Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Risk Assessment and Regulation
2.2. Public Awareness
2.3. IVM—SIT Treated and Control Study Sites
2.4. Aedes albopictus Rearing
2.5. Aedes albopictus Transportation and Releasing
2.6. Baseline Entomological Data Collection
2.7. Measurement of Effectiveness
2.8. Effect of the Agricultural Peri-Urban Zone on the SIT Pilot Area
2.9. Additional Vector Management Control Methods in the SIT Pilot Areas
2.10. Data Analysis
3. Results
3.1. SIT Area vs. Control Area
3.2. Effect of the Agricultural Peri-Urban Zone on the SIT Pilot Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aedes albopictus—Current Known Distribution: September 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-september-2020 (accessed on 5 February 2021).
- Oliveira, S.; Rocha, J.; Sousa, C.A.; Capinha, C. Wide and Increasing Suitability for Aedes albopictus in Europe Is Congruent across Distribution Models. Sci. Rep. 2021, 11, 9916. [Google Scholar] [CrossRef]
- Autochthonous Transmission of Dengue Virus in Mainland EU/EEA, 2010–Present. Available online: https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea (accessed on 14 October 2021).
- Autochthonous Transmission of Chikungunya Virus in Mainland EU/EEA, 2007–Present. Available online: https://www.ecdc.europa.eu/en/all-topics-z/chikungunya-virus-disease/surveillance-threats-and-outbreaks/autochthonous (accessed on 14 October 2021).
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes Management for the Control of Aedes-Borne Diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/DocsZika/Plan_Nac_enf_vectores_20160720.pdf (accessed on 9 May 2023).
- Hemingway, J.; Ranson, H. Insecticide Resistance in Insect Vectors of Human Disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef]
- Bengoa, M.; Eritja, R.; Delacour, S.; Miranda, M.Á.; Sureda, A.; Lucientes, J. First Data on Resistance to Pyrethroids in Wild Populations of Aedes albopictus from Spain. J. Am. Mosq. Control Assoc. 2017, 33, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Vontas, J.; Kioulos, E.; Pavlidi, N.; Morou, E.; Della Torre, A.; Ranson, H. Insecticide Resistance in the Major Dengue Vectors Aedes albopictus and Aedes aegypti. Pestic. Biochem. Physiol. 2012, 104, 126–131. [Google Scholar] [CrossRef]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.; Bourtzis, K. Back to the Future: The Sterile Insect Technique against Mosquito Disease Vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Benedict, M.Q. Sterile Insect Technique: Lessons from the Past. J. Med. Entomol. 2021, 58, 1974–1979. [Google Scholar] [CrossRef]
- Balatsos, G.; Puggioli, A.; Karras, V.; Lytra, I.; Mastronikolos, G.; Carrieri, M.; Papachristos, D.P.; Malfacini, M.; Stefopoulou, A.; Ioannou, C.S.; et al. Reduction in Egg Fertility of Aedes albopictus Mosquitoes in Greece Following Releases of Imported Sterile Males. Insects 2021, 12, 110. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Bouyer, J.; Facknath, S.; Bheecarry, A. Pilot Suppression Trial of Aedes albopictus Mosquitoes through an Integrated Vector Management Strategy Including the Sterile Insect Technique in Mauritius. bioRxiv 2020. [Google Scholar] [CrossRef]
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot Field Trials with Aedes albopictus Irradiated Sterile Males in Italian Urban Areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Becker, N.; Langentepe-Kong, S.M.; Rodriguez, A.T.; Oo, T.T.; Reichle, D.; Lühken, R.; Schmidt-Chanasit, J.; Lüthy, P.; Puggioli, A.; Bellini, R. Integrated Control of Aedes Albopictus (Diptera: Culicidae) in Southwest Germany Supported by the Sterile Insect Technique. Parasites Vectors 2021, 15, 9. [Google Scholar] [CrossRef]
- Gato, R.; Menéndez, Z.; Prieto, E.; Argilés, R.; Rodríguez, M.; Baldoquín, W.; Hernández, Y.; Pérez, D.; Anaya, J.; Fuentes, I.; et al. Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba. Insects 2021, 12, 469. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and Sterile Insect Techniques Combined Eliminate Mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient Production of Male Wolbachia-Infected Aedes aegypti Mosquitoes Enables Large-Scale Suppression of Wild Populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tur, C.; Almenar, D.; Benlloch-Navarro, S.; Argilés-Herrero, R.; Zacarés, M.; Dalmau, V.; Pla, I. Sterile Insect Technique in an Integrated Vector Management Program against Tiger Mosquito Aedes albopictus in the Valencia Region (Spain): Operating Procedures and Quality Control Parameters. Insects 2021, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- MAPA. SIAR, Sistema de Información Agroclimática Para El Regadío. Available online: https://servicio.mapa.gob.es/websiar/ (accessed on 9 May 2023).
- Puggioli, A.; Balestrino, F.; Damiens, D.; Lees, R.S.; Soliban, S.M.; Madakacherry, O.; Dindo, M.L.; Bellini, R.; Gilles, J.r.l. Efficiency of Three Diets for Larval Development in Mass Rearing Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, R.; Morlan, H.B. A Mechanical Device for Separating the Developmental Stages, Sexes and Species of Mosquitoes. Mosq. News 1959, 19, 144–147. [Google Scholar]
- Schaffner, F. ECDC Guidelines for the Surveillance of Invasive Mosquitoes in Europe. Eur. Commun. Dis. Bull. 2012, 17, 20265. [Google Scholar]
- Akhoundi, M.; Jourdain, F.; Chandre, F.; Delaunay, P.; Roiz, D. Effectiveness of a Field Trap Barrier System for Controlling Aedes albopictus: A “Removal Trapping” Strategy. Parasites Vectors 2018, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 9 May 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Bolker, B.; R Development Core Team. Bbmle: Tools for General Maximum Likelihood Estimation. R Package Version 1; R Development Core Team: Vienna, Austria, 2020. [Google Scholar]
- Bellini, R.; Albieri, A.; Balestrino, F.; Carrieri, M.; Porretta, D.; Urbanelli, S.; Calvitti, M.; Moretti, R.; Maini, S. Dispersal and Survival of Aedes albopictus (Diptera: Culicidae) Males in Italian Urban Areas and Significance for Sterile Insect Technique Application. J. Med. Entomol. 2010, 47, 1082–1091. [Google Scholar] [CrossRef]
- Medeiros, M.C.I.; Boothe, E.C.; Roark, E.B.; Hamer, G.L. Dispersal of Male and Female Culex quinquefasciatus and Aedes albopictus Mosquitoes Using Stable Isotope Enrichment. PLoS Neglected Trop. Dis. 2017, 11, e0005347. [Google Scholar] [CrossRef] [Green Version]
- Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Oliva, C.F.; Damiens, D.; Vreysen, M.J.; Lemperière, G.; Gilles, J. Reproductive Strategies of Aedes albopictus (Diptera: Culicidae) and Implications for the Sterile Insect Technique. PLoS ONE 2013, 8, e78884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.C.; Brown, H.E. Estimating Aedes aegypti (Diptera: Culicidae) Flight Distance: Meta-Data Analysis. J. Med. Entomol. 2022, 59, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Velo, E.; Balestrino, F.; Kadriaj, P.; Carvalho, D.O.; Dicko, A.; Bellini, R.; Puggioli, A.; Petrić, D.; Michaelakis, A.; Schaffner, F.; et al. A Mark-Release-Recapture Study to Estimate Field Performance of Imported Radio-Sterilized Male Aedes albopictus in Albania. Front. Bioeng. Biotechnol. 2022, 10, 833698. [Google Scholar] [CrossRef] [PubMed]
- Vavassori, L.; Saddler, A.; Müller, P. Active Dispersal of Aedes albopictus: A Mark-Release-Recapture Study Using Self-Marking Units. Parasites Vectors 2019, 12, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrichs, J.; Vreysen, M.; Enkerlin, W.; Cayol, J. Strategic Options in Using Sterile Insects for Area-Wide Integrated Pest Management. In Sterile Insect Technique; Springer: Berlin/Heidelberg, Germany, 2005; pp. 563–600. [Google Scholar]
- Donati, L.; Carrieri, M.; Bellini, R. A Door-to-Door Strategy for Aedes albopictus Control in Northern Italy: Efficacy, Cost-Analysis and Public Perception. Vector Biol. J. 2020, 5, 1. [Google Scholar]
- Caputo, B.; Ienco, A.; Cianci, D.; Pombi, M.; Petrarca, V.; Baseggio, A.; Devine, G.J.; della Torre, A. The “Auto-Dissemination” Approach: A Novel Concept to Fight Aedes albopictus in Urban Areas. PLoS Neglected Trop. Dis. 2012, 6, 8. [Google Scholar] [CrossRef] [Green Version]
Season | Releases Start Date | Releases End Date | n Releases/ Week | n Releases | Total n Sterile Males Released | Average Sterile Males Released/Week/ha |
---|---|---|---|---|---|---|
2018 | 17 April 2018 | 5 December 2018 | 2 | 68 | 2,155,800 | 1409 |
2019 | 4 March 2019 | 29 November 2019 | 3 | 109 | 3,034,250 | 1729 |
2020 | 2 March 2020 | 30 November 2020 | 3 | 127 | 4,628,250 | 2446 |
Pilot Site | n Ovitraps | n BG Sentinel Traps |
---|---|---|
Polinyà de Xúquer | 45 | 5 |
Albalat de la Ribera | 58 | 5 |
Periferial area | 22 | - |
Season | Site | E | H | F | D | S | FD | |||
---|---|---|---|---|---|---|---|---|---|---|
Estimate ± SE | Difference between Sites CI (99%) | Estimate ± SE | Difference between Sites CI (99%) | Estimate ± SE | Difference between Sites CI (99%) | Estimate ± SE CI (99%) | Estimate ± SE CI (99%) | Estimate ± SE CI (99%) | ||
2017 | Control | 4.3 ± 0.5 | [−0.1, 3.2] | |||||||
SIT | 2.9 ± 0.4 | |||||||||
2018 | Control | 2.6 ± 0.3 | [−0.5, 1.6] | 51.2 ± 1.9 | [7.1, 23.6] | 21.3 ± 12.7 | 30.4 ± 5.6 | |||
SIT | 2.1 ± 0.3 | 35.6 ± 2.5 | [−20.8, 48.3] | [14.6, 43.9] | ||||||
2019 | Control | 3 ± 0.4 | [1.3, 3.4] | 65 ± 2 | [10.5, 30.3] | 1.0 ± 0.3 | [0.1, 1.6] | 74.4 ± 5.3 | 31.7 ± 5.4 | 80.5 ± 9.8 |
SIT | 0.8 ± 0.1 | 44.4 ± 3.2 | 0.2± 0.1 | [55, 82.9] | [16.9, 45.2] | [39.2, 92.7] | ||||
2020 | Control | 4.6 ± 0.4 | [2.2, 4.7] | 63.1 ± 1.4 | [4.7, 20] | 2.4 ± 0.4 | [0.7–2.9] | 72.5 ± 4.8 | 19.5 ± 4.4 | 71.3 ± 8.4 |
SIT | 1.3 ± 0.2 | 50.8 ± 2.5 | 0.7± 0.2 | [55.6, 82.4] | [7.8, 30.9] | [45.0, 88.7] |
Year | Peri-Urban—CONTROL | Peri-Urban—SIT |
---|---|---|
2018 | [−32.8, 60.5] | [−5.4, 38.6] |
2019 | [−91.4, 39.7] | [46.6, 85.3] |
2020 | [−70.6, 28.6] | [48.7, 81.3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tur, C.; Almenar, D.; Zacarés, M.; Benlloch-Navarro, S.; Pla, I.; Dalmau, V. Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain. Insects 2023, 14, 688. https://doi.org/10.3390/insects14080688
Tur C, Almenar D, Zacarés M, Benlloch-Navarro S, Pla I, Dalmau V. Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain. Insects. 2023; 14(8):688. https://doi.org/10.3390/insects14080688
Chicago/Turabian StyleTur, Carlos, David Almenar, Mario Zacarés, Sandra Benlloch-Navarro, Ignacio Pla, and Vicente Dalmau. 2023. "Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain" Insects 14, no. 8: 688. https://doi.org/10.3390/insects14080688
APA StyleTur, C., Almenar, D., Zacarés, M., Benlloch-Navarro, S., Pla, I., & Dalmau, V. (2023). Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain. Insects, 14(8), 688. https://doi.org/10.3390/insects14080688