Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Populations
2.2. Insecticides
2.3. Laboratory Spray Tower Bioassays
2.4. Evaluation of Potential Interaction of Two Individual Component in Formulated Binary Mixtures
- (1)
- Toxicity Index (T.I.) (using A as standard, A and B are individual components in formulated mixture) T.I. of A = 100 and T.I. of B = ALC50/BLC50 × 100.
- (2)
- Actual Toxicity Index (ATI) of mixture (using A as standard) ATI = LC50 of A/LC50 of (A + B) × 100.
- (3)
- Theoretical Toxicity Index (TTI) of mixture: TTI = T.I. of A × % of A in mixture + T.I. of B × % of B in mixture. From the actual and theoretical toxicity of the mixture, the mixture toxicity can be calculated by the following CTC equation.
- (4)
- CTC (co-toxicity coefficient): CTC = ATI/TTI × 100. When the co-toxicity coefficient of the formulated mixture is 100, the effect of this mixture indicates the probability of similar action. If the mixture results in a coefficient significantly greater than 100, it indicates a synergistic action.
2.5. Data Analysis
3. Results
3.1. Toxicity of the Four Formulated Mixtures against the Laboratory Susceptible Strain
3.2. Toxicity of Formulated Mixtures against the Two Field-Collected Resistant TPB Populations
3.3. Toxicity Comparison of the Individual Pyrethroid with the Binary Mixture
3.4. Analysis of the Potential Interaction of Two Individual Components in the Four Formulated Binary Mixtures
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snodgrass, G.L. Insecticide restance in field populations of the tarnished plant bug (Heteroptera:Miridae) in cotton in the Mississippi Delta. J. Econ. Entomol. 1996, 89, 783–790. [Google Scholar] [CrossRef]
- Layton, M.B. Biology and damage of the tarnished plant bug, Lygus lineolaris, in cotton. Southwest. Entomol. 2000, 23, 7–20. [Google Scholar]
- Zhu, Y.-C.; Yao, J.; Luttrell, R. Identification of genes potentially responsible for extra-oral digestion and overcoming plant defense from salivary glands of the tarnished plant bug (Hemiptera: Miridae) using cDNA sequencing. J. Insect Sci. 2016, 16, 60. [Google Scholar] [CrossRef]
- George, J.; Glover, J.P.; Gore, J.; Crow, W.D.; Reddy, G.V.P. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in southern row crops. Insects 2021, 12, 807. [Google Scholar] [CrossRef]
- Hollingsworth, R.; Steinkraus, D.; Tugwell, N. Responses of Arkansas populations of tarnished plant bugs (Heteroptera: Miridae) to insecticides, and tolerance differences between nymphs and adults. J. Econ. Entomol. 1997, 90, 21–26. [Google Scholar] [CrossRef]
- Pankey, J.; Leonard, B.; Graves, J.; Burris, E. Toxicity of acephate, cypermethrin, and oxamyl to tarnished plant bugs in vial bioassays and cage studies on cotton. In Proceedings of the Beltwide Cotton Conferences (USA), Nashville, TN, USA, 9–12 January 1996. [Google Scholar]
- Snodgrass, G.L.; Gore, J. Status of insecticide resistance for the tarnished plant bug. In Proceedings of the Beltwide Cotton Production Research Conferences; National Cotton Council: Memphis, TN, USA, 2007; pp. 56–61. [Google Scholar]
- Snodgrass, G.L.; Gore, J.; Abel, C.A.; Jackson, R. Acephate resistance in populations of the tarnished plant bug (Heteroptera: Miridae) from the Mississippi River Delta. J. Econ. Entomol. 2009, 102, 699–707. [Google Scholar] [CrossRef]
- Snodgrass, G.L.; Scott, W.P. Effect of ULV malathion use in boll weevil (Coleoptera: Curculionidae) eradication on resistance in the tarnished plant bug (Heteroptera: Miridae). J. Econ. Entomol. 2003, 96, 902–908. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef]
- Parys, K.A.; Luttrell, R.G.; Snodgrass, G.L.; Portilla, M.R. Patterns of tarnished plant bug (Hemiptera: Miridae) resistance to pyrethroid insecticides in the lower mississippi delta for 2008–2015: Linkage to pyrethroid use and cotton insect management. J. Insect Sci. 2018, 18, 29. [Google Scholar] [CrossRef]
- Snodgrass, G.L. Pyrethroid resistance in a field population ot the tarnished plant bug in the Mississippi Delta. In Proceedings of the Beltwide Cotton Production Research Conferences; National Cotton Council: Memphis, TN, USA, 1994; pp. 1186–1187. [Google Scholar]
- Snodgrass, G.L.; Elzen, G.W. Insecticide resistance in a tarnished plant bug population in cotton in the Mississippi Delta. Southwest. Entomol. 1995, 20, 317–323. [Google Scholar]
- Snodgrass, G.L.; Scott, W.P. Seasonal changes in pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations during a three-year period in the delta area of Arkansas, Louisiana, and Mississippi. J. Econ. Entomol. 2000, 93, 441–446. [Google Scholar] [CrossRef]
- Snodgrass, G.; Scott, W. A discriminating-dose bioassay for detecting pyrethroid resistance in tarnished plant bug (Heteroptera: Miridae) populations. Southwest. Entomol. 1999, 24, 301–307. [Google Scholar]
- Layton, M.B. Cotton Insect Control Guide 2002. In Mississippi State University Extension Service Publication 343; Mississippi State University: Lee Boulevard, MI, USA, 2003. [Google Scholar]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Corbel, V.; Raymond, M.; Chandre, F.; Darriet, F.; Hougard, J.M. Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Manag. Sci. 2004, 60, 375–380. [Google Scholar] [CrossRef]
- Martin, T.; Ochou, O.G.; Vaissayre, M.; Fournier, D. Organophosphorus insecticides synergize pyrethroids in the resistant strain of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) from West Africa. J. Econ. Entomol. 2003, 96, 468–474. [Google Scholar] [CrossRef]
- Ahmad, M. Observed potentiation between pyrethroid and organophosphorus insecticides for the management of Spodoptera litura (Lepidoptera: Noctuidae). Crop Prot. 2009, 28, 264–268. [Google Scholar] [CrossRef]
- Ahmad, M.; Saleem, M.A.; Sayyed, A.H. Efficacy of insecticide mixtures against pyrethroid- and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 266–274. [Google Scholar] [CrossRef]
- Ascher, K.; Eliyahu, M.; Ishaaya, I.; Zur, M.; Ben-Moshe, E. Synergism of pyrethroid—Organophosphorus insecticide mixtures in insects and their toxicity against Spodoptera littoralis larvae. Phytoparasitica 1986, 14, 101–110. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. [Google Scholar] [CrossRef]
- Dang, K.; Doggett, S.L.; Lee, C.Y. Performance of pyrethroid-neonicotinoid mixture formulations against dield-xollected atrains of the tropical bed bug (Hemiptera: Cimicidae) on different substrates. J. Econ. Entomol. 2022, 116, 29–39. [Google Scholar] [CrossRef]
- Wolstenholme, A.J.; Rogers, A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 2005, 131, S85–S95. [Google Scholar] [CrossRef] [PubMed]
- Parys, K.A.; Snodgrass, G.L.; Luttrell, R.G.; Allen, K.C.; Little, N.S. Baseline susceptibility of Lygus lineolaris (Hemiptera: Miridae) to novaluron. J. Econ. Entomol. 2015, 109, 339–344. [Google Scholar] [CrossRef]
- Portilla, M.; Reddy, G.V.P. Development of a method for rearing Nezara viridula (Heteroptera: Pentatomidae) on a semi-solid artificial diet. J. Insect Sci. 2021, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Portilla, M.; Snodgrass, G.; Streett, D. Effect of modification of the NI artificial diet on the biological fitness parameters of mass reared western tarnished plant bug, Lygus hesperus. J. Insect Sci. 2011, 11, 149. [Google Scholar] [CrossRef]
- Marking, L. Toxicity of chemical mixtures. In Fundamentals of Aquatic Toxicology: Methods and Applications; Hemisphere Publishing Corporation: Washington, DC, USA, 1985; pp. 164–176. [Google Scholar]
- Sun, Y.-P.; Johnson, E.R. Analysis of joint action of insecticides against house flies. J. Econ. Entomol. 1960, 53, 887–892. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, D.; Yu, Y.; Yang, G.; Shen, W.; Wang, Q.; Weng, H.; Zhao, X. Evaluation of joint effects of cyprodinil and kresoxim-methyl on zebrafish, Danio rerio. J. Hazard. Mater. 2018, 352, 80–91. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, Y.C.; Portilla, M.; Zhang, M.; Reddy, G.V.P. The mechanisms of metabolic resistance to pyrethroids and neonicotinoids fade away without selection pressure in the tarnished plant bug Lygus lineolaris. Pest Manag. Sci. 2023, 79, 3893–3902. [Google Scholar] [CrossRef]
- Fongnikin, A.; Houeto, N.; Agbevo, A.; Odjo, A.; Syme, T.; N’Guessan, R.; Ngufor, C. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: Laboratory and experimental hut evaluation. Parasit Vectors 2020, 13, 466. [Google Scholar] [CrossRef]
- Darriet, F.; Chandre, F. Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (Diptera: Culicidae). Pest Manag. Sci. 2013, 69, 905–910. [Google Scholar] [CrossRef]
- Ngufor, C.; Fongnikin, A.; Rowland, M.; N’Guessan, R. Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin. PLoS ONE 2017, 12, e0189575. [Google Scholar] [CrossRef]
- Wang, C.; Singh, N.; Cooper, R. Field Study of the Comparative Efficacy of Three Pyrethroid/Neonicotinoid Mixture Products for the Control of the Common Bed Bug, Cimex lectularius. Insects 2015, 6, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.X.; Wang, Y.H.; Hu, X.Q.; Wu, S.G.; Cai, L.M.; Zhao, X.P. Individual and Joint Acute Toxicities of Selected Insecticides Against Bombyx mori (Lepidoptera: Bombycidae). J. Econ. Entomol. 2015, 109, 327–333. [Google Scholar] [CrossRef]
- Luong, H.N.B.; Damijonaitis, A.; Nauen, R.; Vontas, J.; Horstmann, S. Assessing the anti-resistance potential of public health vaporizer formulations and insecticide mixtures with pyrethroids using transgenic Drosophila lines. Parasit. Vectors 2021, 14, 495. [Google Scholar] [CrossRef]
- Zoh, M.G.; Bonneville, J.-M.; Tutagata, J.; Laporte, F.; Fodjo, B.K.; Mouhamadou, C.S.; Sadia, C.G.; McBeath, J.; Schmitt, F.; Horstmann, S.; et al. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci. Rep. 2021, 11, 19501. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 1999, 29, 757–777. [Google Scholar] [CrossRef]
- Khan, H.A.; Akram, W.; Shad, S.A.; Lee, J.J. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. [corrected]. PLoS ONE 2013, 8, e60929. [Google Scholar] [CrossRef]
- Fleming, D.E.; Krishnan, N.; Catchot, A.L.; Musser, F.R. Susceptibility to insecticides and activities of glutathione S-transferase and esterase in populations of Lygus lineolaris (Hemiptera: Miridae) in Mississippi. Pest Manag. Sci. 2016, 72, 1595–1603. [Google Scholar] [CrossRef]
- Jones, M.M.; Duckworth, J.L.; Robertson, J. Toxicity of Bifenthrin and Mixtures of Bifenthrin Plus Acephate, Imidacloprid, Thiamethoxam, or Dicrotophos to Adults of Tarnished Plant Bug (Hemiptera: Miridae). J. Econ. Entomol. 2018, 111, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Studebaker, G.; Davis, J.; Hopkins, J.D.; Johnson, D.R.; Loftin, K.; Lorenz, G.S.N.; Spradley, P.; Zawislak, J. 2016 Insecticide Recommendations for Arkansas; MP-144; University of Arkansas Cooperative Extension Service: Little Rock, AR, USA, 2016. [Google Scholar]
- Ahmad, M. Potentiation/Antagonism of pyrethroids with organophosphate insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 2007, 100, 886–893. [Google Scholar] [CrossRef]
- Attique, M.; Khaliq, A.; Sayyed, A. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures? J. Appl. Entomol. 2006, 130, 122–127. [Google Scholar] [CrossRef]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Belden, J.B. The acute toxicity of pesticide mixtures to honeybees. Integr. Environ. Assess Manag. 2022, 18, 1694–1704. [Google Scholar] [CrossRef] [PubMed]
- Houndji, M.A.B.; Imorou Toko, I.; Guedegba, L.; Yacouto, E.; Agbohessi, P.T.; Mandiki, S.N.M.; Scippo, M.L.; Kestemont, P. Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish (Clarias gariepinus) juveniles. J. Environ. Sci. Health B 2020, 55, 669–676. [Google Scholar] [CrossRef]
- Guedegba, N.L.; Imorou Toko, I.; Agbohessi, P.T.; Zoumenou, B.; Douny, C.; Mandiki, S.N.M.; Schiffers, B.; Scippo, M.L.; Kestemont, P. Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia (Oreochromis Niloticus) juveniles. J. Environ. Sci. Health B 2019, 54, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Kunce, W.; Josefsson, S.; Örberg, J.; Johansson, F. Combination effects of pyrethroids and neonicotinoids on development and survival of Chironomus riparius. Ecotoxicol. Environ. Saf. 2015, 122, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M.; Henderson, R. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals; Revised 2012 Edition; Australian Government, Grains Research & Development Corporation: Barton, Australia, 2012; p. 52. [Google Scholar]
Commercial Name | Common Name (Percentage of Active Ingredient) | Manufacturer | Mode of Action | |
---|---|---|---|---|
1 | Endigo 2.06 ZC | Thiamethoxam (12.60%) + λ-Cyhalothrin (9.48%) | Syngenta | 3A + 4A |
2 | Warrior II | λ-cyhalothrin (22.8%) | Syngenta | 3A |
3 | Centric 40 WG | Thiamethoxam (40%) | Syngenta | 4A |
4 | Leverage 360 EC | Imidacloprid (21.0%) + β-Cyfluthrin (10.5%) | Bayer Crop Science | 4A + 3A |
5 | Baythroid XL | β-cyfluthrin (12.7%) | Bayer | 3A |
6 | Advise® Four | Imidacloprid (40.4%) | Winfield | 4A |
7 | Hero 1.24 | Bifenthrin (11.25%) + ζ-Cypermethrin (3.75%) | FMC | 3A + 3A |
8 | Tundra® EC | Bifenthrin (25.1%) | Winfield | 3A |
9 | Mustang Maxx | ζ-cypermethrin (9.15%) | FMC | 3A |
10 | Athena | Bifenthrin (8.84%) + Avermectin B1 (1.33%) | FMC | 3A + 6 |
11 | Epi-Mek | Abamectin (15%) | Syngenta | 6 |
Compounds | Strain a | Slope | LC50 (μg/mL) b | 95% Confidence Limits (μg/mL) | χ2 | p | RR c |
---|---|---|---|---|---|---|---|
Endigo | Lab-S | 2.877 ± 0.296 | 22.54 | 19.19–26.49 | 1.53 | 0.68 | ― |
Field-R1 | 2.364 ± 0.562 | 166.64 | 113.75–242.05 | 4.74 | 0.32 | 7.39 | |
Field-R2 | 1.947 ± 0.334 | 315.18 | 254.95–397.47 | 1.07 | 0.90 | 13.98 | |
Leverage | Lab-S | 2.613 ± 0.278 | 20.53 | 17.35–24.16 | 3.27 | 0.35 | ― |
Field-R1 | 5.049 ± 0.911 | 273.44 | 237.29–318.85 | 2.39 | 0.30 | 13.32 | |
Field-R2 | 1.628 ± 0.346 | 513.94 | 384.53–883.0 | 1.75 | 0.78 | 25.03 | |
Hero | Lab-S | 2.929 ± 0.285 | 20.39 | 17.59–23.66 | 2.20 | 0.53 | ― |
Field-R1 | 2.308 ± 0.427 | 329.96 | 266.61–439.07 | 2.11 | 0.35 | 16.18 | |
Field-R2 | 3.377 ± 0.411 | 970.67 | 836.94–1177.82 | 5.72 | 0.33 | 47.60 | |
Athena | Lab-S | 2.876 ± 0.351 | 73.60 | 62.84–86.62 | 2.74 | 0.26 | ― |
Field-R1 | 3.363 ± 0.648 | 479.60 | 389.88–598.0 | 1.07 | 0.59 | 6.56 | |
Field-R2 | 3.283 ± 0.403 | 708.30 | 619.44–828.43 | 6.70 | 0.15 | 9.62 |
Compounds | Strain | AI | AI (Confidence Interval) | CTC | CTC (Confidence Interval) |
---|---|---|---|---|---|
Endigo | Lab-S | 1.28 | 0.94–1.67 | 227.7 | 174.0–267.4 |
Field-R1 | 0.26 | −0.12–0.85 | 126.4 | 87.0–185.2 | |
Field-R2 | 0.79 | 0.42–1.21 | 157.4 | 124.8–194.6 | |
Leverage | Lab-S | 0.32 | 0.12–0.56 | 131.6 | 111.8–155.7 |
Field-R1 | −0.38 | −0.60–−0.19 | 72.6 | 62.3–83.7 | |
Field-R2 | −0.28 | −0.58–−0.04 | 88.0 | 51.2–117.6 | |
Hero | Lab-S | 2.71 | 2.18–3.28 | 369.3 | 318.2–428.0 |
Field-R1 | 1.14 | 0.60–1.64 | 213.6 | 160.6–264.4 | |
Field-R2 | 0.55 | 0.28–0.80 | 154.9 | 127.7–179.7 | |
Athena | Lab-S | 1.22 | 0.89–1.61 | 222.5 | 189.1–260.6 |
Field-R1 | 1.41 | 0.87–1.88 | 233.8 | 187.5–287.5 | |
Field-R2 | 2.16 | 1.70–2.61 | 316.4 | 270.5–361.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zhu, Y.; Scheibener, S.; Portilla, M. Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations. Insects 2023, 14, 761. https://doi.org/10.3390/insects14090761
Du Y, Zhu Y, Scheibener S, Portilla M. Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations. Insects. 2023; 14(9):761. https://doi.org/10.3390/insects14090761
Chicago/Turabian StyleDu, Yuzhe, Yucheng Zhu, Shane Scheibener, and Maribel Portilla. 2023. "Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations" Insects 14, no. 9: 761. https://doi.org/10.3390/insects14090761
APA StyleDu, Y., Zhu, Y., Scheibener, S., & Portilla, M. (2023). Toxicity Assessment of Four Formulated Pyrethroid-Containing Binary Insecticides in Two Resistant Adult Tarnished Plant Bug (Lygus lineolaris) Populations. Insects, 14(9), 761. https://doi.org/10.3390/insects14090761