Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Laboratory Bioassays
2.3. Field Trials
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perier, J.D.; Cremonez, P.S.G.; Champagne, D.E.; Simmons, A.M.; Riley, D.G. Whiteflies at the intersection of polyphagy and insecticide resistance. Ann. Entomol. Soc. Am. 2022, 115, 401–416. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Perring, T.M.; Stansly, P.A.; Liu, T.X.; Smith, H.A.; Andreason, S.A. Whiteflies: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato; Wakil, W., Brust, G.E., Perring, T.M., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2018; pp. 73–110. [Google Scholar]
- Palumbo, J.C.; Horowitz, A.R.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop. Protect. 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Schuster, D.J.; Mann, R.S.; Toapanta, M.; Cordero, R.; Thompson, S.; Cyman, S.; Shurtleff, A.; Morris, R.F. Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag. Sci. 2010, 66, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Cyman, S.; Schuster, D.J.; Portillo, H.E.; Slater, R. Baseline susceptibility of Bemisia tabaci (Genn.) biotype B in southern Florida to cyantraniliprole. Crop. Protect. 2013, 44, 104–108. [Google Scholar] [CrossRef]
- Sparks, T.C.; Riley, D.G.; Simmons, A.M.; Guo, L. Comparison of toxicological bioassays for whiteflies. Insects 2020, 11, 789. [Google Scholar] [CrossRef]
- Prabhaker, N.; Toscano, N.C.; Henneberry, T.J.; Castle, S.J.; Weddle, D. Assessment of two bioassay techniques for resistance monitoring of silverleaf whitefly (Homoptera: Aleyrodidae) in California. J. Econ. Entomol. 1996, 89, 805–815. [Google Scholar] [CrossRef]
- Sivasupramaniam, S.; Johnson, S.; Watson, T.F.; Osman, A.A.; Jassim, R. A glass-vial technique for monitoring tolerance of Bemisia argentifolii (Homoptera: Aleyrodidae) to selected insecticides in Arizona. J. Econ. Entomol. 1997, 90, 66–74. [Google Scholar] [CrossRef]
- Castle, S.J.; Merten, P.; Prabhaker, N. Comparative susceptibility of Bemisia tabaci to imidacloprid in field- and laboratory-based bioassays. Pest Manag. Sci. 2014, 70, 1538–1546. [Google Scholar] [CrossRef]
- De Marchi, B.R.; Smith, H.; Turechek, W.; Riley, D. A maximum dose bioassay to assess efficacy of key insecticides against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae). J. Econ. Entomol. 2021, 114, 914–921. [Google Scholar] [CrossRef]
- Fang, C.; Hopkinson, J.E.; Balzer, J.; Frese, M.; Tay, W.T.; Walsh, T. Screening for insecticide resistance in Australian field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) using bioassays and DNA sequencing. Pest Manag. Sci. 2022, 78, 3248–3259. [Google Scholar] [CrossRef]
- Srinivasan, R.; Riley, D.G.; Diffie, S.; Sparks, A.N.; Adkins, S. Whitefly population dynamics and evaluation of whitefly-transmitted Tomato Yellow Leaf Curl Virus (TYLCV)-resistant tomato genotypes as whitefly and TYLCV reservoirs. J. Econ. Entomol. 2012, 105, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, S.; Flint, H. Spatial-distribution of adult Bemisia tabaci (Homoptera, Aleyrodidae) in cotton and development and validation of fixed-precision sampling plans for estimating population-density. Environ. Entomol. 1995, 24, 261–270. [Google Scholar] [CrossRef]
- Barman, A.K.; Roberts, P.M.; Prostko, E.P.; Toews, M.D. Seasonal occurrence and reproductive suitability of weed hosts for sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), in South Georgia. J. Entomol. Sci. 2022, 57, 1–11. [Google Scholar] [CrossRef]
- USDA-NASS. State Agriculture Overview—Georgia. Available online: http://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=GEORGIA (accessed on 20 August 2022).
- Kavalappara, S.R.; Milner, H.; Konakalla, N.C.; Morgan, K.; Sparks, A.N.; McGregor, C.; Culbreath, A.K.; Wintermantel, W.M.; Bag, S. High throughput sequencing-aided survey reveals widespread mixed infections of whitefly-transmitted viruses in cucurbits in Georgia, USA. Viruses 2021, 13, 988. [Google Scholar] [CrossRef]
- LaTora, A.G.; Codod, C.B.; Legarrea, S.; Dutta, B.; Kemerait, R.C.; Adkins, S.; Turechek, W.; Coolong, T.; da Silva, A.L.B.R.; Srinivasan, R. Combining cultural tactics and insecticides for the management of the sweetpotato whitefly, Bemisia tabaci MEAM1, and viruses in yellow squash. Horticulturae 2022, 8, 341. [Google Scholar] [CrossRef]
- Gautam, S.; Crossley, M.S.; Dutta, B.; Coolong, T.; Simmons, A.M.; da Silva, A.L.B.R.; Snyder, W.E.; Srinivasan, R. Low genetic variability in Bemisia tabaci MEAM1 populations within farmscapes of Georgia, USA. Insects 2020, 11, 834. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, R.A. Field-evolved resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to carbodiimide and neonicotinoids in Pakistan. J. Econ. Entomol. 2017, 110, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Q.H.; Zhou, X.; Zhang, M.; Yang, Q.Y.; Su, Q.; Luo, C. Characterization of field-evolved resistance to afidopyropen, a novel insecticidal toxin developed from microbial secondary metabolites, in Bemisia tabaci. Toxins 2022, 14, 453. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Gorman, K.; Ross, G.; Denholm, I. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Arch. Insect Biochem. Physiol. 2003, 54, 177–186. [Google Scholar] [CrossRef]
- Isaacs, A.K.; Qi, S.Z.; Sarpong, R.; Casida, J.E. Insect ryanodine receptor: Distinct but coupled insecticide binding sites for [N-C(3)H(3)]chlorantraniliprole, flubendiamide, and [(3)H]ryanodine. Chem. Res. Toxicol. 2012, 25, 1571–1573. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J. The Toxicology and Biochemistry of Insecticides, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 380. [Google Scholar]
- NOAA-NWS. NOWData—NOAA Online Weather Data. Available online: http://www.weather.gov/wrh/Climate?wfo=ffc (accessed on 10 October 2022).
IRAC 1 Group | Common Name | Commercial™ Name | Per Hectare Rate | Bioassay Rate (p.p.m. of a.i. 2) |
---|---|---|---|---|
- | Water check | - | - | - |
4A | Imidacloprid | Admire Pro 4.6F | 160.8 mL | 73.6 |
4A | Dinotefuran | Venom 70SG | 280.2 g | 209.4 |
4A | Acetamiprid | Assail 30SG | 280.2 g | 89.7 |
4A | Clothianidin | Belay 50WDG | 292.3 mL | 156.8 |
4C | Sulfoxaflor | Transform WG | 157.6 g | 84.1 |
4D | Flupyradifurone | Sivanto Prime 1.67SL | 876.9 mL | 160.3 |
7C | Pyriproxyfen | Knack 0.86EC | 730.8 mL | 87.7 |
29 | Flonicamid | Beleaf 50SG | 299.8 g | 160.3 |
23 | Spiromesifen | Oberon 2SC | 621.1 mL | 153.4 |
28 | Cyantraniliprole | Exirel 0.83SC | 986.5 mL | 107.6 |
Crop System | 24 h Pre-Treatment Bioassay | 24 h Post-Treatment Field | |||
---|---|---|---|---|---|
F | p > F | F | p > F | ||
Squash #1 2021 | |||||
Insecticide | 23.4 | <0.001 | 16.5 | <0.001 | |
Rep/block | 2.17 | 0.072 | 0.87 | 0.484 | |
Squash #2 2021 | |||||
Insecticide | 16.4 | <0.001 | 7.81 | <0.001 | |
Rep/block | 1.71 | 0.150 | 4.16 | 0.003 | |
Cucumber #1 2021 | |||||
Insecticide | 19.7 | <0.001 | 13.5 | <0.001 | |
Rep/block | 3.00 | 0.020 | 1.52 | 0.199 | |
Cucumber #2 2021 | |||||
Insecticide | 55.3 | <0.001 | 6.5 | <0.001 | |
Rep/block | 3.10 | 0.026 | 0.31 | 0.873 | |
Squash #3 2022 | |||||
Insecticide | 9.6 | <0.001 | 10.8 | <0.001 | |
Rep/block | 3.36 | 0.011 | 0.41 | 0.803 | |
Squash #4 2022 | |||||
Insecticide | 9.7 | <0.001 | 7.3 | <0.001 | |
Rep/block | 1.27 | 0.293 | 0.91 | 0.458 | |
Cucumber #3 2022 | |||||
Insecticide | 11.9 | <0.001 | 2.7 | 0.005 | |
Rep/block | 1.85 | 0.121 | 0.35 | 0.846 | |
Cucumber #4 2022 | |||||
Insecticide | 10.5 | <0.001 | 8.39 | <0.001 | |
Rep/block | 0.32 | 0.898 | 2.01 | 0.096 |
Treatment | 24 h Laboratory Bioassay (%) | 24 h Field Trial (%) | ||
---|---|---|---|---|
2021 | Squash #1 | Squash #2 | Squash #1 | Squash #2 |
Check | 89.32 ± 2.60 a 1 | 87.79 ± 7.41 a | 42.76 ± 4.53 a | 37.39 ± 4.84 a |
Pyriproxyfen | 56.64 ± 8.05 b | 54.58 ± 10.19 b | 18.41 ± 2.40 bcd | 28.84 ± 5.27 ab |
Clothianidin | 32.96 ± 4.35 bcd | 43.93 ± 4.01 bc | 24.53 ± 3.86 b | 39.13 ± 4.71 a |
Spiromesifen | 39.45 ± 9.49 bc | 29.58 ± 8.24 bcd | 21.35 ± 3.42 bc | 30.65 ± 6.73 ab |
Flonicamid | 19.10 ± 6.90 cde | 26.33 ± 4.67 bcd | 26.65 ± 2.35 b | 18.90 ± 2.53 bc |
Acetamiprid | 15.51 ± 4.10 cde | 24.20 ± 5.81 cd | 11.71 ± 1.02 cde | 14.35 ± 4.65 bc |
Sulfoxaflor | 17.29 ± 3.50 cde | 22.14 ± 9.82 cd | 19.06 ± 1.67 bcd | 30.32 ± 4.63 ab |
Imidacloprid | 16.29 ± 4.84 cde | 11.42 ± 3.57 d | 20.88 ± 2.13 bc | 21.68 ± 2.82 abc |
Flupyradifurone | 11.40 ± 5.56 de | 8.59 ± 4.19 d | 5.41 ± 0.58 e | 8.45 ± 1.47 c |
Cyantraniliprole | 7.39 ± 3.52 e | 9.52 ± 4.21 d | 12.53 ± 0.97 cde | 18.65 ± 1.86 bc |
Dinotefuran | 7.83 ± 2.28 e | 2.65 ± 1.42 d | 9.29 ± 0.90 ed | 6.10 ± 1.01 c |
2022 | Squash #3 | Squash #4 | Squash #3 | Squash #4 |
Check | 84.54 ± 4.37 a | 76.45 ± 6.34 a | 66.22 ± 4.25 a | 51.76 ± 4.64 a |
Pyriproxyfen | 50.06 ± 8.71 b | 31.73 ± 6.61 bcd | 51.33 ± 3.60 abc | 41.91 ± 4.16 ab |
Clothianidin | 36.23 ± 8.40 bc | 54.73 ± 11.40 ab | 62.11 ± 4.65 ab | 51.03 ± 5.71 a |
Spiromesifen | 49.73 ± 12.97 b | 50.89 ± 9.79 abc | 51.22 ± 4.50 abc | 36.32 ± 4.87 abc |
Flonicamid | 40.20 ± 8.80 bc | 55.24 ± 9.76 ab | 44.44 ± 4.04 bcd | 36.03 ± 4.45 abc |
Acetamiprid | 23.03 ± 1.79 bc | 11.82 ± 3.06 d | 49.56 ± 3.89 abc | 28.53 ± 2.59 bc |
Sulfoxaflor | 32.18 ± 5.79 bc | 20.42 ± 4.57 cd | 52.00 ± 4.75 abc | 49.85 ± 4.95 a |
Imidacloprid | 33.36 ± 7.06 bc | 29.16 ± 6.49 bcd | 39.00 ± 3.26 cd | 49.71 ± 4.14 a |
Flupyradifurone | 20.08 ± 2.99 bc | 10.95 ± 3.54 d | 28.44 ± 2.25 d | 22.35 ± 2.09 c |
Cyantraniliprole | 15.25 ± 4.11 c | 20.34 ± 5.62 cd | 30.67 ± 3.81 d | 28.09 ± 3.11 bc |
Dinotefuran | 18.85 ± 4.83 c | 14.79 ± 5.49 d | 30.56 ± 2.28 d | 26.76 ± 2.31 bc |
Treatment | 24 h Laboratory Bioassay (%) | 24 h Field Trial (%) | ||
---|---|---|---|---|
2021 | Cucumber #1 | Cucumber #2 | Cucumber #1 | Cucumber #2 |
Check | 75.45 ± 8.81 a 1 | 68.66 ± 2.81 a | 60.44 ± 3.73 a | 50.97 ± 4.43 a |
Pyriproxyfen | 21.69 ± 4.26 b | 49.67 ± 3.75 b | 61.76 ± 3.74 a | 41.61 ± 4.37 abc |
Clothianidin | 24.47 ± 4.59 b | 41.20 ± 6.97 b | 39.71 ± 3.86 bc | 44.84 ± 3.98 ab |
Spiromesifen | 21.03 ± 3.47 b | 16.45 ± 4.87 c | 34.85 ± 3.32 bcd | 40.81 ± 4.01 abcd |
Flonicamid | 18.55 ± 5.13 b | 22.27 ± 4.96 bc | 45.29 ± 4.21 ab | 40.81 ± 4.61 abcd |
Acetamiprid | 14.26 ± 3.58 b | 11.23 ± 0.80 d | 35.15 ± 4.35 bcd | 45.32 ± 3.76 ab |
Sulfoxaflor | 12.68 ± 3.90 b | 19.37 ± 5.10 c | 43.24 ± 4.76 b | 40.32 ± 3.73 abcd |
Imidacloprid | 15.44 ± 4.08 b | 4.04 ± 1.19 d | 32.79 ± 2.91 bcd | 32.42 ± 3.91 bcde |
Flupyradifurone | 11.67 ± 1.83 b | 1.93 ± 2.22 d | 31.91 ± 3.08 bcd | 24.03 ± 2.23 de |
Cyantraniliprole | 9.66 ± 2.45 b | 4.56 ± 2.22 d | 24.26 ± 2.99 cd | 21.77 ± 2.16 e |
Dinotefuran | 16.09 ± 3.47 b | 1.95 ± 1.66 d | 19.12 ± 2.04 d | 26.45 ± 2.66 cde |
2022 | Cucumber #3 | Cucumber #4 | Cucumber #3 | Cucumber #4 |
Check | 83.09 ± 5.37 a | 73.07 ± 8.24 a | 31.20 ± 2.70 a | 52.63 ± 3.07 a |
Pyriproxyfen | 42.16 ± 9.08 bc | 50.12 ± 7.89 ab | 25.06 ± 3.21 ab | 41.88 ± 3.21 abc |
Clothianidin | 46.94 ± 8.14 b | 56.83 ± 11.72 ab | 30.76 ± 4.24 ab | 49.25 ± 2.89 a |
Spiromesifen | 30.40 ± 8.37 bcde | 58.60 ± 7.64 a | 28.29 ± 3.23 ab | 50.50 ± 3.73 a |
Flonicamid | 34.89 ± 6.17 bcd | 43.28 ± 12.99 abc | 26.58 ± 3.15 ab | 49.88 ± 4.05 a |
Acetamiprid | 26.52 ± 5.70 bcde | 20.98 ± 4.70 bcd | 24.30 ± 2.28 ab | 32.75 ± 2.90 bcd |
Sulfoxaflor | 34.16 ± 9.67 bcde | 12.76 ± 3.51 cd | 23.73 ± 3.93 ab | 43.13 ± 3.91 ab |
Imidacloprid | 23.01 ± 5.58 bcde | 40.45 ± 7.06 abcd | 28.10 ± 5.80 ab | 46.50 ± 3.18 ab |
Flupyradifurone | 4.81 ± 1.60 e | 6.50 ± 2.35 d | 15.76 ± 1.90 ab | 27.88 ± 2.25 cd |
Cyantraniliprole | 15.82 ± 3.45 cde | 5.08 ± 1.82 d | 15.57 ± 2.02 b | 38.38 ± 3.49 abcd |
Dinotefuran | 8.05 ± 2.17 de | 6.66 ± 1.84 d | 19.43 ± 2.07 ab | 26.63 ± 2.22 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremonez, P.S.G.; Perier, J.D.; Simmons, A.M.; Riley, D.G. Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays. Insects 2023, 14, 510. https://doi.org/10.3390/insects14060510
Cremonez PSG, Perier JD, Simmons AM, Riley DG. Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays. Insects. 2023; 14(6):510. https://doi.org/10.3390/insects14060510
Chicago/Turabian StyleCremonez, Paulo S. G., Jermaine D. Perier, Alvin M. Simmons, and David G. Riley. 2023. "Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays" Insects 14, no. 6: 510. https://doi.org/10.3390/insects14060510
APA StyleCremonez, P. S. G., Perier, J. D., Simmons, A. M., & Riley, D. G. (2023). Determining Field Insecticide Efficacy on Whiteflies with Maximum Dose Bioassays. Insects, 14(6), 510. https://doi.org/10.3390/insects14060510