Screening of Fungal Strains and Formulations of Metarhizium anisopliae to Control Phyllotreta striolata in Chinese Flowering Cabbage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungi and Insects
2.2. Bioassay of Fungal Strains against CFB in the Laboratory
2.3. Pelletization of CFC Seeds with Ma Conidia
2.3.1. Preparation of Pelletized CFC Seed
2.3.2. Bioassay of Pelletized Seed against CFB in Pot Tests
2.3.3. Efficacy Evaluation of Pelletized Seed against CFB in Fields
2.4. Mixture of Ma with Chemical Insecticides
2.4.1. Biosafety of Chemical Insecticides to Ma in Lab
2.4.2. Bioassay of Ma with Chl and Preparation of Mixture WP
2.4.3. Bioassay of Ma-Chl WP against CFB in Pot Tests
2.4.4. Efficacy Evaluation of Fungal Formulations against CFB in Fields
2.5. Statistical Analysis
3. Results
3.1. Bioactivity of Fungal Strains against CFB
3.2. Effects of Ma Conidia Pelletized Seeds on CFB
3.2.1. Efficacy of Pelletized Seeds in the Pot Tests
3.2.2. Efficacy of Pelletized Seeds against CFB in Fields
3.3. Effects of the Fungal–Chemical Mixture against CFB
3.3.1. Biosafety of Chemical Insecticides to MaGX19S02 in Lab
3.3.2. Virulence of Ma-Chl Mixture against CFB in the Laboratory
3.3.3. Efficacy of the Ma-Chl WP against CFB in Pot Test
3.3.4. Efficacy of Ma-Chl WP against CFB in Fields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCA | Biological control agent |
CE | Control efficacy |
CFB | Cabbage flea beetle (Phyllotreta striolata) |
CFC | Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsenet Lee) |
Chl | Chlorfenapyr |
DI | Damage index |
EF | Entomopathogenic fungi |
Ma | Metarhizium anisopliae strain MaGX19S02 |
Ma-Chl WP | MaGX19S02 and chlorfenapyr mixed wettable powder |
WP | Wettable powder |
References
- Soroka, J.; Grenkow, L.; Otani, J.; Gavloski, J.; Olfert, O. Flea beetle (Coleoptera: Chrysomelidae) species in canola (Brassicaceae) on the northern Great Plains of North America. Can. Entomol. 2018, 150, 100–115. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, Y.; Jing, X.; Zhang, J.; Li, Z. Advances in integrated management of the striped flea beetle Phyllotreta striolata (Fabricius). Plant Prot. 2023, 49, 22–31, (In Chinese with English abstract). [Google Scholar]
- Lee, C.F.; Chang, H.-Y.; Wang, C.L.; Chen, W.-S. A Review of Phyllotreta Chevrolat in Taiwan (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zool. Stud. 2011, 50, 525–533. [Google Scholar]
- Beran, F.; Pauchet, Y.; Kunert, G.; Reichelt, M.; Wielsch, N.; Vogel, H.; Reinecke, A.; Svatos, A.; Mewis, I.; Schmid, D.; et al. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc. Natl. Acad. Sci. USA 2014, 111, 7349–7354. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.M.; Ou, S.Y.; He, C.; Liu, J.; He, L. Full length sequencing reveals novel transcripts of detoxification genes along with related alternative splicing events and lncRNAs in Phyllotreta striolata. PLoS ONE 2021, 16, e0248749. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, Y.T.; He, Y.C.; Zheng, L.Z.; Fu, J.W.; Shi, M.Z. Infection of Metarhizium anisopliae Ma6 and defense responses of host Phyllotreta striolata adults. Arch. Insect Biochem. Physiol. 2022, 110, e21908. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Han, R.C.; Moens, M.; Chen, S.L.; De Clercq, P. Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). Biocontrol 2013, 58, 247–256. [Google Scholar] [CrossRef]
- Hoarau, C.; Campbell, H.; Prince, G.; Chandler, D.; Pope, T. Biological control agents against the cabbage stem flea beetle in oilseed rape crops. Biol. Control 2022, 167, 104844. [Google Scholar] [CrossRef]
- Chen, W.; Xie, W.; Cai, W.; Thaochan, N.; Hu, Q. Entomopathogenic fungi biodiversity in the soil of three provinces located in Southwest China and first approach to evaluate their biocontrol potential. J. Fungi 2021, 7, 984. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, W.; Tong, J.; Liu, S.; Wu, H.; Shi, J. Metarhizium robertsii as a promising microbial agent for rice in situ cadmium reduction and plant growth promotion. Chemosphere 2022, 305, 135427. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, B. Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Sci. Rep. 2022, 12, 15706. [Google Scholar] [CrossRef]
- Ali, S.S. Preparation and evaluation of three laboratory formulations of the entomopathogenic fungus Beauveria bassiana. Egypt. J. Biol. Pest Control 2016, 26, 107–110. [Google Scholar]
- Maranga, R.O.; Kaaya, G.P.; Mueke, J.M.; Hassanali, A. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia 2005, 159, 527–532. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef] [PubMed]
- Mathulwe, L.L.; Malan, A.P.; Stokwe, N.F. Mass production of entomopathogenic fungi, Metarhizium robertsii and Metarhizium pinghaense, for commercial application against insect pests. J. Visualized Exp. 2022, 181, e63246. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Zhang, C.-X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Johnson, E.R. Analysis of joint action of insecticides against house flies. J. Econ. Entomol. 1960, 53, 887–892. [Google Scholar] [CrossRef]
- Song, Y.X.; Dong, Y.Z.; Zhang, M. Studies on the influence of Phyllotreta striolata on the value loss of Brassica campestrist and the economic thresholds. J. South China Agric. Univ. 2011, 32, 53–56, (In Chinese with English abstract). [Google Scholar]
- Mao-Xin, Z.; Ring, L.; Guang-Wen, L. Effects of host plants on the fitness and the population dynamics of Phyllotreta stiolata. J. South China Agric. Univ. 2004, 25, 64–66, (In Chinese with English abstract). [Google Scholar]
- Yan, X.; Lin, Y.; Huang, Z.; Han, R. Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata). Nematology 2018, 20, 503–518. [Google Scholar] [CrossRef]
- Chen, D.P.; Yan, R.; Xu, Z.Y.; Qian, J.L.; Yu, Y.F.; Zhu, S.S.; Wu, H.M.; Zhu, G.N.; Chen, M.L. Silencing of dre4 contributes to mortality of Phyllotreta striolata. Insects 2022, 13, 1072. [Google Scholar] [CrossRef]
- Tansey, J.A.; Dosdall, L.M.; Keddie, B.A. Phyllotreta cruciferae and Phyllotreta striolata responses to insecticidal seed treatments with different modes of action. J. Appl. Entomol. 2009, 133, 201–209. [Google Scholar] [CrossRef]
- Lahey, S.; Angelone, S.; DeBartolo, M.O.; Coutinho-Rodrigues, C.; Bidochka, M.J. Localization of the insect pathogenic fungal plant symbionts Metarhizium robertsii and Metarhizium brunneum in bean and corn roots. Fungal Biol. 2020, 124, 877–883. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Garrido-Jurado, I.; Yousef-Yousef, M.; Gonzalez-Mas, N. Multitrophic interactions of entomopathogenic fungi in BioControl. Biocontrol 2022, 67, 457–472. [Google Scholar] [CrossRef]
- Gonzalez-Perez, E.; Ortega-Amaro, M.A.; Bautista, E.; Delgado-Sanchez, P.; Jimenez-Bremont, J.F. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. Plant Physiol. Biochem. 2022, 176, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, R.; Ibrahim, L.; As-sadi, F.; El Kayal, W. Impact of Beauveria bassiana and Metarhizium anisopliae on the Metabolic Interactions between Cucumber (Cucumis sativus L.) and Cucumber Mosaic Virus (CMV). Horticulturae 2022, 8, 1182. [Google Scholar] [CrossRef]
- Stone, L.B.L.; Bidochka, M.J. The multifunctional lifestyles of Metarhizium: Evolution and applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef]
- Batool, Z.; Riaz, M.A.; Sayed, S.; Majeed, M.Z.; Ahmed, S.; Ullah, S. In vitro synergy of entomopathogenic fungi and differential-chemistry insecticides against armyworm Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci. 2022, 42, 1997–2006. [Google Scholar] [CrossRef]
- Jaramillo, J.; Borgemeister, C.; Ebssa, L.; Gaigl, A.; Tobon, R.; Zimmermann, G. Effect of combined applications of Metarhizium anisopliae (Metsch.) Sorokin (Deuteromycotina: Hyphomycetes) strain CIAT 224 and different dosages of imidacloprid on the subterranean burrower bug Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). Biol. Control 2005, 34, 12–20. [Google Scholar] [CrossRef]
- Chao, Y.; Wang, M.; Dai, W.; Dong, F.; Wang, X.; Zhang, F. Synergism between Hydramethylnon and Metarhizium anisopliae and Their Influence on the Gut Microbiome of Blattella germanica (L.). Insects 2020, 11, 538. [Google Scholar] [CrossRef]
CFB | LC50 (95% Confidence Interval, ×106 Spore/mL) | LT50 (95% Confidence Interval, d) |
---|---|---|
Adult (9 d post-treatment) | 3.04 (0.72–5.79) | |
2nd instar larvae (9 d post-treatment) | 27.2 (1.02–5.15) | |
Adult (1 × 107 spore/mL) | 8.8 (7.8–10.2) | |
Adult (1 × 108 spore/mL) | 4.9 (4.1–5.8) | |
2nd instar larvae (1 × 108 spore/mL) | 9.3 (8.1–11.7) | |
2nd instar larvae (2 × 108 spore/mL) | 4.6 (3.8–5.5) |
Conidia Dose (mg/g Seed) | Corrected Mortality of CFB Larvae (%) | CFC Seedling Rate (%) | CFC Plant Height (cm) |
---|---|---|---|
12.5 | 45.45 ± 0.08 b | 67.50 ± 5.42 b | 7.70 ± 0.50 a |
25 | 72.73 ± 0.08 a | 78.33 ± 6.11 ab | 8.40 ± 0.60 a |
50 | 81.82 ± 0.05 a | 86.67 ± 6.38 a | 8.80 ± 0.70 a |
0 (CK) | 43.33 ± 3.15 c | 5.40 ± 0.50 b |
Seed | Conidia (mg/g Seed) | 7 d Post-Sowing | 10 d Post-Sowing | 14 d Post-Sowing | |||
---|---|---|---|---|---|---|---|
DI | CE (%) | DI | CE (%) | DI | CE (%) | ||
Ma pelletized | 12.5 | 5.2 ± 0.1 c | 60.5 ± 2.3 b | 10.0 ± 0.8 b | 41.3 ± 2.7 b | 15.9 ± 1.1 b | 57.0 ± 3.3 b |
25.0 | 2. 2 ± 0.0 c | 83.1 ± 5.5 a | 5.9 ± 0.4 b | 65.2 ± 4.2 ab | 12.0 ± 0.9 b | 67.5 ± 3.7 ab | |
50.0 | 1.9 ± 0.0 c | 92.9 ± 6.2 a | 4.8 ± 0.4 b | 85.8 ± 5.4 a | 14.3 ± 1.2 b | 80.6 ± 4.3 a | |
Filler pelletized | 0.0 | 8.7 ± 0.1 b | 33.8 ± 2.1 c | 18.2 ± 1.5 a | 40.7 ± 2.8 a | ||
Normal seeds | 0.0 | 13.2 ± 0.1 a | 17.0 ± 1.3 a | 37.0 ± 2.6 a |
Treatment | Conidia Germination (%) | Mycelia Growth (Colony Diameter, mm) | ||||
---|---|---|---|---|---|---|
Post-Treatment 7 d | Post-Treatment 14 d | |||||
10 mg/L | 100 mg/L | 10 mg/L | 100 mg/L | 10 mg/L | 100 mg/L | |
Acetamiprid | 80.22 ± 0.01 c | 80.37 ± 0.05 c | 33.3 ± 0.3 a | 32.7 ± 0.3 ab | 61.3 ± 0.3 ab | 62.3 ± 0.3 b |
Chlorfenapyr | 82.53 ± 0.06 c | 86.68 ± 0.04 a | 33.0 ± 0.6 a | 35.3 ± 0.3 a | 62.3 ± 1.5 a | 66.7 ± 0.3 a |
Diafenthiuron | 87.12 ± 0.04 b | 87.06 ± 0.05 a | 33.0 ± 0.6 a | 32.0 ± 0.6 b | 63.0 ± 1.0 a | 55.7 ± 1.2 d |
Dinotefuran | 81.79 ± 0.06 c | 80.23 ± 0.02 c | 31.0 ± 1.5 b | 27.3 ± 0.3 c | 61.3 ± 1.8 ab | 63.6 ± 1.5 b |
Emamectin benzoate | 76.07 ± 0.06 d | 84.68 ± 0.01 b | 34.0 ± 0.0 a | 32.7 ± 0.3 ab | 60.3 ± 1.2 bc | 61.7 ± 0.9 bc |
Pyridaben | 83.44 ± 0.06 c | 82.09 ± 0.05 c | 32.0 ± 0.0 ab | 30.7 ± 1.2 b | 60.3 ± 1.5 bc | 59.3 ± 1.2 c |
Rotenone | 69.73 ± 0.01 e | 82.35 ± 0.04 c | 32.0 ± 1.0 ab | 30.7 ± 0.7 b | 56.7 ± 0.9 d | 61.7 ± 0.3 bc |
Thiamethoxam | 74.35 ± 0.02 d | 88.48 ± 0.04 a | 33.7 ± 0.3 a | 34.7 ± 0.7 a | 62.7 ± 1.5 a | 65.7 ± 1.5 a |
Tolfenpyrad | 91.75 ± 0.02 a | 86.96 ± 0.01 a | 30.3 ± 0.3 b | 27.0 ± 0.6 c | 59.7 ± 0.3 c | 49.0 ± 0.6 e |
CK | 88.70 ± 0.02 b | 88.12 ± 0.02 a | 33.0 ± 1.2 a | 33.0 ± 1.2 ab | 59.7 ± 0.9 c | 59.7 ± 0.9 c |
A/B (v/v) | a.i. (mg/L) | LT50 (95% Confidence Interval) (d) | CTC | |
---|---|---|---|---|
MaGX19S02 | Chlorfenapyr | |||
1/9 | 42.4 | 45 | 6.66 (5.68–7.69) | 85.60 |
3/7 | 127 | 35 | 6.98 (5.90–8.19) | 94.02 |
5/5 | 212 | 25 | 5.19 (4.31–5.99) | 151.59 |
7/3 | 296 | 15 | 4.82 (3.86–5.68) | 204.18 |
9/1 | 381 | 5 | 6.26 (5.53–6.98) | 209.86 |
0/10 | 0 | 50 | 8.93 (7.93–10.33) | |
10/0 | 424 | 0 | 9.73 (8.68–11.33) |
Treatment | Mortality (%) | |||||
---|---|---|---|---|---|---|
Insecticide | a.i. (mg/L) | Post-Treatment 3 d | Post-Treatment 5 d | Post-Treatment 7 d | ||
Ma | Chlorfenapyr | |||||
20% Ma-Chl WP | 500× | 380 | 20 | 23.33 ± 3.33 a | 56.67 ± 3.33 a | 93.33 ± 6.67 a |
1000× | 190 | 10 | 20.00 ± 3.33 a | 40.00 ± 5.77 ab | 50.00 ± 3.33 b | |
1500× | 126.3 | 6.7 | 6.67 ± 3.33 a | 20.00 ± 5.77 bc | 40.00 ± 5.77 b | |
2000× | 95 | 5 | 0 b | 16.67 ± 6.67 bc | 30.00 ± 6.67 bc | |
3000× | 63.7 | 3.3 | 0 b | 10.00 ± 5.77 bc | 23.33 ± 3.33 bc | |
Chlorfenapyr | 50 | 10.00 ± 5.77 a | 23.33 ± 3.33 bc | 26.67 ± 6.67 bc | ||
MaGX19S02 | 424 * | 0 b | 10.00 ± 5.77 bc | 33.33 ± 3.33 bc | ||
CK | 0 | 0 | 0 b | 0 c | 3.33 ± 3.33 c |
Treatments | Post-Treatment 7 d | Post-Treatment 14 d | |||
---|---|---|---|---|---|
Insecticide | a.i. (mg/L) | DI | CE (%) | DI | CE (%) |
20% Ma-Chl WP 500× | 400 | 19.4 ± 1.4 c | 61.3 ± 4.5 * | 24.4 ± 1.3 b | 56.2 ± 5.1 * |
Chl | 50 | 56.7 ± 4.0 b | 24. 8 ± 2.1 | 84.4 ± 2.6 a | −0.9 ± 0.5 |
CK | 0 | 80.0 ± 5.7 a | 88.9 ± 3.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yuan, W.; He, R.; Pu, X.; Hu, Q.; Weng, Q. Screening of Fungal Strains and Formulations of Metarhizium anisopliae to Control Phyllotreta striolata in Chinese Flowering Cabbage. Insects 2023, 14, 567. https://doi.org/10.3390/insects14060567
Chen W, Yuan W, He R, Pu X, Hu Q, Weng Q. Screening of Fungal Strains and Formulations of Metarhizium anisopliae to Control Phyllotreta striolata in Chinese Flowering Cabbage. Insects. 2023; 14(6):567. https://doi.org/10.3390/insects14060567
Chicago/Turabian StyleChen, Wei, Wenjing Yuan, Renkun He, Xinhua Pu, Qiongbo Hu, and Qunfang Weng. 2023. "Screening of Fungal Strains and Formulations of Metarhizium anisopliae to Control Phyllotreta striolata in Chinese Flowering Cabbage" Insects 14, no. 6: 567. https://doi.org/10.3390/insects14060567
APA StyleChen, W., Yuan, W., He, R., Pu, X., Hu, Q., & Weng, Q. (2023). Screening of Fungal Strains and Formulations of Metarhizium anisopliae to Control Phyllotreta striolata in Chinese Flowering Cabbage. Insects, 14(6), 567. https://doi.org/10.3390/insects14060567