Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Fly Collection and Isofemale Lines Establishing
2.2. Growth, Development and Lifespan of W+ and W- Flies in High Temperature Stress
2.3. Wolbachia Vertical Transmission Efficiency in D. melanogaster under Continuous High Temperature Stress
2.4. Data Processing
3. Results
3.1. Effect of High Temperature and Wolbachia Infection on the Growth and Development of D. melanogaster
3.2. Effect of High Temperature Stress and Wolbachia Infection on the Survival Rate of D. melanogaster
3.3. Effect of High Temperature Stress on Wolbachia Vertical Transmission Efficiency
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zug, R.; Hammerstein, P. Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinert, L.A.; Araujo-Jnr, E.V.; Ahmed, M.Z.; Welch, J.J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Boil. Sci. 2015, 282, 20150249. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Turelli, M.; Harshman, L.G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 1990, 126, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Newton, I.L.; Savytskyy, O.; Sheehan, K.B. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melano-gaster. PLoS Pathog. 2015, 11, e1004798. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H.; Windsor, D.; Guo, L. Distribution of Wolbachia among Neotropical Arthropods. Proc. R. Soc. B Biol. Sci. 1995, 262, 197–204. [Google Scholar] [CrossRef]
- Gong, P.; Shen, Z.R.; Li, Z.H. Wolbachia endosymbionts and their manipulation of reproduction of arthropod hosts. Acta Entomol. Sin. 2002, 45, 241–252. [Google Scholar] [CrossRef]
- Dong, P.; Wang, J.J. Reproductive manipulation of Wolbachia to its hosts. Chin. Bull. Entomol. 2006, 43, 288–294. [Google Scholar] [CrossRef]
- Vala, F.; Egas, M.; Breeuwer, J.A.J.; Sabelis, M.W. Wolbachia affects oviposition and mating behaviour of its spider mite host. J. Evol. Biol. 2004, 17, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Charlat, S.; Ballard, J.W.O.; Merçot, H. What maintains noncytoplasmic incompatibility inducing Wolbachia in their hosts: A case study from a natural Drosophila yakuba population. J. Evol. Biol. 2004, 17, 322–330. [Google Scholar] [CrossRef]
- Kose, H.; Karr, T.L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech. Dev. 1995, 51, 275–288. [Google Scholar] [CrossRef]
- Werren, J.H. Biology of Wolbachia. Annu. Rev. Èntomol. 1997, 42, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Stouthamer, R.; Breeuwer, J.A.; Hurst, G.D. Wolbachia Pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Genet. 2008, 6, 741–751. [Google Scholar] [CrossRef]
- Poinsot, D.; Merçot, H. Wolbachia Infection In Drosophila Simulans: Does the female host bear a physiological cost? Evolution 1997, 51, 180–186. [Google Scholar] [CrossRef]
- Vavre, F.; Fleury, F.; Lepetit, D.; Fouillet, P.; Bouletreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Mol. Biol. Evol. 1999, 16, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Simhadri, R.K.; Fast, E.M.; Guo, R.; Schultz, M.J.; Vaisman, N.; Ortiz, L.; Bybee, J.; Slatko, B.E.; Frydman, H.M. The gut com-mensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2017, 2, e00287-17. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef]
- Okayama, K.; Katsuki, M.; Sumida, Y.; Okada, K. Costs and benefits of symbiosis between a bean beetle and Wolbachia. Anim. Behav. 2016, 119, 19–26. [Google Scholar] [CrossRef]
- Lopez, V.; Cortesero, A.M.; Poinsot, D. Influence of the symbiont Wolbachia on life history traits of the cabbage root fly (Delia radicum). J. Invertebr. Pathol. 2018, 158, 24–31. [Google Scholar] [CrossRef]
- Su, Q.; Yun, Y.; Hu, G.; Li, C.; Peng, Y. Detection of symbiont diversity in spider Hylyphantes graminicola and the impact of Wolbachia on developmental duration and sex ratio of host offspring. J. Plant Prot. 2018, 4, 766–772. [Google Scholar] [CrossRef]
- Hickin, M.L.; Kakumanu, M.L.; Schal, C. Efects of Wolbachia elimination and B vitamin supplementation on bed bug development and reproduction. Sci. Rep. 2022, 12, 10270. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B.; Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- Abram, P.K.; Boivin, G.; Moiroux, J.; Brodeur, J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 2017, 92, 1859–1876. [Google Scholar] [CrossRef]
- Shikano, I.; Cory, J.S. Impact of environmental variation on host performance differs with pathogen identity: Implications for host-pathogen interactions in a changing climate. Sci. Rep. 2015, 5, 15351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Leonard, S.P.; Li, Y.; Moran, N.A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl. Acad. Sci. USA 2019, 116, 24712–24718. [Google Scholar] [CrossRef]
- Breeuwer, J.A.J.; Jacobs, G. Wolbachia: Intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 1996, 20, 421–434. [Google Scholar] [CrossRef]
- Corbin, C.; Heyworth, E.R.; Ferrari, J.; Hurst, G.D.D. Heritable symbionts in a world of varying temperature. Heredity 2017, 118, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A.; Moran, N.A. Costs and benefits of symbiont infection in aphids: Variation among symbionts and across temperatures. Proc. R Soc. B Biol. Sci. 2006, 273, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Olsen, K.; Reynolds, K.T.; Hoffmann, A.A. A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity 2001, 86, 731–737. [Google Scholar] [CrossRef]
- Strunov, A.; Lerch, S.; Blanckenhorn, W.U.; Miller, W.J.; Kapun, M. Complex effects of environment and Wolbachia infections on the life history of Drosophila melanogaster hosts. J. Evol. Biol. 2022, 35, 788–802. [Google Scholar] [CrossRef]
- Flatt, T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020, 214, 3–48. [Google Scholar] [CrossRef] [Green Version]
- Harcombe, W.; Hoffmann, A. Wolbachia effects in Drosophila melanogaster: In search of fitness benefits. J. Invertebr. Pathol. 2004, 87, 45–50. [Google Scholar] [CrossRef]
- Braig, H.R.; Zhou, W.; Dobson, S.L.; O’Neill, S.L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 1998, 180, 2373–2378. [Google Scholar] [CrossRef] [Green Version]
- Riegler, M.; Iturbe-Ormaetxe, I.; Woolfit, M.; Miller, W.J.; O’neill, S.L. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiol. 2012, 12, S12. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.A.; Turelli, M.; Simmons, G.M. Unidirectional incompatibility between populations of Drosophila Simulans. Int. J. Org. Evol. 1986, 40, 692–701. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yun, Y.L.; Yang, Q.W.; Wang, Y.F.; Peng, Y.; Jiao, X.G. The removal and influence of Wolbachia on the reproductive and fitness in Hylyphantes graminicola. Acta Phytophylacica Sin. 2013, 40, 145–148. [Google Scholar] [CrossRef]
- LePage, D.P.; Metcalf, J.A.; Bordenstein, S.R.; On, J.; Perlmutter, J.I.; Shropshire, J.D.; Layton, E.M.; Funkhouser-Jones, L.J.; Beckmann, J.F.; Bordenstein, S.R. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 2017, 543, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strunov, A.; Kiseleva, E.; Gottlieb, Y. Spatial and temporal distribution of pathogenic Wolbachia strain wMelPop in Drosophila melanogaster central nervous system under different temperature conditions. J. Invertebr. Pathol. 2013, 114, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.A.; Levin, S.C.; Stevanovic, A.L.; Johnson, K.N. Drosophila melanogaster infected with Wolbachia strain w MelCS prefer cooler temperatures. Ecol. Èntomol. 2019, 44, 287–290. [Google Scholar] [CrossRef]
- Arnold, P.A.; White, C.R.; Johnson, K.N. Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. J. Gen. Virol. 2015, 96, 3667–3671. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, H.; Head, L.M.; Ling, J.; Tang, X.; Liu, Y.; Hardin, P.E.; Emery, P.; Hamada, F.N. Circadian Rhythm of Temperature Preference and Its Neural Control in Drosophila. Curr. Biol. 2012, 22, 1851–1857. [Google Scholar] [CrossRef] [Green Version]
- Vorburger, C.; Ganesanandamoorthy, P.; Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 2013, 3, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Polin, S.; Simon, J.; Outreman, Y. An ecological cost associated with protective symbionts of aphids. Ecol. Evol. 2014, 4, 836–840. [Google Scholar] [CrossRef] [PubMed]
Effect | F1 | F2 | F3 | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
W infection | (1, 152) | 501.639 | <0.001 | (1, 152) | 347.281 | <0.001 | (1, 152) | 176.253 | <0.001 |
Temperature | (1, 152) | 677.524 | <0.001 | (1, 152) | 4182.671 | <0.001 | (1, 152) | 6898.153 | <0.001 |
Sex | (1, 152) | 5474.552 | <0.001 | (1, 152) | 2331.231 | <0.001 | (1, 152) | 2369.755 | <0.001 |
W infection × Temperature | (1, 152) | 9.161 | 0.003 | (1, 152) | 9.559 | 0.002 | (1, 152) | 35.612 | <0.001 |
W infection × Sex | (1, 152) | 23.904 | <0.001 | (1, 152) | 0.352 | 0.554 | (1, 152) | 0.102 | 0.749 |
Temperature × Sex | (1, 152) | 1.823 | 0.179 | (1, 152) | 361.633 | <0.001 | (1, 152) | 410.561 | <0.001 |
W infection × Temperature× Sex | (1, 152) | 0.262 | 0.609 | (1, 152) | 0.303 | 0.583 | (1, 152) | 6.652 | 0.011 |
Effect | F1 | F2 | F3 | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
W infection | (1, 152) | 501.639 | <0.001 | (1, 152) | 347.281 | <0.001 | (1, 152) | 176.253 | <0.001 |
Temperature | (1, 152) | 677.524 | <0.001 | (1, 152) | 4182.671 | <0.001 | (1, 152) | 6898.153 | <0.001 |
Sex | (1, 152) | 5474.552 | <0.001 | (1, 152) | 2331.231 | <0.001 | (1, 152) | 2369.755 | <0.001 |
W infection × Temperature | (1, 152) | 9.161 | 0.003 | (1, 152) | 9.559 | 0.002 | (1, 152) | 35.612 | <0.001 |
W infection × Sex | (1, 152) | 23.904 | <0.001 | (1, 152) | 0.352 | 0.554 | (1, 152) | 0.102 | 0.749 |
Temperature × Sex | (1, 152) | 1.823 | 0.179 | (1, 152) | 361.633 | <0.001 | (1, 152) | 410.561 | <0.001 |
W infection × Temperature× Sex | (1, 152) | 0.262 | 0.609 | (1, 152) | 0.303 | 0.583 | (1, 152) | 6.652 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Li, W.; Wang, J.; Peng, Y.; Yun, Y.; Peng, Y. Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. Insects 2023, 14, 558. https://doi.org/10.3390/insects14060558
Hu D, Li W, Wang J, Peng Y, Yun Y, Peng Y. Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. Insects. 2023; 14(6):558. https://doi.org/10.3390/insects14060558
Chicago/Turabian StyleHu, Die, Wanning Li, Ju Wang, Yaqi Peng, Yueli Yun, and Yu Peng. 2023. "Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster" Insects 14, no. 6: 558. https://doi.org/10.3390/insects14060558
APA StyleHu, D., Li, W., Wang, J., Peng, Y., Yun, Y., & Peng, Y. (2023). Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. Insects, 14(6), 558. https://doi.org/10.3390/insects14060558