Overview of Updated Control Tactics for Western Flower Thrips
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biology and Behavior of Western Flower Thrips (WFT)
2.1. Life Cycle and Reproductive Behavior of WFT
2.2. Feeding Habits and Damage Caused by Thrips to Crops
3. WFT Monitoring
- Sticky traps are widely used to monitor thrips populations in the field [40]. These traps consist of yellow or blue sticky cards or tapes that attract and capture thrips; therefore, the trap color mimics the visual cues that thrips are naturally attracted to [41]. The traps can be hung at various heights within the crop canopy or placed near susceptible plant parts. Thrips are attracted to the traps, land on the sticky surface, and become trapped. The traps should be checked regularly (typically weekly) and replaced as needed [42]. These traps can also be amended with olfactory cues (e.g., allelochemical, pheromone, lure, or plant-based attractants specific to WFT) to be combined with visual cues to increase WFT attraction [43]. By counting the number of thrips captured on the traps, growers can estimate population levels, track population trends over time, and make informed decisions regarding pest management strategies.
- Visual inspections involve direct observation of plants for signs of thrips activity, including feeding damage and thrips’ presence [19]. This measure requires careful examination of plant foliage, flowers, and fruits. Thus, growers should look for characteristic feeding damage such as stippling, silvering, scarring, or discoloration on leaves and other plant parts, and they should also observe the presence of adult thrips, larvae, or their eggs. Inspections should cover multiple locations within the field or greenhouse to ensure representative sampling. To enhance the accuracy of visual inspections, using a hand lens or magnifying glass can be helpful, as thrips are small and may not be easily visible to the naked eye [44]. Visual inspections should be conducted regularly, ideally at least once a week, especially during periods when thrips populations are expected to be more active or when crops are most vulnerable to thrips damage. It is worth noting that combining multiple monitoring methods, such as sticky traps and visual inspections, can provide a more comprehensive understanding of thrips populations and their behavior.
4. Effective Control Strategies to Manage Thrips Populations
4.1. Cultural Control Strategies
4.2. Chemical Control Strategies
- Neonicotinoid insecticides, such as imidacloprid, acetamiprid, and thiamethoxam, are widely used for thrips control. They act on the nervous system of thrips, resulting in paralysis and death. However, neonicotinoids have been associated with adverse effects on pollinators and other beneficial insects, so their use should be carefully evaluated and limited to situations where alternative options are not feasible.
- Spinosad is derived from a soil bacterium and is effective against thrips. It acts on the nervous system, causing paralysis and death. Spinosad has low toxicity to many beneficial insects and is relatively considered a safer option.
- Pyrethroid insecticides, such as bifenthrin, cyfluthrin, and lambda-cyhalothrin, are commonly used for thrips control. They target the nervous system of thrips, resulting in paralysis and death. However, pyrethroids can adversely affect beneficial arthropods, including predatory mites and parasitic wasps.
- Organophosphate insecticides, e.g., malathion and chlorpyrifos, are effective against thrips. They disrupt their nervous system, leading to paralysis and death. However, organophosphates are broad-spectrum insecticides that can harm beneficial insects and pose risks to human health, so their use should be carefully considered.
4.3. Biological Control Strategies
4.4. Ethological Control Strategies
4.4.1. Volatile Chemical Attractants
4.4.2. Visual Stimuli
4.5. Host Plant Resistance-Based Controls Strategies
4.5.1. Constitutive Defense against WFT
4.5.2. Induced Defense against WFT
5. Outlook
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Qian, W.; Qiao, X.; Xi, Y.; Wan, F. Invasion Biology, Ecology, and Management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 2019, 102, e21613. [Google Scholar] [CrossRef]
- Reitz, S.R.; Gao, Y.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion Biology, Ecology, and Management of Western Flower Thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Reitz, S.R. Biology and Ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The Making of a Pest. Florida Entomol. 2009, 92, 7–13. [Google Scholar] [CrossRef]
- Abdelmaksoud, E.M.; El-Refai, S.A.; Mahmoud, K.W.; Ragab, M.E. Susceptibility of Some New Strawberry Genotypes to Infestation by Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in the Nursery. Ann. Agric. Sci. 2020, 65, 144–148. [Google Scholar] [CrossRef]
- Sarwar, M.; Shad, N.A.; Batool, R. Integrated Management of Vectored Viral Diseases of Plants. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: London, UK, 2020; pp. 707–724. ISBN 978-0-12-818654-1. [Google Scholar]
- Mouden, S.; Sarmiento, K.F.; Klinkhamer, P.G.L.; Leiss, K.A. Integrated Pest Management in Western Flower Thrips: Past, Present and Future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khavand, M.; Minaei, K.; Atashi, H. Comparison of Trapped Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) to Yellow and Blue Sticky Traps in Three Different Heights on Two Greenhouse Rose Cultivars. J. Crop Prot. 2019, 8, 373–377. [Google Scholar]
- Ullman, D.E.; Westcot, D.M.; Hunter, W.B.; Mau, R.F.L. Internal Anatomy and Morphology of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with Special Reference to Interactions between Thrips and Tomato Spotted Wilt Virus. Int. J. Insect Morphol. Embryol. 1989, 18, 289–310. [Google Scholar] [CrossRef]
- Jensen, S.E. Insecticide Resistance in the Western Flower Thrips, Frankliniella occidentalis. Integr. Pest Manag. Rev. 2000, 5, 131–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Z. Sensilla of the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Rev. Bras. Entomol. 2022, 66, e20220023. [Google Scholar] [CrossRef]
- Calixto-Álvarez, C.L. Thrips of the Suborder Terebrantia (Insecta: Thysanoptera) from the Bogotá Plateau. Rev. Colomb. Entomol. 2005, 31, 207–213. [Google Scholar] [CrossRef]
- Díaz, M.A.; Osorio, C.; Coy-Barrera, E.; Rodríguez, D. Semiochemicals Associated with the Western Flower Thrips Attraction: A Systematic Literature Review and Meta-Analysis. Insects 2023, 14, 269. [Google Scholar] [CrossRef]
- Kumm, S.; Moritz, G. Life-Cycle Variation, Including Female Production by Virgin Females in Frankliniella occidentalis (Thysanoptera: Thripidae). J. Appl. Entomol. 2010, 134, 491–497. [Google Scholar] [CrossRef]
- Gerin, C.; Hance, T.H.; Van Impe, G. Impact of Flowers on the Demography of Western Flower Thrips Frankliniella occidentalis (Thysan., Thripidae). J. Appl. Entomol. 1999, 123, 569–574. [Google Scholar] [CrossRef]
- Demirozer, O.; Tyler-Julian, K.; Funderburk, J.; Leppla, N.; Reitz, S. Frankliniella occidentalis (Pergande) Integrated Pest Management Programs for Fruiting Vegetables in Florida. Pest Manag. Sci. 2012, 68, 1537–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Zhi, J.; Zhang, R.; Li, C.; Liu, Y.; Lv, Z.; Gao, Y. Different Population Performances of Frankliniella occidentalis and Thrips Hawaiiensis on Flowers of Two Horticultural Plants. J. Pest Sci. 2018, 91, 79–91. [Google Scholar] [CrossRef]
- Vierbergen, G.; Kucharczyk, H.; Kirk, W.D.J. A Key to the Second Instar Larvae of the Thripidae of the Western Palaearctic Region (Thysanoptera). Tijdschr. voor Entomol. 2010, 153, 99–160. [Google Scholar] [CrossRef] [Green Version]
- Reitz, S. Frankliniella occidentalis (Western Flower Thrips). CABI Compend. 2020, 24426. [Google Scholar] [CrossRef]
- Cloyd, R.A. Western Flower Thrips (Frankliniella occidentalis) Management on Ornamental Crops Grown in Greenhouses: Have We Reached an Impasse ? Pest Technol. 2009, 3, 1–9. [Google Scholar]
- Hamilton, J.G.C.; Hall, D.R.; Kirk, W.D.J. Identification of a Male-Produced Aggregation Pheromone in the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2005, 31, 1369–1379. [Google Scholar] [CrossRef]
- Olaniran, O.; Kirk, W. Fighting Behaviour of Male Western Flower Thrips, Frankliniella occidentalis (Pergande). Acta Phytopathol. Entomol. Hungarica 2012, 47, 125–132. [Google Scholar] [CrossRef]
- Akinyemi, A.O.; Kirk, W.D.J. Experienced Males Recognise and Avoid Mating with Non-Virgin Females in the Western Flower Thrips. PLoS ONE 2019, 14, e0224115. [Google Scholar] [CrossRef]
- Zeng, G.; Zhi, J.-R.; Ye, M.; Xie, W.; Zhang, T.; Li, D.-Y.; Liu, L.; Wu, X.-B.; Cao, Y. Life Table and Preference Choice of Frankliniella occidentalis (Thysanoptera: Thripidae) for Kidney Bean Plants Treated by Exogenous Calcium. Insects 2021, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Lim, U.T. Life History Characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in Constant and Fluctuating Temperatures. J. Econ. Entomol. 2015, 108, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Hussain, S.; Merchant, A.; Xu, B.; Xie, W.; Wang, S.; Zhang, Y.; Zhou, X.; Wu, Q. Tomato Spotted Wilt Orthotospovirus Influences the Reproduction of Its Insect Vector, Western Flower Thrips, Frankliniella occidentalis, to Facilitate Transmission. Pest Manag. Sci. 2020, 76, 2406–2414. [Google Scholar] [CrossRef]
- Terry, I.; Schneider, M. Copulatory Behaviour and Mating Frequency of the Western Flower Thrips, Frankliniella occidentalis (Insecta: Thysanoptera). J. Pure Appl. Zool. 1993, 4, 339–354. [Google Scholar]
- Higgins, C.J.; Myers, J.H. Sex Ratio Patterns and Population Dynamics of Western Flower Thrips (Thysanoptera: Thripidae). Environ. Entomol. 1992, 21, 322–330. [Google Scholar] [CrossRef]
- He, Z.; Guo, J.-F.; Reitz, S.R.; Lei, Z.-R.; Wu, S.-Y. A Global Invasion by the Thrip, Frankliniella occidentalis: Current Virus Vector Status and Its Management. Insect Sci. 2020, 27, 626–645. [Google Scholar] [CrossRef]
- Kindt, F.; Joosten, N.N.; Peters, D.; Tjallingii, W.F. Characterisation of the Feeding Behaviour of Western Flower Thrips in Terms of Electrical Penetration Graph (EPG) Waveforms. J. Insect Physiol. 2003, 49, 183–191. [Google Scholar] [CrossRef]
- Stafford, C.A.; Walker, G.P.; Ullman, D.E. Infection with a Plant Virus Modifies Vector Feeding Behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 9350–9355. [Google Scholar] [CrossRef]
- Harrewijn, P.; Tjallingii, W.F.; Mollema, C. Electrical Recording of Plant Penetration by Western Flower Thrips. Entomol. Exp. Appl. 1996, 79, 345–353. [Google Scholar] [CrossRef]
- van de Wetering, F.; Hulshof, J.; Posthuma, K.; Harrewijn, P.; Goldbach, R.; Peters, D. Distinct Feeding Behavior between Sexes of Frankliniella occidentalis Results in Higher Scar Production and Lower Tospovirus Transmission by Females. Entomol. Exp. Appl. 1998, 88, 9–15. [Google Scholar] [CrossRef]
- Roditakis, N.E. First Record of Frankliniellα Occidentalis in Greece. Entomol. Hell. 1991, 9, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Montero-Astúa, M.; Ullman, D.E.; Whitfield, A.E. Salivary Gland Morphology, Tissue Tropism and the Progression of Tospovirus Infection in Frankliniella occidentalis. Virology 2016, 493, 39–51. [Google Scholar] [CrossRef]
- Moritz, G.; Kumm, S.; Mound, L. Tospovirus Transmission Depends on Thrips Ontogeny. Virus Res. 2004, 100, 143–149. [Google Scholar] [CrossRef]
- Gupta, R.; Kwon, S.-Y.; Kim, S.T. An Insight into the Tomato Spotted Wilt Virus (TSWV), Tomato and Thrips Interaction. Plant Biotechnol. Rep. 2018, 12, 157–163. [Google Scholar] [CrossRef]
- Sampson, C.; Kirk, W. Flower Stage and Position Affect Population Estimates of the Western Flower Thrips, Frankliniella occidentalis (Pergande), in Strawberry. Acta Phytopathol. Entomol. Hungarica 2012, 47, 133–139. [Google Scholar] [CrossRef]
- Broughton, S.; Harrison, J. Evaluation of Monitoring Methods for Thrips and the Effect of Trap Colour and Semiochemicals on Sticky Trap Capture of Thrips (Thysanoptera) and Beneficial Insects (Syrphidae, Hemerobiidae) in Deciduous Fruit Trees in Western Australia. Crop Prot. 2012, 42, 156–163. [Google Scholar] [CrossRef]
- Wakil, W.; Gulzar, S.; Wu, S.; Rasool, K.G.; Husain, M.; Aldawood, A.S.; Toews, M.D. Development of Insecticide Resistance in Field Populations of Onion Thrips, Thrips tabaci (Thysanoptera: Thripidae). Insects 2023, 14, 376. [Google Scholar] [CrossRef]
- Sampson, C.; Kirk, W.D.J. Can Mass Trapping Reduce Thrips Damage and Is It Economically Viable? Management of the Western Flower Thrips in Strawberry. PLoS ONE 2013, 8, e80787. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lei, Z.; Reitz, S.R. Western Flower Thrips Resistance to Insecticides: Detection, Mechanisms and Management Strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Espinoza, K.; Valera, D.L.; Torres, J.A.; López, A.; Molina-Aiz, F.D. Combination of Image Processing and Artificial Neural Networks as a Novel Approach for the Identification of Bemisia tabaci and Frankliniella occidentalis on Sticky Traps in Greenhouse Agriculture. Comput. Electron. Agric. 2016, 127, 495–505. [Google Scholar] [CrossRef]
- Ren, X.; Wu, S.; Xing, Z.; Xu, R.; Cai, W.; Lei, Z. Behavioral Responses of Western Flower Thrips (Frankliniella occidentalis) to Visual and Olfactory Cues at Short Distances. Insects 2020, 11, 177. [Google Scholar] [CrossRef] [Green Version]
- González-Zamora, J.E.; Garcia-Marí, F. The Efficiency of Several Sampling Methods for Frankliniella occidentalis (Thysan., Thripidae) in Strawberry Flowers. J. Appl. Entomol. 2003, 127, 516–521. [Google Scholar] [CrossRef]
- Gillett-Kaufman, J.L.; Leppla, N.C.; Hodges, A.C.; Merritt, J.L. Education and Training to Increase Adoption of IPM for Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Florida Entomol. 2009, 92, 18–23. [Google Scholar] [CrossRef]
- Buckland, K.; Reeve, J.R.; Alston, D.; Nischwitz, C.; Drost, D. Effects of Nitrogen Fertility and Crop Rotation on Onion Growth and Yield, Thrips Densities, Iris Yellow Spot Virus and Soil Properties. Agric. Ecosyst. Environ. 2013, 177, 63–74. [Google Scholar] [CrossRef]
- Flint, M.L.; Roberts, P.A. Using Crop Diversity to Manage Pest Problems: Some California Examples. Am. J. Altern. Agric. 1988, 3, 163–167. [Google Scholar] [CrossRef]
- Ando, K.; Grumet, R.; Terpstra, K.; Kelly, J.D. Manipulation of Plant Architecture to Enhance Crop Disease Control. CABI Rev. 2007, 1–8. [Google Scholar] [CrossRef]
- Rusch, A.; Bommarco, R.; Jonsson, M.; Smith, H.G.; Ekbom, B. Flow and Stability of Natural Pest Control Services Depend on Complexity and Crop Rotation at the Landscape Scale. J. Appl. Ecol. 2013, 50, 345–354. [Google Scholar] [CrossRef]
- Gholami, Z.; Sadeghi, A. Management Strategies for Western Flower Thrips in Vegetable Greenhouses in Iran: A Review. Plant Prot. Sci. 2016, 52, 87–98. [Google Scholar] [CrossRef]
- Shelton, A.M.; Badenes-Perez, F.R. Concepts and Applications of Trap Cropping in Pest Management. Annu. Rev. Entomol. 2005, 51, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, S.; Hoshino, S.; Koga, H. Verbena as a Trap Crop to Suppress Thrips-Transmitted Tomato Spotted Wilt Virus in Chrysanthemums. J. Gen. Plant Pathol. 2006, 72, 180–185. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Khan, F.; Kim, Y. A Push-Pull Strategy to Control the Western Flower Thrips, Frankliniella occidentalis, Using Alarm and Aggregation Pheromones. PLoS ONE 2023, 18, e0279646. [Google Scholar] [CrossRef] [PubMed]
- Reitz, S.R.; Funderburk, J. Management Strategies for Western Flower Thrips and the Role of Insecticides. In Insecticides; Perveen, F., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 16. [Google Scholar]
- Pieterse, Z.; Buitenhuis, R.; Liu, J.; Fefer, M.; Teshler, I. Efficacy of Oil and Photosensitizer against Frankliniella occidentalis in Greenhouse Sweet Pepper. Antibiotics 2023, 12, 495. [Google Scholar] [CrossRef]
- Shirvani, Z.; Allahyari, H.; Golpayegani, A.Z.; Jahromi, K.T.; Döker, I. Side Effects of Zataria multiflora Boiss (Lamiaceae) Essential Oil on Predation and Life Table Parameters of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Syst. Appl. Acarol. 2023, 28, 143–157. [Google Scholar] [CrossRef]
- Razavi, N.; Ahmadi, K.; Takalozadeh, H.M. Effect of Ethanolic Plant Extracts along with Releasing Eggs of Orius horvathi (Heteroptera: Anthocoridae) against the Western Flower Thrips Frankliniella occidentalis (Thysanoptera: Thripidae). J. Crop Prot. 2022, 11, 243–252. [Google Scholar]
- Kordestani, M.; Mahdian, K.; Baniameri, V.; Sheikhi Garjan, A. Lethal and Sublethal Effects of Proteus, Matrine, and Pyridalyl on Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 2021, 50, 1137–1144. [Google Scholar] [CrossRef]
- Liang, H.-Y.; Yang, X.-M.; Sun, L.-J.; Zhao, C.-D.; Chi, H.; Zheng, C.-Y. Sublethal Effect of Spirotetramat on the Life Table and Population Growth of Frankliniella occidentalis (Thysanoptera: Thripidae). Entomol. Gen. 2021, 41, 219–231. [Google Scholar] [CrossRef]
- Ding, T.; Wang, S.; Gao, Y.; Li, C.; Wan, F.; Zhang, B. Toxicity and Effects of Four Insecticides on Na+, K+-ATPase of Western Flower Thrips, Frankliniella occidentalis. Ecotoxicology 2020, 29, 58–64. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.-B. Anisole Is an Environmentally Friendly Fumigant for Postharvest Pest Control. J. Stored Prod. Res. 2021, 93, 101842. [Google Scholar] [CrossRef]
- Balaško, M.K.; Neral, K.; Nađ, B.; Bažok, R.; Drmić, Z.; Čačija, M. Azadirachtin Efficacy in Colorado Potato Beetle and Western Flower Thrips Control. Rom. Agric. Res. 2021, 2021, 407–416. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.-B.; Feng, Y.; Zhang, A. Methyl Benzoate Fumigation for Control of Post-Harvest Pests and Its Effects on Apple Quality. J. Appl. Entomol. 2020, 144, 191–200. [Google Scholar] [CrossRef]
- Riudavets, J. Predators of Frankliniella occidentalis (Perg.) and Thrips Tabaci Lind.: A Review. In Biological Control of Thrips Pests; Loomans, A.J.M., van Lenteren, J., Tommasini, M.G., Maini, S., Riudavets, J., Eds.; Wageningen Agricultural University Papers: Wageningen, The Netherlands, 1995; pp. 49–76. [Google Scholar]
- Carpintero, D.L. Catalogue of the Neotropical Anthocoridae (Heteroptera). Rev. Soc. Entomol. Argentina 2002, 61, 25–44. [Google Scholar]
- Avellaneda Nieto, J.A.; Díaz Tapias, M.A.; Acosta Leal, D.A.; Rodríguez Caicedo, D.; Cantor Rincón, F. Collection of Anthocorids and Determination of Their Predatory Capacity on Adults of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Rev. Fac. Ciencias Básicas 2016, 12, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.P.; Shirk, P.D.; Kelley, K.; Lewis, T.M.; Horton, D.R. Identity of Two Sympatric Species of Orius (Hemiptera: Heteroptera: Anthocoridae). J. Insect Sci. 2010, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Avellaneda Nieto, J.A.; Cantor Rincón, F.; Rodriguez Caicedo, D. Life Table of Orius insidiosus (Hemiptera: Anthocoridae) Feeding on Sitotroga cerealella (Lepidoptera: Gelechiidae) Eggs. Rev. Fac. Nac. Agron. 2016, 69, 7773–7782. [Google Scholar] [CrossRef]
- Díaz, M.A.; Avellaneda, J.; Rodríguez, D. Effect of Diet, Maintenance Frequency, and Environmental Conditions on the Rearing of Orius insidiosus (Hemiptera: Anthocoridae) in Neotropical Highlands. Int. J. Trop. Insect Sci. 2020, 40, 503–512. [Google Scholar] [CrossRef]
- Luna-Espino, H.M.; Jiménez-Pérez, A.; Castrejón-Gómez, V.R. Assessment of Chrysoperla comanche (Banks) and Chrysoperla externa (Hagen) as Biological Control Agents of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on Tomato (Solanum lycopersicum) under Glasshouse Conditions. Insects 2020, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Berndt, O.; Meyhöfer, R.; Poehling, H.-M. The Edaphic Phase in the Ontogenesis of Frankliniella occidentalis and Comparison of Hypoaspis miles and Plypoaspis aculeifer as Predators of Soil-Dwelling Thrips Stages. Biol. Control 2004, 30, 17–24. [Google Scholar] [CrossRef]
- Rueda-Ramírez, D.; Rios-Malaver, D.; Varela-Ramírez, A.; Moraes, G.J.D. Colombian Population of the Mite Gaeolaelaps aculeifer as a Predator of the Thrips Frankliniella occidentalis and the Possible Use of an Astigmatid Mite as Its Factitious Prey. Syst. Appl. Acarol. 2018, 23, 2359–2372. [Google Scholar] [CrossRef]
- Walzer, A.; Schausberger, P. Non-Consumptive Effects of Predatory Mites on Thrips and Its Host Plant. Oikos 2009, 118, 934–940. [Google Scholar] [CrossRef]
- Muñoz, K.; Fuentes, L.; Cantor, F.; Rodríguez, D.; Cure, J.R. Feeding Preferences of the Mite Balaustium sp. under Controlled Conditions. Agron. Colomb. 2009, 27, 95–103. [Google Scholar]
- Muñoz-Cárdenas, K.; Fuentes, L.S.; Cantor, R.F.; Rodríguez, C.D.; Janssen, A.; Sabelis, M.W. Generalist Red Velvet Mite Predator (Balaustium sp.) Performs Better on a Mixed Diet. Exp. Appl. Acarol. 2014, 62, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Farkas, P.; Bagi, N.; Szabó, Á.; Ladányi, M.; Kis, K.; Sojnóczki, A.; Reiter, D.; Pénzes, B.; Fail, J. Biological Control of Thrips Pests (Thysanoptera: Thripidae) in a Commercial Greenhouse in Hungary. Polish J. Entomol. 2016, 85, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Wiethoff, J.; Poehling, H.-M.; Meyhöfer, R. Combining Plant- and Soil-Dwelling Predatory Mites to Optimise Biological Control of Thrips. Exp. Appl. Acarol. 2004, 34, 239–261. [Google Scholar] [CrossRef]
- Manners, A.G.; Dembowski, B.R.; Healey, M.A. Biological Control of Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in Gerberas, Chrysanthemums and Roses. Aust. J. Entomol. 2013, 52, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Ebssa, L.; Borgemeister, C.; Poehling, H.-M. Effects of Post-Application Irrigation and Substrate Moisture on the Efficacy of Entomopathogenic Nematodes against Western Flower Thrips, Frankliniella occidentalis. Entomol. Exp. Appl. 2004, 112, 65–72. [Google Scholar] [CrossRef]
- Steven, A.; Heinz, K.M. Evaluation of the Nematodes Steinernema feltiae and Thripinema nicklewoodi as Biological Control Agents of Western Flower Thrips Frankliniella occidentalis Infesting Chrysanthemum. Biocontrol Sci. Technol. 2006, 16, 141–155. [Google Scholar] [CrossRef]
- Trdan, S.; Žnidaračič, D.; Vidrih, M. Control of Frankliniella occidentalis on Glasshouse-Grown Cucumbers: An Efficacy Comparison of Foliar Application of Steinernema feltiae and Spraying with Abamectin. Russ. J. Nematol. 2007, 15, 25–34. [Google Scholar]
- Chyzik, R.; Glazer, I.; Klein, M. Virulence and Efficacy of Different Entomopathogenic Nematode Species against Western Flower Thrips (Frankliniella occidentalis). Phytoparasitica 1996, 24, 103–110. [Google Scholar] [CrossRef]
- Ebssa, L.; Borgemeister, C.; Poehling, H.-M. Simultaneous Application of Entomopathogenic Nematodes and Predatory Mites to Control Western Flower Thrips Frankliniella occidentalis. Biol. Control 2006, 39, 66–74. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.; Kim, J.C.; Lee, M.R.; Hossain, M.S.; Shin, T.S.; Kim, T.H.; Kim, J.S. Entomopathogenic Beauveria bassiana Granules to Control Soil-Dwelling Stage of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). BioControl 2017, 62, 639–648. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, Z.; Reitz, S.R.; Wu, S.; Gao, Y. Laboratory and Greenhouse Evaluation of a Granular Formulation of Beauveria bassiana for Control of Western Flower Thrips, Frankliniella occidentalis. Insects 2019, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cloyd, R.A.; Bello, N.M.; Dara, S. Effect of Integrating the Entomopathogenic Fungus (Hypocreales: Cordycipitaceae) and the Rove Beetle (Coleoptera: Staphylinidae) in Suppressing Western Flower Thrips (Thysanoptera: Thripidae) Populations under Greenhouse Conditions. J. Econ. Entomol. 2019, 112, 2085–2093. [Google Scholar] [CrossRef]
- Badillo-Vargas, I.E.; Rotenberg, D.; Schneweis, B.A.; Whitfield, A.E. RNA Interference Tools for the Western Flower Thrips, Frankliniella occidentalis. J. Insect Physiol. 2015, 76, 36–46. [Google Scholar] [CrossRef]
- Andongma, A.A.; Greig, C.; Dyson, P.J.; Flynn, N.; Whitten, M.M.A. Optimization of Dietary RNA Interference Delivery to Western Flower Thrips Frankliniella occidentalis and Onion Thrips Thrips tabaci. Arch. Insect Biochem. Physiol. 2020, 103, e21645. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Dong, Y.; Zhang, Q.; Li, S.; Chang, L.; Vanessa Loiacono, F.; Ruf, S.; Zhang, J.; Bock, R. Efficient Control of Western Flower Thrips by Plastid-Mediated RNA Interference. Proc. Natl. Acad. Sci. USA 2022, 119, e2120081119. [Google Scholar] [CrossRef]
- Venkatesh, J.; Kim, S.J.; Siddique, M.I.; Kim, J.H.; Lee, S.H.; Kang, B.-C. CopE and TLR6 RNAi-Mediated Tomato Resistance to Western Flower Thrips. J. Integr. Agric. 2023, 22, 471–480. [Google Scholar] [CrossRef]
- Yari, S.; Hajiqanbar, H.; Farazmand, A.; Rashed, A.; Fathipour, Y. Efficacy of Single and Combined Release of Phytoseiulus persimilis and Amblyseius swirskii at Different Release Ratios for Control of Tetranychus urticae and Frankliniella occidentalis on Rose Plants. Int. J. Pest Manag. 2023, 1–11. [Google Scholar] [CrossRef]
- Coates, C.E.R.; Labbé, R.; Gagnier, D.; Laflair, A.; Kevan, P.G. Apivectoring of Entomopathogen, Beauveria bassiana Strain GHA for Suppression of Thrips on Commercial Greenhouse Strawberries: A Real Life Study. BioControl 2023, 68, 143–154. [Google Scholar] [CrossRef]
- Yari, S.; Hajiqanbar, H.; Farazmand, A.; Rashed, A.; Fathipour, Y. Efficacy Assessment of Neoseiulus cucumeris at Different Release Rates in Control of Frankliniella occidentalis on Rose Plants under Laboratory and Microcosm Conditions. Syst. Appl. Acarol. 2023, 28, 607–618. [Google Scholar] [CrossRef]
- Sullivan, C.F.; Davari, A.; Kim, J.S.; Parker, B.L.; Skinner, M. Evaluation of a Guardian Plant System to Suppress Frankliniella occidentalis (Thysanoptera: Thripidae) in Greenhouse Ornamentals. Pest Manag. Sci. 2023, 1–11. [Google Scholar] [CrossRef]
- Khan, F.; Kim, M.; Kim, Y. Greenhouse Test of Spraying DsRNA to Control the Western Flower Thrips, Frankliniella occidentalis, Infesting Hot Peppers. BMC Biotechnol. 2023, 23, 10. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.H.; Kim, J.H.; Yoon, K.A.; Lee, S.H. Ingestion of Antagomir or Agomir of MicroRNA Results in Physiological Changes and High Mortality in Frankliniella ocidentalis. Entomol. Gen. 2023, 43, 109–116. [Google Scholar] [CrossRef]
- Di, N.; Zhu, Z.; Harwood, J.D.; Xu, Z.; Wang, S.; Desneux, N. Fitness of Frankliniella occidentalis and Bemisia tabaci on Three Plant Species Pre-Inoculated by Orius sauteri. J. Pest Sci. 2022, 95, 1531–1541. [Google Scholar] [CrossRef]
- Andongma, A.A.; Whitten, M.M.A.; Sol, R.D.; Hitchings, M.; Dyson, P.J. Bacterial Competition Influences the Ability of Symbiotic Bacteria to Colonize Western Flower Thrips. Front. Microbiol. 2022, 13, 883891. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Brownbridge, M. The Generalist Predatory Mite Anystis baccarum (Acari: Anystidae) as a New Biocontrol Agent for Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Exp. Appl. Acarol. 2022, 86, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, X.; Huang, J.; Zhang, Z.; Hafeez, M.; Zhang, J.; Chen, L.; Zhou, S.; Zhang, L.; Lu, Y. Linking Life Table and Predation Rate for Evaluating Temperature Effects on Orius strigicollis for the Biological Control of Frankliniella occidentalis. Front. Sustain. Food Syst. 2022, 6, 1026115. [Google Scholar] [CrossRef]
- Zhang, T.; Zhi, J.-R.; Li, D.-Y.; Liu, L.; Zeng, G. Effect of Different Double-Stranded RNA Feeding Solutions on the RNA Interference of V-ATPase-B in Frankliniella occidentalis. Entomol. Exp. Appl. 2022, 170, 427–436. [Google Scholar] [CrossRef]
- Vangansbeke, D.; Duarte, M.V.A.; Pijnakker, J.; Pekas, A.; Wäckers, F. Egg Predation by Phytoseiid Predatory Mites: Is There Intraguild Predation Towards Predatory Bug Eggs? J. Econ. Entomol. 2022, 115, 1087–1094. [Google Scholar] [CrossRef]
- Dalir, S.; Hajiqanbar, H.; Fathipour, Y.; Khanamani, M. A Comprehensive Picture of Foraging Strategies of Neoseiulus cucumeris and Amblyseius swirskii on Western Flower Thrips. Pest Manag. Sci. 2021, 77, 5418–5429. [Google Scholar] [CrossRef]
- Davari, A.; Parker, B.L.; Sullivan, C.F.; Ghalehgolabbehbahani, A.; Skinner, M. Biological Control of Western Flower Thrips, Frankliniella occidentalis Using a Self-Sustaining Granular Fungal Treatment. Bull. Entomol. Res. 2021, 111, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, J.; Zeng, D.; Xia, Y.; Peng, G. Effective Control of Frankliniella occidentalis by Metarhizium anisopliae CQMa421 under Field Conditions. J. Pest Sci. 2021, 94, 111–117. [Google Scholar] [CrossRef]
- Herrick, N.J.; Cloyd, R.A.; Conner, M.A.; Motolai, G. Insidious Flower Bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae), Predation on Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Transvaal daisy, Gerbera jamesonii, cut flowers and chrysanthemum, Tanacetum × grandiflorum, plants under laboratory and greenhouse conditions. Biol. Control 2021, 163, 104739. [Google Scholar] [CrossRef]
- Schausberger, P.; Çekin, D.; Litin, A. Learned Predators Enhance Biological Control via Organizational Upward and Trophic Top-down Cascades. J. Appl. Ecol. 2021, 58, 158–166. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Reitz, S.R.; Gao, Y. Simultaneous Application of Entomopathogenic Beauveria bassiana Granules and Predatory Mites Stratiolaelaps scimitus for Control of Western Flower Thrips, Frankliniella occidentalis. J. Pest Sci. 2021, 94, 119–127. [Google Scholar] [CrossRef]
- Traczyk, E.; Funderburk, J.; Martini, X. Foraging Behavior Responses of Orius insidiosus to Thrips Cues. Entomol. Exp. Appl. 2020, 168, 716–722. [Google Scholar] [CrossRef]
- Li, Y.; Cloyd, R.A.; Bello, N.M. Predation of Western Flower Thrips (Thysanoptera: Thripidae) Pupal Populations by Rove Beetle, Dalotia coriaria (Kraatz) (Coleoptera: Staphylinidae), Adults. J. Entomol. Sci. 2020, 55, 219–233. [Google Scholar] [CrossRef]
- Lorenzo, M.E.; Bao, L.; Mendez, L.; Grille, G.; Bonato, O.; Basso, C. Effect of Two Oviposition Feeding Substrates on Orius insidiosus and Orius tristicolor (Hemiptera: Anthocoridae). Florida Entomol. 2019, 102, 395–402. [Google Scholar] [CrossRef]
- Li, Y.; Cloyd, R.A.; Bello, N.M. Predation Efficacy of Rove Beetle (Coleoptera: Staphylinidae) Adults in Response to Western Flower Thrips (Thysanoptera: Thripidae) Pupal Stage, Predator-Prey Ratio, and Searchable Area. J. Entomol. Sci. 2020, 55, 350–365. [Google Scholar] [CrossRef]
- Dlamini, T.M.; Allsopp, E.; Malan, A.P. Application of Steinernema yirgalemense to Control Frankliniella occidentalis (Thysanoptera: Thripidae) on Blueberries. Crop Prot. 2020, 128, 105016. [Google Scholar] [CrossRef]
- Téllez, M.M.; Cabello, T.; Gámez, M.; Burguillo, F.J.; Rodríguez, E. Comparative Study of Two Predatory Mites Amblyseius swirskii Athias-Henriot and Transeius montdorensis (Schicha) by Predator-Prey Models for Improving Biological Control of Greenhouse Cucumber. Ecol. Modell. 2020, 431, 109197. [Google Scholar] [CrossRef]
- El Arnaouty, S.A.; El-Heneidy, A.H.; Afifi, A.I.; Heikal, I.H.; Kortam, M.N. Comparative Study between Biological and Chemical Control Programs of Certain Sweet Pepper Pests in Greenhouses. Egypt. J. Biol. Pest Control 2020, 30, 20. [Google Scholar] [CrossRef]
- Vangansbeke, D.; Duarte, M.V.A.; Gobin, B.; Tirry, L.; Wäckers, F.; De Clercq, P. Cold-Born Killers: Exploiting Temperature–Size Rule Enhances Predation Capacity of a Predatory Mite. Pest Manag. Sci. 2020, 76, 1841–1846. [Google Scholar] [CrossRef]
- D’Ambrosio, D.A.; Kennedy, G.G.; Huseth, A.S. Frankliniella fusca and Frankliniella occidentalis Response to Thrips-Active Cry51Aa2.834_16 Bt Cotton with and without Neonicotinoid Seed Treatment. Crop Prot. 2020, 129, 105042. [Google Scholar] [CrossRef]
- Ge, W.; Du, G.; Zhang, L.; Li, Z.; Xiao, G.; Chen, B. The Time–Concentration–Mortality Responses of Western Flower Thrips, Frankliniella occidentalis, to the Synergistic Interaction of Entomopathogenic Fungus Metarhizium flavoviride, Insecticides, and Diatomaceous Earth. Insects 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, J.C.; Lee, S.J.; Lee, M.R.; Park, S.E.; Li, D.; Baek, S.; Shin, T.Y.; Kim, J.S. Beauveria bassiana ERL836 and JEF-007 with Similar Virulence Show Different Gene Expression When Interacting with Cuticles of Western Flower Thrips, Frankniella occidentalis. BMC Genom. 2020, 21, 836. [Google Scholar] [CrossRef]
- Dlamini, T.M.; Allsopp, E.; Malan, A.P. Efficacy of Entomopathogenic Nematodes against Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), under Laboratory Conditions. Afr. Entomol. 2019, 27, 322–335. [Google Scholar] [CrossRef]
- Teulon, D.A.J.; Penman, D.R.; Ramakers, P.M.J. Volatile Chemicals for Thrips (Thysanoptera:Thrypidae) Host Finding and Applications for Thrips Pest Management. J. Econ. Entomol. 1993, 86, 1405–1415. [Google Scholar] [CrossRef]
- Teerling, C.R.; Pierce, H.D., Jr.; Borden, J.H.; Gillespie, D.R. Identification and Bioactivity of Alarm Pheromone in the Western Flower Thrips, Frankliniella occidentalis. J. Chem. Ecol. 1993, 19, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Koschier, E.H.; De Kogel, W.J.; Visser, J.H. Assessing the Attractiveness of Volatile Plant Compounds to Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2000, 26, 2643–2655. [Google Scholar] [CrossRef]
- Katerinopoulos, H.E.; Pagona, G.; Afratis, A.; Stratigakis, N.; Roditakis, N. Composition and Insect Attracting Activity of the Essential Oil of Rosmarinus officinalis. J. Chem. Ecol. 2005, 31, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.M.; Butler, S.W.; Teulon, D.A. Pyridine Compounds Increase Trap Capture of Frankliniella occidentalis Pergande in a Covered Crop. N. Z. Plant Prot. 2007, 60, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Teulon, D.A.J.; Nielsen, M.-C.; De Kogel, W.J.; Van_Tol, R.W.H.M.; Davidson, M.M. A New Lure for Thrips Major. N. Z. Plant Prot. 2008, 61, 386. [Google Scholar] [CrossRef] [Green Version]
- Koschier, E.H.; Hoffmann, D.; Riefler, J. Influence of Salicylaldehyde and Methyl Salicylate on Post-Landing Behaviour of Frankliniella occidentalis Pergande. J. Appl. Entomol. 2007, 131, 362–367. [Google Scholar] [CrossRef]
- Chermenscaya, T.D.; Pow, E.M.; Woodcock, C.; Maniar, S.; Shamshev IV, S.; OG, B.V.N.; Roditakis, N. Behavioural Responses of Western Flower Thrips, Frankliniella occidentalis (Pergande), to Volatiles from Three Aromatic Plants. Int. J. Trop. Insect Sci. 2001, 21, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Chen, Y.; Chen, Y.; Chen, X.; Lin, S.; Zhang, J.; Yang, G.; Wei, H. A Mixture of p-Anisaldehyde and Ethyl Nicotinate Elicits Positive Antennal and Behavioral Responses in Frankliniella occidentalis. Entomol. Exp. Appl. 2022, 170, 603–611. [Google Scholar] [CrossRef]
- McDonald, K.M.; Hamilton, J.G.C.; Jacobson, R.; Kirk, W.D.J. Effects of Alarm Pheromone on Landing and Take-off by Adult Western Flower Thrips. Entomol. Exp. Appl. 2002, 103, 279–282. [Google Scholar] [CrossRef]
- de Kogel, W.J.; van Deventer, P. Intraspecific Attraction in the Western Flower Thrips Frankliniella occidentalis; Indications for a Male Sex Pheromone. Entomol. Exp. Appl. 2003, 107, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Kirk, W.D.J.; Hamilton, J.G.C. Evidence for a Male-Produced Sex Pheromone in the Western Flower Thrips Frankliniella occidentalis. J. Chem. Ecol. 2004, 30, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, Z.S.; Greenfield, B.P.; Ficken, K.J.; Taylor, J.W.; Wood, M.; Butt, T.M. A New Attractant for Monitoring Western Flower Thrips, Frankliniella occidentalis in Protected Crops. Springerplus 2015, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, Z.S.; Ficken, K.J.; Greenfield, B.P.; Butt, T.M. Innate Responses to Putative Ancestral Hosts: Is the Attraction of Western Flower Thrips to Pine Pollen a Result of Relict Olfactory Receptors? J. Chem. Ecol. 2014, 40, 534–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binyameen, M.; Ejaz, M.; Shad, S.A.; Razaq, M.; Shah, R.M.; Schlyter, F. Eugenol, a Plant Volatile, Synergizes the Effect of the Thrips Attractant, Ethyl Iso-Nicotinate. Environ. Entomol. 2018, 47, 1560–1564. [Google Scholar] [CrossRef] [PubMed]
- Strzyzewski, I.; Funderburk, J.; Martini, X. Specificity of Vectoring and Non-Vectoring Flower Thrips Species to Pathogen-Induced Plant Volatiles. J. Pest Sci. 2023, 96, 441–449. [Google Scholar] [CrossRef]
- Avellaneda, J.; Díaz, M.; Coy-Barrera, E.; Rodríguez, D.; Osorio, C. Rose Volatile Compounds Allow the Design of New Control Strategies for the Western Flower Thrips (Frankliniella occidentalis). J. Pest Sci. 2021, 94, 129–142. [Google Scholar] [CrossRef]
- Moffit, H.R. A Color Preference of the Western Flower Thrips Frankliniella occidentalis. J. Econ. Entomol. 1964, 57, 604–605. [Google Scholar] [CrossRef]
- Beavers, J.B.; Shaw, J.G.; Hampton, R.B. Color and Height Preference of the Citrus Thrips in a Navel Orange Groove. J. Econ. Entomol. 1971, 64, 1112–1113. [Google Scholar] [CrossRef]
- Yudin, L.S.; Mitchell, W.C.; Cho, J.J. Color Preference of Thrips (Thysanoptera:Thripidae) with Reference to Aphids and Leafminers in Hawaiian Lettuce Farms. J. Econ. Entomol. 1987, 80, 51–55. [Google Scholar] [CrossRef]
- Chu, C.-C.; Pinter, P.J., Jr.; Henneberry, T.J.; Umeda, K.; Natwick, E.T.; Wei, Y.-A.N.; Reddy, V.R.; Shrepatis, M. Use of CC Traps with Different Trap Base Colors for Silverleaf Whiteflies (Homoptera: Aleyrodidae), Thrips (Thysanoptera: Thripidae), and Leafhoppers (Homoptera: Cicadellidae). J. Econ. Entomol. 2000, 93, 1329–1337. [Google Scholar] [CrossRef]
- Demirel, N.; Cranshaw, W. Attraction of Color Traps to Thrips Species (Thysanoptera:Thripidae ) on Brassica Crops in Colorado. Pakistan J. Biol. Sci. 2005, 8, 1247–1249. [Google Scholar] [CrossRef]
- Blumthal, M.R.; Spomer, L.A.; Warnock, D.F.; Cloyd, R.A. Flower Color Preferences of Western Flower Thrips. Horttechnology 2005, 15, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Larraín, P.S.; Varela, F.U.; Quiroz, C.E.; Graña, F.S. Effect of Trap Color on Catches of Frankliniella occidentalis (Thysanoptera: Thripidae) in Sweet Peppers (Capsicum annum L.). Agric. Técnica 2006, 66, 306–311. [Google Scholar] [CrossRef]
- Joyo, G.; Narrea, M. Effect of Sticky Trap Color on the Capture of Frankliniella Occidentalis (Pergande) and Thrips tabaci Linderman on the Culture of Grape Vine at Chincha, Perú. An. Científicos 2015, 76, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Johansen, N.S.; Torp, T.; Solhaug, K.A. Phototactic Response of Frankliniella occidentalis to Sticky Traps with Blue Light Emitting Diodes in Herb and Alstroemeria Greenhouses. Crop Prot. 2018, 114, 120–128. [Google Scholar] [CrossRef]
- Hoddle, M.S.; Robinson, L.; Morgan, D. Attraction of thrips (Thysanoptera: Thripidae and Aeolothripidae) to colored sticky cards in a California avocado orchard. Crop Prot. 2002, 21, 383–388. [Google Scholar] [CrossRef]
- Gillespie, D.R.; Vernon, R.S. Trap Catch of Western Flower Thrips (Thysanoptera: Thripidae) as Affected by Color and Height of Sticky Traps in Mature Greenhouse Cucumber Crops. J. Econ. Entomol. 1990, 83, 971–975. [Google Scholar] [CrossRef]
- Prokopy, R.J.; Owens, E.D. Visual Detection of Plants by Herbivorous Insects. Annu. Rev. Entomol. 1983, 28, 337–364. [Google Scholar] [CrossRef]
- Mainali, B.P.; Lim, U.T. Circular Yellow Sticky Trap with Black Background Enhances Attraction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool. 2010, 45, 207–2013. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Esteban, S.; Rojas, J.C.; Hernádez-Ledesma, P. Trap Colour and Aggregation Pheromone Dose Affect the Catch of Western Flower Thrips in Blackberry Crops. J. Appl. Entomol. 2020, 144, 755–763. [Google Scholar] [CrossRef]
- Roth, F.; Galli, Z.; TóTh, M.; Fail, J.; Jenser, G. The Hypothesized Visual System of Thrips tabaci Lindeman and Frankliniella occidentalis (Pergande) Based on Different Coloured Traps’ Catches. North. West. J. Zool. 2016, 12, 40–49. [Google Scholar]
- Terry, L.I.; Lewis, T. Host Selection, Communication and Reproductive Behaviour. In Thrips as Crop Pests; Lewis, T., Ed.; CAB International: Cambridge, UK, 1997; pp. 65–118. [Google Scholar]
- Liu, Q.; Jiang, Y.; Miao, J.; Gong, Z.; Li, T.; Duan, Y.; Wu, Y. Visual Response Effects of Western Flower Thrips Manipulated by Different Light Spectra. Int. J. Agric. Biol. Eng. 2019, 12, 21–27. [Google Scholar] [CrossRef]
- Stukenberg, N.; Pietruska, M.; Waldherr, A.; Meyhöfer, R. Wavelength-Specific Behavior of the Western Flower Thrips (Frankliniella occidentalis): Evidence for a Blue-Green Chromatic Mechanism. Insects 2020, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- van Tol, R.W.H.M.; Tom, J.; Roher, M.; Schreurs, A.; van Dooremalen, C. Haze of Glue Determines Preference of Western Flower Thrips (Frankliniella occidentalis) for Yellow or Blue Traps. Sci. Rep. 2021, 11, 6557. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, E.; Corredor, D. Color preference of Trhips (Thysanoptera: Tripidae) in crysanthemum crops at the Bogotá plateau. Agron. Colomb. 1989, 6, 78–81. [Google Scholar]
- Medina, G.; Escobar, J.H.; Acosta, A. Evaluation of thrips (Thysanoptera: Tripidae) monitoring with commercial acrylic traps of different colors in a commercial chrysanthemun crop. Rev. Colomb. Entomol. 1994, 20, 215–224. [Google Scholar] [CrossRef]
- Silva-Castaño, A.F.; Brochero, H.L. Abundance and Flight Activity of Frankliniella occidentalis (Thysanoptera:Thripidae) in a Female Chrysanthemum Crop for Seeding, Colombia. Agron. Colomb. 2021, 39, 216–225. [Google Scholar] [CrossRef]
- Díaz, M.A.; Cubillos, L.G.; Rodríguez, D.; Osorio, C. Microstructural characterization of petals of rose cultivars susceptible 1158 to attack by western flower thrips. In I International Congress of Basic Sciences; Lafont Mendoza, J., Ed.; University of Cordoba: Montería, Colombia, 2020; p. 145. ISBN 2744-9084. [Google Scholar]
- Arif, M.J.; Sial, I.A.; Saif, U.; Gogi, M.D.; Sial, M.A. Some morphological plant factors effecting resistance in cotton against thrips (Thrips tabaci L.). Int. J. Agric. Biol. 2004, 6, 544–546. [Google Scholar]
- Balakrishnan, N. Influence of allelochemical contents in plants on the incidence of major pests of cotton. Indian J. Plant Prot. 2006, 34, 202–205. [Google Scholar]
- Khan, M.A.; Ali, A.; Aslam, M.; Tahir, Z.; Khan, M.M.; Nadeem, I. The Role of Morphological and Chemical Plant Traits Imparting Resistance in Bt Cotton Genotypes against Thrips, Thrips tabaci (Lind). Pakistan J. Agric. Sci. 2014, 51, 725–731. [Google Scholar]
- Arif, M.J.; Gogi, M.D.; Ahmad, G. Role of Morpho-Physical Plant Factors Imparting Resistance in Cotton Against Thrips, Thrips tabaci L. (Thysanoptera: Thripidae). Arab. J. Plant Prot. 2006, 24, 57–60. [Google Scholar]
- Zareh, N. Evaluation of Six Cotton Cultivars for Their Resistance to Thrips and Leafhoppers. Iran Agric. Res. 1985, 4, 89–97. [Google Scholar]
- Leigh, T.F. Bionomics of Cotton Thrips: A Review. In Thrips Biology and Management; Parker, B.L., Skinner, M., Lewis, T., Eds.; Springer: New York, NY, USA, 1995; pp. 61–70. [Google Scholar]
- Miyazaki, J.; Warwick, N.S.; Wilson, L.J. Sources of Plant Resistance to Thrips: A Potential Core Component in Cotton IPM. Entomol. Exp. Appl. 2017, 162, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Wahyuni, D.S.C.; Choi, Y.H.; Leiss, K.A.; Klinkhammer, P.G.L. Morphological and Chemical Factors Related to Western Flower Thrips Resistance in the Ornamental Gladiolus. Plants 2021, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- van Haperen, P.; Voorrips, R.E.; van Loon, J.J.A.; Vosman, B. The effect of plant development on thrips resistance in Capsicum. Arthropod. Plant. Interact. 2019, 13, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Visschers, I.G.S.; Peters, J.L.; Vondervoort, J.A.H.; Hoogveld, R.H.M.; Dam, N.M. Thrips Resistance Screening Is Coming of Age: Leaf Position and Ontogeny Are Important Determinants of Leaf-Based Resistance in Pepper. Front. Plant Sci. 2019, 10, 510. [Google Scholar] [CrossRef]
- Gaum, W.G.; Giliomee, J.H.; Pringle, K.L. Resistance of Some Rose Cultivars to the Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Bull. Entomol. Res. 1994, 84, 487–492. [Google Scholar] [CrossRef]
- Bergh, C.J.; Le Blanc, J.P.R. Performance of Western Flower Thrips (Thysanoptera: Thripidae) on Cultivars of Miniature Rose. J. Econ. Entomol. 1997, 90, 679–688. [Google Scholar] [CrossRef]
- Park, J.-D.; Kim, S.-G.; Kim, D.-I.; Cho, K. Population Dynamics of Frankliniella occidentalis on Different Rose Cultivars and Flowering Stages. J. Asia. Pac. Entomol. 2002, 5, 97–102. [Google Scholar] [CrossRef]
- Carrizo, P.I.; Klasman, R. Frankliniella occidentalis Preference for Carnation Varieties. Bol. Sanid. Veg. Plagas 2003, 29, 201–210. [Google Scholar]
- Ohta, I. Host Plant Resistance in Japanese Chrysanthemums against Frankliniella occidentalis (Thysanoptera: Thripidae) during the Non-Flowering Stage. Appl. Entomol. Zool. 2002, 37, 271–277. [Google Scholar] [CrossRef]
- De Kogel, W.J.; Balkema-Boomstra, A.; Van Der Hoek, M.; Zijlstra, S.; Mollema, C. Resistance to Western Flower Thrips in Greenhouse Cucumber: Effect of Leaf Position and Plant Age on Thrips Reproduction. Euphytica 1997, 94, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Outchkourov, N.S.; De Kogel, W.J.; Wiegers, G.L.; Abrahamson, M.; Jongsma, M.A. Engineered Multidomain Cysteine Protease Inhibitors Yield Resistance against Western Flower Thrips (Frankliniella occidentalis) in Greenhouse Trials. Plant Biotechnol. J. 2004, 2, 449–458. [Google Scholar] [CrossRef]
- Zhu-Salzman, K.; Zeng, R. Insect Response to Plant Defensive Protease Inhibitors. Annu. Rev. Entomol. 2015, 60, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Annadana, S.; Peters, J.; Gruden, K.; Schipper, A.; Outchkourov, N.S.; Beekwilder, M.J.; Udayakumar, M.; Jongsma, M.A. Effects of Cysteine Protease Inhibitors on Oviposition Rate of the Western Flower Thrips, Frankliniella occidentalis. J. Insect Physiol. 2002, 48, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Outchkourov, N.S.; Kogel, W.J.; Schuurman-de Bruin, A.; Abrahamson, M.; Jongsma, M.A. Specific Cysteine Protease Inhibitors Act as Deterrents of Western Flower Thrips, Frankliniella occidentalis (Pergande), in Transgenic Potato. Plant Biotechnol. J. 2004, 2, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Leiss, K.A.; Maltese, F.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G. Identification of Chlorogenic Acid as a Resistance Factor for Thrips in Chrysanthemum. Plant Physiol. 2009, 150, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirnezhad, M.; Romero-González, R.R.; Leiss, K.A.; Choi, Y.H.; Verpoorte, R.; Klinkhamera, P.G.L. Metabolomic Analysis of Host Plant Resistance to Thrips in Wild and Cultivated Tomatoes. Phytochem. Anal. 2010, 21, 110–117. [Google Scholar] [CrossRef]
- Leiss, K.A.H.; Choi, Y.; Abdel-Farid, I.B.; Verpoorte, R.; Klinkhammer, P.G.L. NMR Metabolomics of Thrips (Frankliniella occidentalis) Resistance in Senecio Hybrids. J. Chem. Ecol. 2009, 35, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Thaler, J.S.; Fidantsef, A.L.; Duffey, S.S.; Bostock, R.M. Trade-Offs in Plant Defense Against Pathogens and Herbivores: A Field Demonstration of Chemical Elicitors of Induced Resistance. J. Chem. Ecol. 1999, 25, 1597–1609. [Google Scholar] [CrossRef]
- Chen, G.; Escobar-Bravo, R.; Kim, H.K.; Leiss, K.A.; Klinkhamer, P.G.L. Induced Resistance against Western Flower Thrips by the Pseudomonas syringae-Derived Defense Elicitors in Tomato. Front. Plant Sci. 2018, 9, 1417. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Bravo, R.; Nederpel, C.; Naranjo, S.; Kim, H.K.; Rodríguez López, M.J.; Chen, G.; Glauser, G.; Leiss, K.A.; Klinkhamer, P.G.L. Ultraviolet Radiation Modulates Both Constitutive and Inducible Plant Defenses against Thrips but Is Dose and Plant Genotype Dependent. J. Pest Sci. 2021, 94, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Murata, M.; Kobayashi, T.; Seo, S. α-Ionone, an Apocarotenoid, Induces Plant Resistance to Western Flower Thrips, Frankliniella occidentalis, Independently of Jasmonic Acid. Molecules 2020, 25, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, M.; Nakai, Y.; Kawazu, K.; Ishizaka, M.; Kajiwara, H.; Abe, H.; Takeuchi, K.; Ichinose, Y.; Mitsuhara, I.; Mochizuki, A.; et al. Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance. Plant Physiol. 2019, 179, 1822–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoonhoven, A. Resistante to Thrips Damage in Cassava. J. Econ. Entomol. 1974, 67, 728–730. [Google Scholar] [CrossRef]
- Frei, A.; Blair, M.W.; Cardona, C.; Beebe, S.E.; Gu, H.; Dorn, S. QTL Mapping of Resistance to Thrips palmi Karny in Common Bean. Crop Sci. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Gao, Y.; Reitz, S.R. Special Issue on Novel Management Tactics for the Western Flower Thrips. J. Pest Sci. 2021, 94, 1–3. [Google Scholar] [CrossRef]
Scale a | Product/Agent | Effect on Thrips | Ref. |
---|---|---|---|
L/G | dsRNA of TLR6 and CopE (transgenic S. lycopersicum to deliver RNAi) | >50% mortality | [90] |
G | Phytoseiulus persimilis and Amblyseius swirskii (20 and 100 mites per m2) | >60% suppression | [91] |
G | Beauveria bassiana dispersion by Bombus impatients | >75% suppression | [92] |
L/M | Neoseiulus cucumeris (100 adults per m2) | 84.5% suppression (larvae) | [93] |
G | B. bassiana applied to Tagetes patula (L.), combined with Neoseiulus (=Amblyseius) cucumeris in slow-release sachets | Higher WFT number in marigolds than on crop plants. | [94] |
G | Spraying dsRNA specific to vATPase-A or vATPase-B | 100% mortality | [95] |
L | Leaf disc-mediated dsRNA delivery system (antagomir and agomir) | >45% mortality | [96] |
L | Pre-inoculation of Orius sauteri on host plants | Reduction in survival and reproduction | [97] |
L | Symbiont mediated RNAi (SMR)—(BFo1 and BFo2) | Competition for bacterial colonization | [98] |
L | Plastid-mediated RNA interference (PM-RNAi) | Efficient suppression/high insect mortality | [89] |
G | Predatory mite Anystis baccarum | Reduction in feeding damage and population density | [99] |
L | Orius strigicollis | T influences demographic traits and predation rates | [100] |
L | Feeding solution of dsRNA specific to vATPase-B | >70% mortality | [101] |
L | A. swirskii, Transeius montdorensis, Amblydromalus limonicus | >70% reduction population | [102] |
L | N. cucumeris and A. swirskii | >60 reduction population | [103] |
L | BotaniGard® (a commercial form of B. bassiana strain GHA) | >80 reduction population | [104] |
L/F | Metarhizium anisopliae CQMa421 | LT50 = 5.5 days; 50–70% reduction | [105] |
L/G | Orius insidiosus predation | >90% reduction population (4 bugs per plant) | [106] |
L | A. swirskii as predator | Suppression and reduced plant damage | [107] |
G | Granular formulation of B. bassiana + Stratiolaelaps scimitus | Suppression and reduced plant damage | [108] |
L | O. insidiosus as predator | Thrips deposit non-volatile semiochemicals used by predator during foraging | [109] |
L | Dalotia coriaria (predator–prey 1:15) | Reduced thrips density in sticky traps | [110] |
L | O. insidiosus and O. tristicolor | Females preferred the flowering strawberry plants over the flowering sweet pepper plants | [111] |
L | Predation of D. coriaria (three adults per 15.2-cm container) | Reduced thrips density in sticky traps | [112] |
G | Entomopathogenic nematode Steinernema yirgalemense | 53% mortality | [113] |
G | Predation of A. swirskii and T. montdorensis | Release alternation (T. montdorensis in winter and A. swirskii in spring) to reduce population density | [114] |
G | Orius albidipennis, Macrolophus caliginosus, Chrysoperla carnea, and Trichogramma euproctidis | Reduced population density | [115] |
G | A. limonicus as predator | Low rearing T improve biological control function | [116] |
G | MON 88,702 cotton expressing Bt toxin | Reduction of oviposition and larval developing | [117] |
G | Synergistic Interaction of Metarhizium flavoviride, imidacloprid, and Diatomaceous Earth | >75% mortality | [118] |
L | Feeding dsRNA of vATPase-B sequence | >80% mortality | [88] |
L | B. bassiana ERL836 and JEF-007 | ERL836 infected thrips easily | [119] |
L | Entomopathogenic nematodes (Steinernema yirgalemense, Heterorhabditis baujardi, and Heterorhabditis bacteriophora) | >60% infection | [120] |
L | Gaeolaelaps aculeifer as a predator | Predation rate = 2.6 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, D.; Coy-Barrera, E. Overview of Updated Control Tactics for Western Flower Thrips. Insects 2023, 14, 649. https://doi.org/10.3390/insects14070649
Rodríguez D, Coy-Barrera E. Overview of Updated Control Tactics for Western Flower Thrips. Insects. 2023; 14(7):649. https://doi.org/10.3390/insects14070649
Chicago/Turabian StyleRodríguez, Daniel, and Ericsson Coy-Barrera. 2023. "Overview of Updated Control Tactics for Western Flower Thrips" Insects 14, no. 7: 649. https://doi.org/10.3390/insects14070649
APA StyleRodríguez, D., & Coy-Barrera, E. (2023). Overview of Updated Control Tactics for Western Flower Thrips. Insects, 14(7), 649. https://doi.org/10.3390/insects14070649