + | + | + | + |
Microplitis demolitor | + | + | + | nd | + | nd | + | + | + | + |
Nasonia giraulti | + | + | + | nd | + | nd | + | + | + | + |
Nasonia longicornis | + | + | + | nd | + | nd | + | + | + | + |
Nasonia vitripennis | + | + | + | nd | + | nd | + | + | + | + |
Orussus abietinus | + | + | + | nd | + | nd | + | + | + | + |
Pteromalus puparum | + | + | + | nd | + | nd | + | + | + | + |
Pachycrepoideus vindemmiae | + | + | + | nd | + | nd | + | + | + | + |
Sycophaga agraensis | + | + | + | nd | + | nd | + | + | + | + |
Synergus gifuensis | + | + | + | nd | + | nd | + | + | + | + |
Synergus itoensis | + | + | + | nd | + | nd | + | + | + | + |
Trichogramma brassicae | + | + | + | nd | + | nd | + | + | + | + |
Trichogramma evanescens | + | + | + | nd | + | nd | + | + | + | + |
Trichogramma pretiosum | + | nd | + | nd | + | nd | + | + | + | + |
Trichomalopsis sarcophagae | + | + | + | nd | + | nd | + | nd | + | + |
Venturia canescens | + | + | + | nd | + | nd | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Z.; Huo, M.; Zhou, Y.; Zhou, Y.; Liu, Y.; Lin, Y.; Zhang, Q.; Zhang, Z.; Wan, F.; Zhou, H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. Insects 2023, 14, 486. https://doi.org/10.3390/insects14050486
Teng Z, Huo M, Zhou Y, Zhou Y, Liu Y, Lin Y, Zhang Q, Zhang Z, Wan F, Zhou H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. Insects. 2023; 14(5):486. https://doi.org/10.3390/insects14050486
Chicago/Turabian StyleTeng, Ziwen, Mengran Huo, Yanan Zhou, Yuqi Zhou, Yunjie Liu, Yan Lin, Qi Zhang, Zhiqi Zhang, Fanghao Wan, and Hongxu Zhou. 2023. "Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps" Insects 14, no. 5: 486. https://doi.org/10.3390/insects14050486
APA StyleTeng, Z., Huo, M., Zhou, Y., Zhou, Y., Liu, Y., Lin, Y., Zhang, Q., Zhang, Z., Wan, F., & Zhou, H. (2023). Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. Insects, 14(5), 486. https://doi.org/10.3390/insects14050486