Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Termites
2.2. Measurement of Locomotor Activity
2.3. Expression Patterns of Clock Genes
2.4. Synthesis of dsRNA and Microinjection
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Photoperiods on the Circadian Rhythms of Locomotor Activity in the Two Termite Species
3.2. Cry2 and Per1 Temporal Expression under DD Conditions in the Two Termite Species
3.3. Cry2 and Per1 Knockdown Disrupted the Circadian Rhythms of Locomotor Activity under DD Conditions in the Two Termite Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomioka, K.; Matsumoto, A. A comparative view of insect circadian clock systems. Cell. Mol. Life Sci. 2010, 67, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Sauman, I.; Yuan, Q.; Casselman, A.; Emery-Le, M.; Emery, P.; Reppert, S.M. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 2008, 6, e4. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Merlin, C.; Boore, J.L.; Reppert, S.M. The monarch butterfly genome yields insights into long-distance migration. Cell 2011, 147, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Tovin, A.; Alon, S.; Ben-Moshe, Z.; Mracek, P.; Vatine, G.; Foulkes, N.S.; Jacob-Hirsch, J.; Rechavi, G.; Toyama, R.; Coon, S.L.; et al. Systematic Identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet. 2012, 8, e1003116. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.D.; Vega-Rodriguez, J.; Diabate, A.; Liu, J.N.; Cui, C.L.; Nignan, C.; Dong, L.; Li, F.; Ouedrago, C.O.; Bandaogo, A.M.; et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 2021, 371, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Helfrich-Forster, C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2020, 206, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Sehgal, A. Molecular components of the circadian system in drosophila. Annu. Rev. Physiol. 2001, 63, 729–755. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Funada, Y.; Ibuki-Ishibashi, T.; Matsumoto, A.; Tanimura, T.; Tomioka, K. Drosophila cry(b) mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J. Insect Physiol. 2004, 50, 479–488. [Google Scholar] [CrossRef]
- Srikanta, S.B.; Cermakian, N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J. Neurochem. 2021, 157, 11–30. [Google Scholar] [CrossRef]
- Emery, P.; So, W.V.; Kaneko, M.; Hall, J.C.; Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998, 95, 669–679. [Google Scholar] [CrossRef]
- Gekakis, N.; Staknis, D.; Nguyen, H.B.; Davis, F.C.; Wilsbacher, L.D.; King, D.P.; Takahashi, J.S.; Weitz, C.J. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998, 280, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Zylka, M.J.; Sriram, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.W.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999, 98, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.M.; Schirmer, A.; Lee, Y.; Lee, H.; Kumar, V.; Yoo, S.H.; Takahashi, J.S.; Lee, C. Rhythmic per abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 2009, 36, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Feng, S.; Gao, Q.; Liu, W.; Ma, W.H.; Wang, X.P. Host population related variations in circadian clock gene sequences and expression patterns in Chilo suppressalis. Chronobiol. Int. 2019, 36, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.C. Cryptochromes: Sensory reception, transduction, and clock functions subserving circadian systems. Curr. Opin. Neurobiol. 2000, 10, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Liu, Y.J.; Zhu, J.L.; Cui, W.N.; Zhang, X.F.; Yang, Y.H.; Liu, X.M.; Zhang, Q.W.; Liu, X.X. Daily expression of two circadian clock genes in compound eyes of Helicoverpa armigera: Evidence for peripheral tissue circadian timing. Insect Sci. 2019, 26, 217–228. [Google Scholar] [CrossRef]
- Cao, X.M.; Yang, Y.Y.; Selby, C.P.; Liu, Z.X.; Sancar, A. Molecular mechanism of the repressive phase of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 2021, 118, e2021174118. [Google Scholar] [CrossRef]
- Bazalova, O.; Kvicalova, M.; Valkova, T.; Slaby, P.; Bartos, P.; Netusil, R.; Tomanova, K.; Braeunig, P.; Lee, H.-J.; Sauman, I. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. USA 2016, 113, 1660–1665. [Google Scholar] [CrossRef]
- van der Horst, G.T.J.; Muijtjens, M.; Kobayashi, K.; Takano, R.; Kanno, S.; Takao, M.; de Wit, J.; Verkerk, A.; Eker, A.P.M.; van Leenen, D.; et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999, 398, 627–630. [Google Scholar] [CrossRef]
- Sawadogo, P.S.; Namountougou, M.; Toe, K.H.; Rouamba, J.; Maiga, H.; Ouedraogo, K.R.; Baldet, T.; Gouagna, L.C.; Kengne, P.; Simard, F.; et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: Review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 2014, 132, S42–S52. [Google Scholar] [CrossRef]
- Moriyama, Y.; Sakamoto, T.; Karpova, S.G.; Matsumoto, A.; Noji, S.; Tomioka, K. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus. J. Biol. Rhythm. 2008, 23, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Kotwica-Rolinska, J.; Chodáková, L.; Smýkal, V.; Damulewicz, M.; Provazník, J.; Wu, B.C.H.; Hejníková, M.; Chvalová, D.; Doležel, D. Loss of timeless underlies an evolutionary transition within the circadian clock. Mol. Biol. Evol. 2022, 39, msab346. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.D.; Funes, P.; Dowse, H.B.; Hall, J.C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 2002, 298, 2010–2012. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, Y.; Cohen, M.; Bloch, G. Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB J. 2007, 21, 2304–2311. [Google Scholar] [CrossRef]
- Narendra, A.; Reid, S.F.; Hemmi, J.M. The twilight zone: Ambient light levels trigger activity in primitive ants. Proc. Roy. Soc. B-Biol. Sci. 2010, 277, 1531–1538. [Google Scholar] [CrossRef]
- Hurley, J.M.; Loros, J.J.; Dunlap, J.C. Circadian oscillators: Around the transcription-translation feedback loop and on to output. Trends Biochem. Sci. 2016, 41, 834–846. [Google Scholar] [CrossRef]
- Fujioka, H.; Abe, M.S.; Fuchikawa, T.; Tsuji, K.; Shimada, M.; Okada, Y. Ant circadian activity associated with brood care type. Biol. Lett. 2017, 13, 20160743. [Google Scholar] [CrossRef]
- Miura, T.; Matsumoto, T. Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, termitidae) in Borneo. Insectes Soc. 1998, 45, 17–32. [Google Scholar] [CrossRef]
- Hinze, B.; Leuthold, R.H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc. 1999, 46, 392–397. [Google Scholar] [CrossRef]
- Fuchikawa, T.; Matsubara, K.; Miyatake, T.; Matsuura, K. Acoustic emission monitoring of the effect of temperature on activity rhythms of the subterranean termite Reticulitermes speratus. Physiol. Entomol. 2012, 37, 303–308. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Yu, S.X.; Li, J.J.; Sun, P.D.; Xiong, M.; Lei, C.L.; Zhang, Z.B.; Huang, Q.Y. Bioactivity of diatomaceous earth against the subterranean termite Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Environ. Sci. Pollut. Res. 2018, 25, 28102–28108. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Huang, Q.Y.; Xu, H. Silencing Orco impaired the ability to perceive trail pheromones and affected locomotion behavior in two termite species. J. Econ. Entomol. 2020, 113, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Y.; Wen, P.; Cardé, R.T.; Xu, H.; Huang, Q.Y. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Commun. Biol. 2021, 4, 1121. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Huang, Q.Y.; Mehmood, N.; Xu, H.; Zhou, W.; Gao, Y.Y. Alteration of termite locomotion and allogrooming in response to infection by pathogenic fungi. J. Econ. Entomol. 2021, 114, 1256–1263. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Y.C.; Gao, Y.Y.; Hassan, A.; Jia, B.; Huang, Q.Y. The cGMP-dependent protein kinase gene can regulate trail-following behaviour and locomotion in the termite Reticulitermes chinensis Snyder. Insect Mol. Biol. 2022, 31, 585–592. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.G.; Oi, F.M.; Scharf, M.E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. USA 2006, 103, 4499–4504. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.C.; Zhao, X.Y.; Guan, J.X.; Lei, C.L.; Huang, Q.Y. Isocitrate dehydrogenase-mediated metabolic disorders disrupt active immunization against fungal pathogens in eusocial termites. J. Pest Sci. 2020, 93, 291–301. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Challet, E. Minireview: Entrainment of the Suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 2007, 148, 5648–5655. [Google Scholar] [CrossRef]
- Ceriani, M.F.; Darlington, T.K.; Staknis, D.; Más, P.; Petti, A.A.; Weitz, C.J.; Kay, S.A. Light-dependent sequestration of timeless by cryptochrome. Science 1999, 285, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Lamba, P.; Bilodeau-Wentworth, D.; Emery, P.; Zhang, Y. Morning and evening oscillators cooperate to reset circadian behavior in response to light input. Cell Rep. 2014, 7, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, M.; Coates, K.E.; Bautista, O.B.; Zukowski, L.H. Light/Clock influences membrane potential dynamics to regulate sleep states. Front. Neurol. 2021, 12, 625369. [Google Scholar] [CrossRef]
- Sun, H.; Li, C.Y.; Zhang, Y.F.; Jiang, M.W.; Dong, Q.Q.; Wang, Z.L. Light-resetting impact on behavior and the central circadian clock in two vole species (genus: Lasiopodomys). Comp. Biochem. Phys. B. 2020, 248, 110478. [Google Scholar] [CrossRef]
- Matsumura, R.; Okamoto, A.; Node, K.; Akashi, M. Compensation for intracellular environment in expression levels of mammalian circadian clock genes. Sci. Rep. 2014, 4, 4032. [Google Scholar] [CrossRef]
- Lee, Y.; Shen, Y.; Francey, L.J.; Ramanathan, C.; Sehgal, A.; Liu, A.C.; Hogenesch, J.B. The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Sci. Rep. 2019, 9, 11883. [Google Scholar] [CrossRef]
- Wang, M.J.; Yu, D.; Zheng, L.C.; Hong, B.; Li, H.X.; Hu, X.B.; Zhang, K.; Mou, Y.B. Mechanical stress affects circadian rhythm in skeletal muscle (C2C12 myoblasts) by reducing Per/Cry gene expression and increasing Bmal1 gene expression. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e928359-1. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Xu, H.; Jia, B.; Liu, Y.; Hassan, A.; Huang, Q. Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus. Insects 2024, 15, 1. https://doi.org/10.3390/insects15010001
Gao Y, Xu H, Jia B, Liu Y, Hassan A, Huang Q. Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus. Insects. 2024; 15(1):1. https://doi.org/10.3390/insects15010001
Chicago/Turabian StyleGao, Yongyong, Huan Xu, Bao Jia, Yutong Liu, Ali Hassan, and Qiuying Huang. 2024. "Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus" Insects 15, no. 1: 1. https://doi.org/10.3390/insects15010001
APA StyleGao, Y., Xu, H., Jia, B., Liu, Y., Hassan, A., & Huang, Q. (2024). Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus. Insects, 15(1), 1. https://doi.org/10.3390/insects15010001