New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect and Plant
2.2. Observation of S. madaranus in the Initial Gall
2.3. Ovipositor Sealing Experiment
2.4. Effects of the Larva on Gall Formation
2.5. Molecular Phylogenetic Analysis of S. madaranus and Its Related Species
2.6. Expression Analysis and RNAi for the S. madaranus Multicopper Oxidase 2 Gene (SmMCO2)
2.7. Nucleotide Sequence Accession Numbers
2.8. Statistics
3. Results and Discussion
3.1. Galls Are Induced by Adult Females, Not by Larvae
3.2. Gall Formation Is Initiated with Substances Delivered during Oviposition
3.3. Gall Enlargement Is Influenced by Larva
3.4. Phylogenetic Analysis of the Smicronyx madaranus and Its Related Species
3.5. RNAi Is Effective for Gene Silencing in S. madaranus
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Redfern, M. Plant Galls; Collins: London, UK, 2011. [Google Scholar]
- Shorthouse, J.D.; Rohfritsch, O. Biology of Insect-Induced Galls; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Price, P.; Fernandes, G.; Waring, G. Adaptive nature of insect galls. Environ. Entomol. 1987, 16, 15–24. [Google Scholar] [CrossRef]
- Stone, G.N.; Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 2003, 18, 512–522. [Google Scholar] [CrossRef]
- Dawkins, R. The Extended Phenotype; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Tooker, J.F.; Helms, A.M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 2014, 40, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Yokokura, J.; Ito, T.; Arai, R.; Yokoyama, C.; Toshima, H.; Nagata, S.; Asami, T.; Suzuki, Y. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 2014, 53, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Giron, D.; Huguet, E.; Stone, G.N.; Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 2016, 84, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Escalante, L.N.; Chen, H.; Benatti, T.R.; Qu, J.; Chellapilla, S.; Waterhouse, R.M.; Wheeler, D.; Andersson, M.N.; Bao, R.; et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 2015, 25, 613–620. [Google Scholar] [CrossRef]
- Cambier, S.; Ginis, O.; Moreau, S.J.M.; Gayral, P.; Hearn, J.; Stone, G.N.; Giron, D.; Huguet, E.; Drezen, J.M. Gall wasp transcriptomes unravel potential effectors involved in molecular dialogues with oak and rose. Front. Physiol. 2019, 10, 926. [Google Scholar] [CrossRef]
- Korgaonkar, A.; Han, C.; Lemire, A.L.; Siwanowicz, I.; Bennouna, D.; Kopec, R.E.; Andolfatto, P.; Shigenobu, S.; Stern, D.L. A novel family of secreted insect proteins linked to plant gall development. Curr. Biol. 2021, 31, 1836–1849. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Alvim, S.J.; Fernandes, G.W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 2001, 10, 79–98. [Google Scholar] [CrossRef]
- Veldtman, R.; McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 2003, 28, 1–13. [Google Scholar] [CrossRef]
- Stuart, J.; Chen, M.-S.; Shukle, R.; Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 2012, 50, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Korotyaev, B.; Konstantinov, A.; Lingafelter, S.W.; Mandelshtam, M.; Volkovitsh, M. Gall-inducing Coleoptera. In Biology, Ecology and Evolution of Gall-Inducing Arthropods; Science Publishers, Inc.: Enfield, NH, USA, 2005; pp. 239–271. [Google Scholar]
- Aistova, E.V.; Bezborodov, V.G. Weevils belonging to the Genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions 2017, 8, 184–188. [Google Scholar] [CrossRef]
- Morimoto, K.; Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 2007, 62, 1–9. [Google Scholar]
- Murakami, R.; Ushima, R.; Sugimoto, R.; Tamaoki, D.; Karahara, I.; Hanba, Y.; Wakasugi, T.; Tsuchida, T. A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant. Sci. Rep. 2021, 11, 13013. [Google Scholar] [CrossRef]
- Hirano, T.; Kimura, S.; Sakamoto, T.; Okamoto, A.; Nakayama, T.; Matsuura, T.; Ikeda, Y.; Takeda, S.; Suzuki, Y.; Ohshima, I.; et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 2020, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Nabity, P.D.; Haus, M.J.; Berenbaum, M.R.; DeLucia, E.H. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc. Natl. Acad. Sci. USA 2013, 110, 16663–16668. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Yoza, M.; Amano, T.; Ohshima, I.; Hirano, T.; Sato, M.H.; Sakamoto, T.; Kimura, S. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS ONE 2019, 14, e0223686. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, T. Acetone preservation: A practical technique for molecular analysis. Mol. Ecol. 1999, 8, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Ihaka, R.; Gentleman, R. R: A Language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Dieckmann, L. Beiträge zur Insektenfauna der DDR: Coleoptera—Curculionidae (Erirhinae). Beiträge Zur Entomol. = Contrib. Entomol. 1986, 36, 119–181. [Google Scholar]
- Haran, J. A review of the genus Smicronyx Schoenherr (Coleoptera, Curculionidae, Curculioninae) in tropical Africa. Zootaxa 2018, 4508, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Dinelli, G.; Bonetti, A.; Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-campestris Yuncker and some host species. Weed Res. 1993, 33, 253–260. [Google Scholar] [CrossRef]
- Haran, J. A new record of Smicronyx smreczynskii (Solari, 1952) on Cuscuta scandens in the South-West of France. Snudebiller Stud. Taxon. Biol. Ecol. Curculionoidea 2014, 15, 4. [Google Scholar]
- Heijerman, T.; Alders, K. Smicronyx smreczynskii, een nieuwe snuitkever voor de nederlandse fauna (Coleoptera: Curculionidae). Ned. Faun. Meded. 2000, 12, 11–13. [Google Scholar]
- Morimoto, K.; Matoba, I. Addition to the genus Smicronyx of Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 2009, 64, 67–72. [Google Scholar]
- Haran, J.; SchÜTte, A.; Friedman, A.-L.-L. A review of Smicronyx Schoenherr (Coleoptera, Curculionidae) of Israel, with description of two new species. Zootaxa 2017, 4237, 17–40. [Google Scholar] [CrossRef]
- Benedikt, S.; Krátk’y, J.; Schön, K. Nové a potvrzené druhy nosatců (Coleoptera: Curculionoidea) pro Českou republiku a Slovensko. Západočeské Entomol. Listy 2016, 7, 25–31. (In Czech) [Google Scholar]
- Mifsud, D.; Colonnelli, E. The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera). Bull. Entomol. Soc. Malta 2010, 3, 55–143. [Google Scholar]
- Haran, J. The Smicronychini of southern Africa (Coleoptera, Curculionidae): Review of the tribe and description of 12 new species. Eur. J. Taxon. 2021, 735, 34–73. [Google Scholar] [CrossRef]
- Dhileepan, K.; Madigan, B.; Vitelli, M.; McFadyen, R.; Webster, K.; Trevino, M. A New Initiative in the Biological Control of Parthenium. In Proceedings of the 11th Australian Weeds Conference, Melbourne, Australia, 30 September–3 October 1996; pp. 309–312. [Google Scholar]
- Anderson, D.M. The weevil genus Smicronyx in america north of Mexico (Coleoptera: Cureulionidae). One hundred and fifty-seven figures and one plate. Proc. United States Natl. Mus. 1962, 113, 185–372. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, T.; Koga, R.; Fujiwara, A.; Fukatsu, T. Phenotypic effect of “Candidatus Rickettsiella viridis”, a facultative symbiont of the pea aphid (Acyrthosiphon pisum), and its interaction with a coexisting symbiont. Appl. Environ. Microbiol. 2014, 80, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Meng, X.-Y.; Kamagata, Y.; Tsuchida, T. Subcellular niche segregation of co-obligate symbionts in whiteflies. Microbiol. Spectr. 2023, 11, e04684-22. [Google Scholar] [CrossRef] [PubMed]
- Reymond, P. Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 2013, 238, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Hilker, M.; Rohfritsch, O.; Meiners, T. The plant’s response towards insect egg deposition. In Chemoecology of Insect Eggs and Egg Deposition; Hilker, M., Meiners, T., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 205–233. [Google Scholar]
- Hilker, M.; Fatouros, N.E. Plant responses to insect egg deposition. Annu. Rev. Entomol. 2015, 60, 493–515. [Google Scholar] [CrossRef] [PubMed]
- Dreger-Jauffret, F.; Shorthouse, J.D. Diversity of gall-inducing insects and their galls. In Biology of Insect-Induced Galls; Shorthouse, J.D., Rohfritsch, O., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 8–33. [Google Scholar]
- Oates, C.N.; Denby, K.J.; Myburg, A.A.; Slippers, B.; Naidoo, S. Insect egg-induced physiological changes and transcriptional reprogramming leading to gall formation. Plant Cell Environ. 2021, 44, 535–547. [Google Scholar] [CrossRef]
- Rey, L.A. Developmental morphology of two types of Hymenopterous galls. In Biology of Insect-Induced Galls; Shorthouse, J.D., Rohfritsch, O., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 87–101. [Google Scholar]
- Leggo, J.J.; Shorthouse, J.D. Development of stem galls induced by Diplolepis triforma (Hymenoptera: Cynipidae) on Rosa acicularis (Rosaceae). Can. Entomol. 2006, 138, 661–680. [Google Scholar] [CrossRef]
- Rohfritsch, O. Patterns in gall development. In Biology of Insect-Induced Galls; Shorthouse, J.D., Rohfritsch, O., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 60–86. [Google Scholar]
- Barnewall, E.C.; De Clerck-Floate, R.A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 2012, 6, 449–459. [Google Scholar] [CrossRef]
- Raman, A.; Cruz, Z.T.; Muniappan, R.; Reddy, G.V.P. Biology and host specificity of gall-inducing Acythopeus burkhartorum (Coleoptera: Curculionidae), a biological-control agent for the invasive weed Coccinia grandis (Cucurbitaceae) in Guam and Saipan. Tijdschr. Entomol. 2007, 150, 181–191. [Google Scholar] [CrossRef]
- Florentine, S.; Raman, A.; Dhileepan, K. Response of the weed Parthenium hysterophorus (Asteraceae) to the stem gall-inducing weevil Conotrachelus albocinereus (Coleoptera: Curculionidae). Entomol. Gen. 2002, 26, 195–206. [Google Scholar] [CrossRef]
- Anikin, V.V.; Nikelshparg, M.I.; Nikelshparg, E.I.; Konyukhov, I.V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 2017, 17, 42–47. [Google Scholar]
- Gobbo, E.; Lartillot, N.; Hearn, J.; Stone, G.N.; Abe, Y.; Wheat, C.W.; Ide, T.; Ronquist, F. From inquilines to gall inducers: Genomic signature of a life-style transition in Synergus gall wasps. Genome Biol. Evol. 2020, 12, 2060–2073. [Google Scholar] [CrossRef]
- Zhu, K.-Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Futahashi, R.; Koshikawa, S.; Okude, G.; Osanai-Futahashi, M. Diversity of melanin synthesis genes in insects. Adv. Insect Phys. 2022, 62, 339–376. [Google Scholar]
- Bartlett, L.; Connor, E.F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 2014, 8, 339–348. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Tanaka, H.; Hasegawa, M.; Tokuda, M.; Asami, T.; Suzuki, Y. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 2012, 196, 586–595. [Google Scholar] [CrossRef]
- Schultz, J.C.; Edger, P.P.; Body, M.J.A.; Appel, H.M. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 2019, 9, 1833. [Google Scholar] [CrossRef]
- Nishide, Y.; Kageyama, D.; Hatakeyama, M.; Yokoi, K.; Jouraku, A.; Tanaka, H.; Koga, R.; Futahashi, R.; Fukatsu, T. Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali. Sci. Rep. 2020, 10, 3464. [Google Scholar] [CrossRef]
- Pitino, M.; Coleman, A.D.; Maffei, M.E.; Ridout, C.J.; Hogenhout, S.A. Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 2011, 6, e25709. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Piulachs, M.-D.; Belles, X.; Daimon, T. DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Rep. Methods 2022, 2, 100215. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
Treatment | n a | Egg-Laying Hole b | Gall c |
---|---|---|---|
Control | 12 | 12.42 ± 5.14 | 8.67 ± 3.55 |
Sealed | 12 | 4.17 ± 2.25 *** | 0 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushima, R.; Sugimoto, R.; Sano, Y.; Ogi, H.; Ino, R.; Hayakawa, H.; Shimada, K.; Tsuchida, T. New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis. Insects 2024, 15, 63. https://doi.org/10.3390/insects15010063
Ushima R, Sugimoto R, Sano Y, Ogi H, Ino R, Hayakawa H, Shimada K, Tsuchida T. New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis. Insects. 2024; 15(1):63. https://doi.org/10.3390/insects15010063
Chicago/Turabian StyleUshima, Ryo, Ryoma Sugimoto, Yota Sano, Hinako Ogi, Ryuichiro Ino, Hiroshi Hayakawa, Keisuke Shimada, and Tsutomu Tsuchida. 2024. "New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis" Insects 15, no. 1: 63. https://doi.org/10.3390/insects15010063
APA StyleUshima, R., Sugimoto, R., Sano, Y., Ogi, H., Ino, R., Hayakawa, H., Shimada, K., & Tsuchida, T. (2024). New Gall-Forming Insect Model, Smicronyx madaranus: Critical Stages for Gall Formation, Phylogeny, and Effectiveness of Gene Functional Analysis. Insects, 15(1), 63. https://doi.org/10.3390/insects15010063