Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Source
2.2. Scanning Electron Microscopy (SEM)
2.3. Transmission Electron Microscopy (TEM)
2.4. Light Microscopy (LM)
2.5. Data Analysis
3. Results
3.1. External Morphology of the Compound Eyes of E. scrobiculatus and E. brandti
3.2. Ultrastructure of the Compound Eyes in E. scrobiculatus and E. brandti Adults
3.3. Dark/Light Adaptational Changes of the Compound Eyes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toh, Y.; Okamura, J.Y. Morphological and optical properties of the corneal lens and retinal structure in the posterior large stemma of the tiger beetle larva. Vision Res. 2007, 47, 1756–1768. [Google Scholar] [CrossRef]
- Chapman, R.F. The Insects: Structure and Function; Academic Press: New York, NY, USA, 1998; pp. 132–141. [Google Scholar]
- Rutowski, R.L.; Warrant, E.J. Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): Dimensions and regional variation in acuity. J. Comp. Physiol. A 2002, 188, 1–12. [Google Scholar] [CrossRef]
- Warrant, E.; Dacke, M. Visual orientation and navigation in nocturnal arthropods. Brain Behav. Evol. 2010, 75, 156–173. [Google Scholar] [CrossRef]
- Wen, C.; Ma, T.; Deng, Y.; Liu, C.; Liang, S.; Wen, J.; Wang, C.; Wen, X. Morphological and optical features of the apposition compound eye of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Micron 2020, 128, 102769. [Google Scholar] [CrossRef]
- Huang, Z.J.; Wang, L.J.; Lei, C.L. Observations on the structure of the compound eyes of two species of nocturnal moths. For. Pest Dis. 2017, 13, 237. [Google Scholar]
- Fischer, S.; Meyer-Rochow, V.B.; Mueller, C.H.G. Compound eye miniaturization in Lepidoptera: A comparative morphological analysis. Acta Zool. 2015, 95, 438–464. [Google Scholar] [CrossRef]
- Lau, T.F.S.; Meyer-Rochow, V.B. The compound eye of Orgyia antiqua (Lepidoptera: Lymantriidae): Sexual dimorphism and light/dark adaptational changes. Eur. J. Entomol. 2007, 104, 247–258. [Google Scholar] [CrossRef]
- Exner, S. Die Physiologie der Facettierten Augen von Krebsen und Insekten; Franz Deuticke: Leipzig, Germany, 1891. [Google Scholar]
- Warrant, E.; Dacke, M. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 2011, 56, 239–254. [Google Scholar] [CrossRef]
- Jia, L.; Liang, A. An apposition compound eye adapted for nocturnal vision in the moth midge Clogmia albipunctata (Williston) (Diptera: Psychodidae). J. Insect Physiol. 2017, 98, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Autrum, H. Light and dark adaptation in invertebrates. In Comparative Physiology and Evolution of Vision in Invertebrates C, Invertebrate Visual Centers and Behaviour, 2nd ed.; Autrum, H., Ed.; Springer: Berlin, Germany, 1981; pp. 1–91. [Google Scholar]
- Meyer-Rochow, V.B. Compound eye: Circadian rhythmicity, illumination, and obscurity. In Atlas of Arthropod Sensory Receptors; Eguchi, E., Tominaga, Y., Eds.; Springer: Tokyo, Japan, 1999; pp. 97–125. [Google Scholar]
- Zhang, P.Q.; Liu, Y.J.; Chen, X.; Yang, Z.; Zhu, M.H.; Li, Y.P. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Ecotoxicol. Environ. Saf. 2016, 132, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Herrick, N.J.; Salom, S.M.; Kok, L.T.; Mcavoy, T.J. Foliage feeding tests of Eucryptorrhynchus brandti (Harold) (Coleoptera: Curculionidae), a potential biological control agent of the tree-of-heaven, Ailanthus altissima. USDA Res. Forum Invasive Spececies 2009, 77, 13–16. [Google Scholar]
- Herrick, N.J.; Mcavoy, T.J.; Snyder, A.L.; Salom, S.M.; Kok, L.T. Host-range testing of Eucryptorrhynchus brandti (Coleoptera: Curculionidae), a candidate for biological control of tree-of-heaven, Ailanthus altissima. Environ. Entomol. 2012, 41, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Mcavoy, T.J.; Salom, S.M.; Yu, B.; Ji, H.L.; Du, Y.Z.; Johnson, N.; Reardon, R.; Kok, L.T. Occurrence and development of Eucryptorrhynchus brandti and E. chinensis (Coleoptera: Curculionidae) on Ailanthus altissima trees subjected to different levels of mechanical damage. Biocontrol Sci. Technol. 2014, 24, 65–79. [Google Scholar] [CrossRef]
- Wu, S.H.; Wang, J.G.; Lang, X.R.; Sun, P.; Xing, L.R.; He, Z.Y. Preliminary study on the biological characteristics of Eucryptorrhynchus scrobiculatus and E. brandti in Ningxia region. Contemp. Hortic. 2012, 24, 9–10. [Google Scholar]
- Ji, Y.C.; Gao, P.; Zhang, G.Y.; Wen, C.; Wen, J.B. Micro-habitat niche differentiation contributing to coexistence of Eucryptorrhynchus scrobiculatus Motschulsky and Eucryptorrhynchus brandti (Harold). Biocontrol Sci. Technol. 2017, 27, 1180–1194. [Google Scholar] [CrossRef]
- Yu, Q.Q.; Chen, C.; Liu, Z.K.; Sun, Y.W.; Cao, C.J.; Bao, S.; Wen, J.B. Occurrence and life-history of Eucryptorrhynchus chinensis in Lingwu, Ningxia. Chin. J. Appl. Entomol. 2012, 49, 1005–1009. [Google Scholar]
- Bolnick, D.I.; Snowberg, L.K.; Hirsch, P.E.; Lauber, C.L.; Knight, R.; Caporaso, J.G.; Svanbäck, R.; Post, D.M. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 2014, 17, 979–987. [Google Scholar] [CrossRef]
- Rennison, D.J.; Owens, G.L.; Taylor, J.S. Opsin gene duplication and divergence in ray-finned fish. Mol. Phylogenet. Evol. 2012, 62, 986–1008. [Google Scholar] [CrossRef]
- Wen, C.; Ji, Y.; Zhang, G.; Tan, S.; Wen, J. Phototactic behaviour of Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae) adults. Biocontrol Sci. Technol. 2018, 28, 544–561. [Google Scholar] [CrossRef]
- Wang, X. Adults Taxis and Larvae Chemical Pesticide Screening of Eucryptorrhynchus scrobiculatus and E. brandti. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Wachmann, E. Untersuchungen zur Feinstruktur der Augen von Bockkäfern (Coleoptera, Cerambycidae). Zoomorphology 1979, 92, 19–48. [Google Scholar] [CrossRef]
- Schwarz, S.; Narendra, A.; Zeil, J. The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct. Dev. 2011, 40, 128–134. [Google Scholar] [CrossRef]
- Caveney, S. The phylogenetic significance of ommatidium structure in the compound eyes of polyphagan beetles. Can. J. Zool. 1986, 64, 1787–1819. [Google Scholar] [CrossRef]
- Gokan, N.; Nakazawa, A.; Iida, K. Compound eye ultrastructures in six species of ecologically diverse stag-beetles (Coleoptera, Scarabaeoidea, Lucanidae). Appl. Entomol. Zool. 1998, 33, 157–169. [Google Scholar] [CrossRef]
- Gokan, N.; Meyer-Rochow, V.B. The compound eye of the dung beetle, Onthophagus posticus (Coleoptera: Scarabaeidae). N. Z. Entomol. 1990, 13, 7–15. [Google Scholar] [CrossRef]
- Mishra, M. Eye Ultrastructure Investigation of Scaphidium japonum Reitter (Coleoptera: Staphylinidae: Scaphidiidae). J. Entomol. Zool. Stud. 2013, 1, 08–16. [Google Scholar]
- Mishra, M.; Meyer-Rochow, V.B. Fine structure of the compound eye of the fungus beetle Neotriplax lewisi (Coleoptera, Cucujiformia, Erotylidae). Invertebr. Biol. 2006, 125, 265–278. [Google Scholar] [CrossRef]
- Fischer, S.; Meyer-Rochow, V.B.; Mueller, C.H.G. Challenging limits: Ultrastructure and size-related functional constraints of the compound eye of Stigmella microtheriella (Lepidoptera: Nepticulidae). J. Morphol. 2012, 273, 1064–1078. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.B.; Lai, B.M.; Li, D.J.; Liu, T.Q.; Tan, R.S.; Sun, K.W. Bionomics and control of Eucryptorrhynchus brandti. For. Pest Dis. 1999, 5, 19–21. [Google Scholar]
- Giglio, A.; Vommaro, M.L.; Agostino, R.; Lo, L.K.; Donato, S. Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT). Life 2022, 12, 741. [Google Scholar] [CrossRef]
- Brooks, G.T. Comprehensive insect physiology, biochemistry and pharmacology. In Insect Biochemistry; Kerkut, G.A., Gilbert, L.I., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 246–247. [Google Scholar]
- Mishra, M.; Meyer-Rochow, V.B. Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). J. Electron Microsc. 2007, 55, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Burghause, F. Die strukturelle spezialisierung des dorsalen Augenteiles der Grillen (Orthoptera, Grylloidea). Zool. Jahrb. Physiol. 1979, 83, 502–525. [Google Scholar]
- Wehner, R.; Gallizzi, K.; Frei, C.; Vesely, M. Calibration processes in desert ant navigation: Vector courses and systematic search. J. Comp. Physiol. A 2002, 188, 683–693. [Google Scholar]
- Labhart, T.; Meyer, E.P. Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 1999, 47, 368–379. [Google Scholar] [CrossRef]
- Wang, Y.T. The Study on Circadian Rhythm and Phototaxis Mechanism of Gryllus bimaculatus Compound Eyes. Master’s Thesis, Shenyang Normal University, Shenyang, China, 2011. [Google Scholar]
- Warrant, E.J.; McIntyre, P.D. Arthropod eye design and the physical limits to spatial resolving power. Prog. Neurobiol. 1993, 40, 413–461. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M. An ecological study of winter flocks of Black capped and Chestnut-backed Chick adees. Wilson Bull. 1967, 79, 200–207. [Google Scholar]
- Snow, D.W. The habitats of Eurasian Tits (Parus spp.). Ibis 1954, 96, 565–585. [Google Scholar] [CrossRef]
- Baird, E.; Taylor, G. X-ray micro computed-tomography. Curr. Biol. 2017, 27, R289–R291. [Google Scholar] [CrossRef]
- Taylor, G.J.; Ribi, W.; Bech, M.; Bodey, A.J.; Rau, C.; Steuwer, A.; Warrant, E.J.; Baird, E. The dual function of orchid bee ocelli as revealed by X-ray microtomography. Curr. Biol. 2016, 26, 1319–1324. [Google Scholar] [CrossRef]
- Wilby, D.; Aarts, T.; Tichit, P.; Bodey, A.J.; Rau, C.; Taylor, G.; Baird, E. Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli. Vision Res. 2018, 158, 100–108. [Google Scholar] [CrossRef]
Parameters | Unit | E. scrobiculatus Female | E. scrobiculatus Male | E. brandti Female | E. brandti Male |
---|---|---|---|---|---|
Hexagonal facet area | μm2 | 1756.22 ± 46.24 a | 1682.06 ± 21.41 a | 1405.75 ± 71.55 b | 1201.88 ± 42.06 c |
irregular facet area | μm2 | 2408.5 ± 67.63 a | 2176.29 ± 44.05 b | 1599.99 ± 49.25 c | 1501.22 ± 20.88 c |
Hexagonal facet number | - | 387.2 ± 3.93 a | 368.2 ± 4.98 b | 430.8 ± 7.02 bc | 400.6 ± 4.02 c |
irregular facet number | - | 173.8 ± 3.22 a | 186.2 ± 3.56 a | 107.2 ± 7.32 b | 110.2 ± 5.4 b |
Facet number | - | 561 ± 7 a | 554 ± 5 a | 538 ± 11 ab | 511 ± 7 b |
Compound area | mm2 | 1.1 ± 0.042 a | 1.025 ± 0.024 a | 0.777 ± 0.043 b | 0.647 ± 0.025 b |
Hexagonal facet diameter | μm | 50.67 ± 1.41 a | 52.09 ± 1.43 a | 44.14 ± 0.69 b | 41.69 ± 0.67 b |
Parameter | Unit | E. scrobiculatus | n | E. brandti | n | |
---|---|---|---|---|---|---|
Thickness of cornea | μm | 99.16 ± 1.63 | 10 | 82.26 ± 0.86 | 10 | ** |
Length of rhabdom | μm | 69.12 ± 2.22 | 10 | 59.08 ± 2.79 | 10 | * |
length of ommatidia | μm | 253.94 ± 1.17 | 10 | 211.57 ± 3.00 | 10 | ** |
Interommatidial angle | ° | 7.08 ± 0.31 | 5 | 4.84 ± 0.49 | 5 | ** |
Diameter of rhabdomere microvilli | μm | 2.40 ± 0.20 | 32 | 1.76 ± 0.13 | 30 | ** |
Parameter | Unit | LA | n | DA | n | p |
---|---|---|---|---|---|---|
Length of the cone cells of E. scrobiculatus | μm | 9.99 ± 0.38 | 4 | 6.74 ± 0.48 | 4 | ** |
Length of the cone cells of E. brandti | μm | 7.53 ± 0.40 | 4 | 4.50 ± 0.58 | 4 | ** |
Diameter of rhabdom of E. scrobiculatus | μm | 24.18 ± 0.2 | 24 | 21.21 ± 0.31 | 24 | ** |
Diameter of rhabdom of E. brandti | μm | 20.62 ± 0.23 | 24 | 19.63 ± 0.17 | 24 | ** |
Rhabdom cross-sectional area of E. scrobiculatus | μm2 | 436.08 ± 6.36 | 18 | 372.31 ± 7.96 | 18 | ** |
Rhabdom cross-sectional area of E. brandti | μm2 | 342.66 ± 3.93 | 12 | 313.84 ± 4.30 | 12 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Wang, Q.; Wen, C.; Wen, J. Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults. Insects 2023, 14, 699. https://doi.org/10.3390/insects14080699
Hao Y, Wang Q, Wen C, Wen J. Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults. Insects. 2023; 14(8):699. https://doi.org/10.3390/insects14080699
Chicago/Turabian StyleHao, Yingying, Qi Wang, Chao Wen, and Junbao Wen. 2023. "Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults" Insects 14, no. 8: 699. https://doi.org/10.3390/insects14080699
APA StyleHao, Y., Wang, Q., Wen, C., & Wen, J. (2023). Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults. Insects, 14(8), 699. https://doi.org/10.3390/insects14080699