Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Development and Reproduction of Spodoptera frugiperda
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Insecticides
2.2. Bioassays
2.3. Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Parental Generation of FAW
2.4. Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on F1 Individuals
2.5. Life Table Study
2.6. Data Analysis
3. Results
3.1. LC Values for Chlorantraniliprole and Emamectin Benzoate
3.2. Effects of Sublethal Concentrations of Emamectin Benzoate and Chlorantraniliprole on Development and Pupal Weight in the F0 Generation
3.3. Effects of Sublethal Concentrations of Emamectin Benzoate and Chlorantraniliprole on Adult Longevity and Fecundity in the F0 Generation
3.4. Effects of Sublethal Concentrations of Emamectin Benzoate and Chlorantraniliprole on Life Table Parameters
3.5. Effects of Sublethal Concentrations of Emamectin Benzoate and Chlorantraniliprole on Development and Pupal Weight in the F1 generation
3.6. Effects of Emamectin Benzoate and Chlorantraniliprole on Adult Longevity and Fecundity in the F1 Generation
3.7. Effects of Sublethal Emamectin Benzoate and Chlorantraniliprole on FAW Survival
3.8. Effects of Sublethal Emamectin Benzoate and Chlorantraniliprole on FAW Fecundity
3.9. Effects of Sublethal Chlorantraniliprole and Emamectin Benzoate on FAW Life Expectancy
3.10. Effects of Sublethal Chlorantraniliprole and Emamectin Benzoate on FAW Reproduction
3.11. Effects of Sublethal Emamectin Benzoate and Chlorantraniliprole on FAW Life Table Parameters
3.12. Effects of Sublethal Emamectin Benzoate and Chlorantraniliprole on Projected FAW Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhao, J.Z.; He, K.L.; Zhang, F.; Wang, Z.Y. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Prot. 2018, 44, 1–10. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.F.; Zhao, J.Z.; Wang, Z.Y. Research progress in managing the invasive fall armyworm, Spodoptera frugiperda, in China. Plant Prot. 2022, 48, 79–87. [Google Scholar] [CrossRef]
- Okuma, D.M.; Bernardi, D.; Horikoshi, R.J.; Bernardi, O.; Silva, A.P.; Omoto, C. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag. Sci. 2018, 74, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Abou, T.; Silvestro, M.; Abebe, M.; Baffour, B.A.; Ousmane, B.; Manuele, T.; Rousseau, D. Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 849. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Y.; Sun, X.X.; Zhang, H.W.; Yang, X.M.; Wu, K.M. Laboratory test on the control efficacy of common chemical insecticides against Spodoptera frugiperda. Plant Prot. 2019, 45, 10–14+20. [Google Scholar] [CrossRef]
- Desneux, N.; Fauvergue, X.; Franç, X.D.M.; Kerhoas, L.; Ballanger, Y.; Kaiser, L. Diaeretiella rapae Limits Myzus persicae Populations after Applications of Deltamethrin in Oilseed Rape. J. Econ. Entomol. 2005, 98, 9–17. [Google Scholar] [CrossRef]
- Nicolas, D.; Axel, D.; Jean-Marie, D. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Stapel, J.O.; Cortesero, A.M.; Lewis, W.J. Disruptive sublethal effects of insecticides on biological control: Altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol. Control 2000, 17, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gong, P.; Li, M.; Qiu, X.H.; Wang, K.Y. Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 223–227. [Google Scholar] [CrossRef]
- Song, Y.Q.; Dong, J.F.; Sun, H.Z. Chlorantraniliprole at sublethal concentrations may reduce the population growth of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Acta Entomol. Sin. 2013, 56, 446–451. [Google Scholar] [CrossRef]
- He, Y.X.; Zhao, J.W.; Zheng, Y.; Weng, Q.Y.; Biondi, A.; Desneux, N.; Wu, K.M. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 2013, 9, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.C.; Yu, Y.F.; Wang, X.J.; Wang, Q. Rynaxypyr, a New Insecticide and Its Research & Development in Application. Mod. Agrochem. 2008, 7, 8–11. [Google Scholar]
- Jansson, R.K.; Brown, R.; Cartwright, B.; Cox, D.; Dunbar, D.M.; Dybas, R.A. Emamectin benzoate: A novel avermectin derivative for control of lepidopterous pests. In Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests, Kuala Lumpur, Malaysia, 29 October–1 November 1996; Vegetable Pest Management, Malaysian Agricultural Research and Development Institute: Kuala Lumpur, Malaysia, 1997; pp. 1–7. [Google Scholar]
- Raja, R.A.; Patil, P.K.; Avunje, S.; Kumaran, M.; Solanki, H.G.; Jithendran, K.P.; Alavandi, S.V.; Vijayan, K.K. Efficacy of emamectin benzoate in controlling natural infestations of ectoparasites in economically important fish species of India. Aquaculture 2022, 551, 737940. [Google Scholar] [CrossRef]
- Troczka, B.; Zimmer, C.T.; Elias, J.; Schorn, C.; Bass, C.; Davies, T.G.E.; Field, L.; Williamson, M.S.; Slater, R.; Nauen, R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem. Mol. Biol. 2012, 42, 873–880. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.; Sacher, M.; Rauh, J.; Sopa, J.; Lahm, G.; Selby, T.; Stevenson, T.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- Lutz, A.L.; Bertolaccini, I.; Scotta, R.R.; Curis, M.C.; Favaro, M.A.; Fernandez, L.N.; Sánchez, D.E. Lethal and sublethal effects of chlorantraniliprole on Spodoptera cosmioides (Lepidoptera: Noctuidae). Pest Manag. Sci. 2018, 74, 2817–2821. [Google Scholar] [CrossRef]
- Yin, F.; Feng, X.; Hu, Z.D.; Li, Z.L.; Ling, Q.S.; Zhang, D.Y.; Chen, H.Y. Sublethal effect of chlorantraniliprole on the growth and development of Plutella xylastella (L.). Guangdong Agric. Sci. 2012, 39, 78–80. [Google Scholar] [CrossRef]
- Ishaaya, I.; Barrazani, A.; Kontsedalov, S.; Horowitz, A.R. Insecticides with novel modes of action: Mechanism, selectivity and cross-resistance. Entomol. Res. 2007, 37, 148–152. [Google Scholar] [CrossRef]
- Moataz, A.M.M.; Ágnes, K.; Mona, A.; Adrien, F. Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae). Crop Prot. 2016, 90, 197–204. [Google Scholar] [CrossRef]
- Khan, M.M.; Nawaz, M.; Hua, H.X.; Cai, W.L.; Zhao, J. Lethal and sublethal effects of emamectin benzoate on the rove beetle, Paederus fuscipes, a non-target predator of rice brown planthopper, Nilaparvata lugens. Ecotoxicol. Environ. Saf. 2018, 165, 19–24. [Google Scholar] [CrossRef]
- Wu, H.M.; Feng, H.L.; Wang, G.D.; Zhang, L.L.; Zulu, L.; Liu, Y.H.; Zheng, Y.L.; Rao, Q. Sublethal Effects of Three Insecticides on Development and Reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae). Agronomy 2022, 12, 1334. [Google Scholar] [CrossRef]
- Liu, Z.K.; Li, X.L.; Tan, X.F.; Yang, M.F.; Idrees, A.; Liu, J.F.; Song, S.J.; Shen, J. Sublethal Effects of Emamectin Benzoate on Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture 2022, 12, 959. [Google Scholar] [CrossRef]
- Liang, L.C.; Wang, Y.S.; Chen, W.; Xian, Z.H. Toxicity and feeding inhibition effect of three insecticides on rice leaf folder larvae (Cnaphalocrocis medinalis Guenee) and rice borer larvae (Chilo suppressalis Walker). J. South. Agric. 2014, 45, 1797–1802. [Google Scholar]
- Wang, Z.H.; Shi, B.C.; Kang, Z.J.; Zhu, L.; Jin, G.H.; Wei, S.J.; Gong, Y.J. The sensitivity of different larval instars of the beet armyworm Spodoptera exigua to insecticides and correlation with enzyme activity. Chin. J. Appl. Entomol. 2014, 51, 185–193. [Google Scholar]
- Di, X.Y.; Yan, B.; Wu, C.X.; Yu, X.F.; Liu, J.F.; Yang, M.F. Does Larval Rearing Diet Lead to Premating Isolation in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae)? Insects 2021, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Li, H.; Zhao, H.Z.; Li, J.J.; Liu, Y.; Luo, L.; Yuan, Z.L. Determination of Larval Instars of Spodoptera frugiperda (Lepidoptera: Noctuidae). Shandong Agric. Sci. 2022, 54, 126–130. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Luo, Q.M.; Sun, X.X.; Yang, X.M.; Jian, Y.Y.; Wu, K.M. Comparison of morphological and biological characteristics between Spodoptera frugiperda and Spodoptera litura. China Plant Prot. 2019, 39, 26–35. [Google Scholar]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University: Taichung, Taiwan. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 13 July 2021).
- Chi, H.; Su, H.Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Chi, H.; You, M.S.; Atlihan, R.; Smith, C.L.; Kavousi, A.; Ozgokçe, M.S.; Güncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2019, 40, 103–124. [Google Scholar] [CrossRef]
- Lu, S.L.; Wang, Y.B.; Gu, S.H.; Liang, P.; Zhang, L.; Gao, X.W. Comparison of bioassay methods for the toxicities of chemical insecticides against Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sin. 2020, 63, 590–596. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, J.S.; Qing, W.J. Sublethal effects of chlorantraniliprole on Spodoptera exigua. Acta Agric. Univ. Jiangxiensis 2011, 33, 690–695+706. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Z.; Li, M.; Mao, T.; Wang, H.; Li, F.; Sun, H.; Dai, M.; Ye, W.; Li, B. The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects. Pest Manag. Sci. 2020, 76, 2838–2845. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.X.; Rui, C.H.; Ren, L.; Tan, X.W. Effect of sublethal dose of emamectin benzoate on growth and development of Helicoverpa armigera (Hübner). J. Plant Prot. 2011, 38, 539–544. [Google Scholar] [CrossRef]
- Gao, H.Y.; Wang, Y.; Zhu, J.S.; Qiao, X.W. Sublethal effects of emamectin benzoate on food utilization of bombyxmori larvae. Chin. J. Pestic. Sci. 2008, 10, 297–302. [Google Scholar]
- Dai, H.Y. The Adaptation Mechanism of Spodoptera exigua to Emamectin Benzoate Stress with Different Sublethal Dose. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2015. [Google Scholar]
- Wu, X.; Zhang, L.; Yang, C.; Zong, M.; Huang, Q.; Tao, L. Detection on emamectin benzoate-induced apoptosis and DNA damage in Spodoptera frugiperda Sf -9 cell line. Pestic. Biochem. Physiol. 2016, 126, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, E.M.G.; De Moura, I.L.T.; Fadini, M.A.M.; Guedes, R.N.C. Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 2013, 93, 1111–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Yang, Z.Q.; Shen, Z.R.; Xu, W.B. Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom., Aphididae). J. Appl. Entomol. 2008, 132, 135–142. [Google Scholar] [CrossRef]
- Azzam, S.; Wang, F.; Wu, J.C.; Shen, J.; Wang, L.P.; Yang, G.Q.; Guo, Y.R. Comparisons of stimulatory effects of a series of con-centrations of four insecticides on reproduction in the rice brown planthopper Nilaparvata lugens Stal (Homoptera: Delphacidae). Int. J. Pest Manag. 2009, 55, 347–358. [Google Scholar] [CrossRef]
- Kate, J.W.; Nicholas, L. The toxicity of emamectin benzoate, an aquaculture pesticide, to planktonic marine copepods. Aquaculture 2003, 221, 289–297. [Google Scholar] [CrossRef]
- Yang, F.Q. Effects of Sublethal Does of Emamectin Benzoate on Reproduction and Vitellogenin Gene Axpression of Spodoptera frugiperda (Lepidoptera: Noctuidae). Master’s Thesis, Nanchang University, Nanchang, China, 2021. [Google Scholar] [CrossRef]
- Deng, D.; Duan, W.; Wang, H.; Zhang, K.; Guo, J.; Yuan, L.; Wang, L.; Wu, S. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 2019, 28, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Mudassir, M.M.; Naeem, A.; Ali, S.S.; Pathan, A.K.; Razaq, M. Increased fitness and realized heritability in emamectin benzo-ate-resistant Chrysoperla carnea (Neuroptera: Chrysopidae). Ecotoxicology 2013, 22, 1232–1240. [Google Scholar] [CrossRef]
- Parsaeyan, E.; Safavi, S.A.; Saber, M.; Nafiseh, P. Effects of emamectin benzoate and cypermethrin on the demography of Trichogramma brassicae Bezdenko. Crop Prot. 2018, 110, 269–274. [Google Scholar] [CrossRef]
- Mokbel, E.S.; Huesien, A. Sublethal effects of emamectin benzoate on life table parameters of the cotton leafworm, Spodoptera littoralis (Boisd.). Bull. Natl. Res. Cent. 2020, 44, 155. [Google Scholar] [CrossRef]
Insecticides | LC10 (μg/g) (95% CL) | LC25 (μg/g) (95% CL) | LC50 (μg/g) (95% CL) | Regression Equation | χ2 | df |
---|---|---|---|---|---|---|
Chlorantraniliprole | 1.725 (0.866–2.626) | 3.921 (2.562–5.233) | 9.763 (7.605–12.662) | Y = −1.685 + 1.703X | 0.430 | 3 |
Emamectin benzoate | 3.585 (1.718–4.886) | 5.162 (3.238–6.489) | 7.739 (6.060–9.610) | Y = −3.408 + 3.835X | 1.191 | 3 |
Developmental Stages | Developmental Duration (d) | ||||
---|---|---|---|---|---|
CK | Emamectin Benzoate | Chlorantraniliprole | |||
LC10 | LC25 | LC10 | LC25 | ||
2nd instar larva (d) | 2.08 ± 0.04 d | 2.38 ± 0.07 c | 2.65 ± 0.08 b | 2.63 ± 0.09 b | 3.23 ± 0.11 a |
3th instar larva (d) | 2.13 ± 0.04 c | 2.66 ± 0.17 a | 2.47 ± 0.14 ab | 2.40 ± 0.10 ab | 2.68 ± 0.11 a |
4th instar larva (d) | 2.16 ± 0.04 c | 2.98 ± 0.15 a | 2.83 ± 0.13 ab | 2.54 ± 0.11 b | 3.02 ± 0.14 a |
5th instar larva (d) | 2.68 ± 0.05 b | 3.33 ± 0.19 a | 3.34 ± 0.12 a | 3.25 ± 0.10 a | 3.48 ± 0.15 a |
6th instar larva (d) | 4.03 ± 0.07 b | 4.53 ± 0.22 a | 4.20 ± 0.11 ab | 4.30 ± 0.12 ab | 4.48 ± 0.22 a |
Prepupa (d) | 2.27 ± 0.07 a | 2.13 ± 0.08 ab | 2.02 ± 0.06 b | 2.30 ± 0.07 a | 2.24 ± 0.09 a |
Pupa (d) | 12.80 ± 0.25 a | 13.37 ± 0.28 a | 13.00 ± 0.18 a | 13.43 ± 0.21 a | 13.56 ± 0.27 a |
Adult (d) | 13.16 ± 1.21 a | 13.46 ± 0.65 a | 14.61 ± 0.60 a | 15.07 ± 1.08 a | 14.25 ± 1.52 a |
Pupal weight (g) | 0.2270 ± 0.03 a | 0.2174 ± 0.04 ab | 0.2137 ± 0.03 b | 0.2151 ± 0.03 ab | 0.2088 ± 0.04 b |
Parameters | Emamectin Benzoate | Chlorantraniliprole | ||||
---|---|---|---|---|---|---|
Gender | CK | LC10 | LC25 | LC10 | LC25 | |
Adult longevity (d) | Male | 12.80 ± 1.89 a | 13.47 ± 0.78 a | 14.16 ± 0.61 a | 13.56 ± 1.14 a | 13.20 ± 2.00 a |
Female | 13.70 ± 1.22 a | 13.45 ± 1.19 a | 15.63 ± 1.42 a | 17.80 ± 2.02 a | 16.00 ± 2.34 a | |
Preoviposition (d) (APOP) | Female | 3.90 ± 0.38 b | 5.45 ± 0.43 a | 5.91 ± 0.49 a | 5.40 ± 0.50 a | 5.83 ± 0.75 a |
Fecundity (eggs/female) | Female | 1252.36 ± 174.59 a | 861.74 ± 133.77 b | 645.95 ± 139.34 d | 713.27 ± 243.25 c | 503.23 ± 191.54 e |
Parameters | CK | Emamectin Benzoate | Chlorantraniliprole | ||
---|---|---|---|---|---|
LC10 | LC25 | LC10 | LC25 | ||
Intrinsic rate of increase (r/day) | 0.1635 ± 0.01 a | 0.1516 ± 0.01 b | 0.1314 ± 0.01 d | 0.1372 ± 0.02 c | 0.1045 ± 0.02 e |
Finite rate of increase (λ/day) | 1.1777 ± 0.01 a | 1.1637 ± 0.01 b | 1.1405 ± 0.01 d | 1.1472 ± 0.02 c | 1.1104 ± 0.03 e |
Net reproductive rate (R0/offspring per individual) | 126.50 ± 41.54 a | 110.17 ± 34.99 b | 76.32 ± 26.67 c | 75.90 ± 33.53 d | 30.92 ± 16.09 e |
Developmental Stages | Developmental Duration (d) | ||||
---|---|---|---|---|---|
Emamectin Benzoate | Chlorantraniliprole | ||||
CK | LC10 | LC25 | LC10 | LC25 | |
Egg (d) | 2.28 ± 0.06 c | 2.67 ± 0.04 b | 2.32 ± 0.06 c | 3.84 ± 0.05 a | 3.85 ± 0.05 a |
1st instar larva (d) | 3.66 ± 0.07 a | 3.14 ± 0.08 b | 3.16 ± 0.04 b | 3.70 ± 0.06 a | 3.81 ± 0.06 a |
2nd instar larva (d) | 2.90 ± 0.07 a | 2.3 ± 0.06 c | 3.05 ± 0.07 a | 2.71 ± 0.06 b | 2.90 ± 0.04 a |
3th instar larva (d) | 2.62 ± 0.07 a | 2.25 ± 0.05 b | 2.72 ± 0.09 a | 2.25 ± 0.04 b | 2.76 ± 0.05 a |
4th instar larva (d) | 2.11 ± 0.06 c | 2.66 ± 0.08 a | 2.36 ± 0.10 b | 2.27 ± 0.05 bc | 2.83 ± 0.06 a |
5th instar larva (d) | 2.91 ± 0.11 cd | 3.04 ± 0.05 c | 2.77 ± 0.08 d | 3.79 ± 0.06 a | 3.47 ± 0.06 b |
6th instar larva (d) | 3.93 ± 0.07 c | 3.97 ± 0.06 c | 4.04 ± 0.06 bc | 4.18 ± 0.04 ab | 4.36 ± 0.08 a |
Prepupa (d) | 2.07 ± 0.05 c | 2.07 ± 0.09 c | 2.09 ± 0.06 c | 2.69 ± 0.06 a | 2.32 ± 0.06 b |
Pupa (d) | 12.98 ± 0.20 a | 10.22 ± 0.32 c | 13.47 ± 0.21 a | 12.90 ± 0.14 a | 11.83 ± 0.20 b |
Preadult (d) | 35.48 ± 0.33 b | 32.37 ± 0.40 c | 35.73 ± 0.32 b | 38.34 ± 0.18 a | 37.78 ± 0.28 a |
Adult (d) | 14.44 ± 0.64 c | 14.06 ± 0.60 c | 15.96 ± 0.81 bc | 20.81 ± 0.81 a | 17.03 ± 0.56 b |
Pupal weight (g) | 0.2275 ± 0.03 a | 0.2271 ± 0.04 a | 0.2184 ± 0.03 ab | 0.2176 ± 0.03 ab | 0.2094 ± 0.04 b |
Parameters | Emamectin Benzoate | Chlorantraniliprole | ||||
---|---|---|---|---|---|---|
Gender | CK | LC10 | LC25 | LC10 | LC25 | |
Adult longevity (d) | Male | 15.55 ± 1.21 bc | 13.37 ± 0.76 c | 16.79 ± 1.10 b | 20.19 ± 1.13 a | 16.68 ± 0.69 b |
Female | 14.47 ± 1.81 b | 15.16 ± 0.93 b | 14.59 ± 1.08 b | 21.50 ± 1.15 a | 17.57 ± 0.94 b | |
APOP (d) | Female | 5.80 ± 0.62 b | 5.68 ± 0.36 b | 5.39 ± 0.45 b | 8.79 ± 0.86 a | 7.64 ± 0.96 ab |
TPOP (d) | Female | 34.50 ± 0.32 d | 32.42 ± 0.23 e | 34.82 ± 0.23 c | 37.31 ± 0.21 a | 36.71 ± 0.40 b |
Mean fecundity (eggs/female) | Female | 1357.23 ± 140.13 c | 1146.25 ± 81.87 d | 1201.63 ± 136.06 e | 1408.12 ± 154.64 b | 1669.40 ± 199.25 a |
Parameters | CK | Emamectin Benzoate | Chlorantraniliprole | ||
---|---|---|---|---|---|
LC10 | LC25 | LC10 | LC25 | ||
Intrinsic rate of increase (r) | 0.1551 ± 0.01 a | 0.1517 ± 0.01 b | 0.1382 ± 0.01 d | 0.1506 ± 0.01 c | 0.1377 ± 0.01 e |
Finite rate of increase (λ) | 1.1678 ± 0.01 a | 1.1639 ± 0.01 b | 1.1482 ± 0.01 d | 1.1625 ± 0.01 c | 1.1476 ± 0.01 e |
Net reproductive rate (R0) | 327.07 ± 64.87 b | 186.19 ± 41.32 d | 174.59 ± 43.72 e | 459.93 ± 83.84 a | 234.06 ± 63.77 c |
Mean generation time (T) | 37.21 ± 0.35 c | 34.29 ± 0.63 e | 37.12 ± 0.26 d | 40.61 ± 0.32 a | 39.34 ± 0.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hu, C.; Wu, L.; Chen, W. Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Development and Reproduction of Spodoptera frugiperda. Insects 2023, 14, 537. https://doi.org/10.3390/insects14060537
Zhang X, Hu C, Wu L, Chen W. Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Development and Reproduction of Spodoptera frugiperda. Insects. 2023; 14(6):537. https://doi.org/10.3390/insects14060537
Chicago/Turabian StyleZhang, Xuecong, Chaoxing Hu, Lihong Wu, and Wenlong Chen. 2023. "Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Development and Reproduction of Spodoptera frugiperda" Insects 14, no. 6: 537. https://doi.org/10.3390/insects14060537
APA StyleZhang, X., Hu, C., Wu, L., & Chen, W. (2023). Transgenerational Sublethal Effects of Chlorantraniliprole and Emamectin Benzoate on the Development and Reproduction of Spodoptera frugiperda. Insects, 14(6), 537. https://doi.org/10.3390/insects14060537