Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1: Contamination Baselining
2.2. Experiment 2: Tween and Bleach Sterilisation
2.3. Experiment 3: Gut Dissection and Distel Sterilisation to Control Surface Contamination
2.4. Experiment 4: UV Sterilisation
3. Results
3.1. Experiment 1: Contamination Baselining
Sequencing Results
3.2. Experiment 2: Tween and Bleach Sterilisation
3.2.1. Tween and Bleach Sterilisation TaqMan Results
3.2.2. Tween and Bleach Sequencing Results
3.3. Experiment 3: Gut Dissection and Distel Sterilisation to Control Surface Contamination
3.4. UV Sterilisation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodgkiss, D.; Brown, M.J.F.; Fountain, M.T.; Clare, E.L. Detection rates of aphid DNA in the guts of larval hoverflies and potential links to the provision of floral resources. Bull. Entomol. Res. 2022, 112, 451–457. [Google Scholar] [CrossRef]
- Vasquez, A.A.; Mohiddin, O.; Li, Z.; Bonnici, B.L.; Gurdziel, K.; Ram, J.L. Molecular diet studies of water mites reveal prey biodiversity. PLoS ONE 2021, 16, e0254598. [Google Scholar] [CrossRef]
- Miller-Ter Kuile, A.; Apigo, A.; Young, H.S. Effects of consumer surface sterilization on diet DNA metabarcoding data of terrestrial invertebrates in natural environments and feeding trials. Ecol. Evol. 2021, 11, 12025–12034. [Google Scholar] [CrossRef]
- Garcia-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef]
- Cooper, W.R.; Horton, D.R.; Unruh, T.R.; Garczynski, S.F. Gut content analysis of a phloem-feeding insect, Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 2016, 45, 938–944. [Google Scholar] [CrossRef]
- Avanesyan, A.; Lamp, W.O. Use of molecular gut content analysis to decipher the range of food plants of the invasive spotted lanternfly, Lycorma delicatula. Insects 2020, 11, 215. [Google Scholar] [CrossRef]
- Wallinger, C.; Staudacher, K.; Schallhart, N.; Peter, E.; Dresch, P.; Juen, A.; Traugott, M. The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect. Mol. Ecol. Resour. 2013, 13, 75–83. [Google Scholar] [CrossRef]
- Linville, J.G.; Wells, J.D. Surface sterilization of a maggot using bleach does not interfere with mitochondrial DNA analysis of crop contents. J. Forensic Sci. 2002, 47, 1055–1059. [Google Scholar] [CrossRef]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; De Stradis, A.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and Transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef]
- Cornara, D.; Cornara, D.; Garzo, E.; Morente, M.; Moreno, A.; Alba-Tercedor, J.; Fereres, A. EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. PLoS ONE 2018, 13, e0199154. [Google Scholar] [CrossRef]
- EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 2019, 49, 175–227. [Google Scholar] [CrossRef]
- Levin, R.A.; Wagner, W.L.; Hoch, P.C.; Nepokroeff, M.; Pires, J.C.; Zimmer, E.A.; Sytsma, K.J. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 2003, 90, 107–115. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2007, 2, e508. [Google Scholar] [CrossRef]
- Weller, S.A.; Elphinstone, J.G.; Smith, N.C.; Boonham, N.; Stead, D.E. Detection of Ralstonia solanacearum Strains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Appl. Environ. Microbiol. 2000, 66, 2853–2858. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Boonham, N.; Hughes, K.J.; Griffin, R.L.; Barker, I. On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl Env. Microbiol. 2005, 71, 6702–6710. [Google Scholar] [CrossRef]
- Botermans, M.; van de Vossenberg, B.T.; Verhoeven, J.T.; Roenhorst, J.W.; Hooftman, M.; Dekter, R.; Meekes, E.T. Development and validation of a real-time RT-PCR assay for generic detection of pospiviroids. J. Virol. Methods 2013, 187, 43–50. [Google Scholar] [CrossRef]
- Menzel, W.; Jelkmann, W.; Maiss, E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 2002, 99, 81–92. [Google Scholar] [CrossRef]
- Ivanova, N.V.; Kuzmina, M.L.; Braukmann, T.W.A.; Borisenko, A.V.; Zakharov, E.V. Correction: Authentication of Herbal Supplements Using Next-Generation Sequencing. PLoS ONE 2016, 11, e0168628. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef]
- Bell, K.L.; Loeffler, V.M.; Brosi, B.J. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl. Plant Sci. 2017, 5, 1600110. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Robeson, M.S., II; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Gonella, E.; Picciau, L.; Pippinato, L.; Cavagna, B.; Alma, A. Host Plant Identification in the Generalist Xylem Feeder Philaenus spumarius through Gut Content Analysis. Entomol. Exp. Appl. 2020, 168, 890–899. [Google Scholar] [CrossRef]
- Adams-Groom, B.; Ambelas Skjøth, C.; Selby, K.; Pashley, C.; Satchwell, J.; Head, K.; Ramsay, G. Regional calendars and seasonal statistics for the United Kingdom’s main pollen allergens. Allergy 2020, 75, 1492–1494. [Google Scholar] [CrossRef]
- Hofmann, F.; Otto, M.; Wosniok, W. Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation-results of 10 years of monitoring (2001 to 2010). Environ. Sci. Eur. 2014, 26, 24. [Google Scholar] [CrossRef]
- Batuecas, I.; Alomar, O.; Castañe, C.; Piñol, J.; Boyer, S.; Gallardo-Montoya, L.; Agustí, N. Development of a multiprimer metabarcoding approach to understanding trophic interactions in agroecosystems. Insect Sci. 2022, 29, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′–3′) |
---|---|
Min-rbcLa-F a | tttctgttggtgctgatattgcTGTCACCACAAACAGAGACTAAAGC |
Min-rbcLa-R a | acttgcctgtcgctctatcttcGTAAAATCAAGTCCACCRCG |
COX-F b | CGTCGCATTCCAGATTATCCA |
COX-R b | CAACTACGGATATATAAGRRCCRRAACTG |
COX-P b | AGGGCATTCCATCCAGCGTAAGCA |
Nad5-F b | GATGCTTCTTGGGGCTTCTTGTT |
Nad5-R b | CTCCAGTCACCAACATTGGCATAA |
Nad5-P b | AGGATCCGCATAGCCCTCGATTTATGTG |
Nex-rbcLa-F c | tcgtcggcagcgtcagatgtgtataagagacagATGTCACCACAAACAGAGACTAAAGC |
Nex-rbcLa-R c | gtctcgtgggctcggagatgtgtataagagacagCGGTCCAYACAGYBGTCCAKGTACC |
Sample | Sample Type | Replicates | Pollen | Sterilisation | Purpose |
---|---|---|---|---|---|
1 | Whole pollen-dusted P. spumarius—intact | 3 | Tulip | None | Controls |
2 | Whole pollen-dusted P. spumarius—intact | 3 | Tulip | Distel | Distel sterilisation |
3 | Guts dissected from pollen-dusted P. spumarius | 3 | Tulip | None | To check contamination from surface in dissected guts |
4 | Associated exoskeletons from dissected pollen-dusted P. spumarius a | 3 | Tulip | None | Controls |
5 | Whole non-pollen-dusted P. spumarius—intact | 3 | None | None | Controls |
6 | Whole non-pollen-dusted P. spumarius—intact | 3 | None | Distel | Distel sterilisation controls |
7 | Guts dissected from non-pollen-dusted P. spumarius | 3 | None | None | Detection of natural food from the environment |
8 | Associated exoskeletons from dissected non-pollen-dusted P. spumarius b | 3 | None | None | Detection of natural food contamination of surface of insect |
9 | Pollen only, in tubes | 3 | Tulip | None | Controls—ability to extract pollen DNA and thus detect it in treatments |
Treatment | Pollen | Number of Repeats | Average COX CT | Average NAD CT |
---|---|---|---|---|
Tween/Bleach | Coated | 1 | 37.11 | 40 |
2 | 40 | 40 | ||
Uncoated | 1 | 38.78 | 40 | |
2 | 40 | 40 | ||
Tween | Coated | 1 | 36.55 | 39.47 |
Uncoated | 1 | 34.55 | 40 | |
Untreated | Coated | 1 | 33.12 | 36.69 |
Uncoated | 1 | 32.07 | 40 | |
Extraction blank | - | - | 40 | 40 |
COX-positive control | - | - | 25.53 | - |
NAD-positive control | - | - | - | 27.30 |
Negative control | - | - | 40 | 40 |
Sample | Sample Type | Pollen | Sterilisation | Replicates Tulip Detected in |
---|---|---|---|---|
1 | Whole pollen-dusted P. spumarius—intact | Tulip | None | 3/3 |
2 | Whole pollen-dusted P. spumarius—intact | Tulip | Distel | 3/3 |
3 | Guts dissected from pollen-dusted P. spumarius | Tulip | None | 3/3 |
4 | Associated exoskeletons from dissected pollen-dusted P. spumarius a | Tulip | None | 3/3 |
5 | Whole non-pollen-dusted P. spumarius—intact | None | None | 0/3 |
6 | Whole non-pollen-dusted P. spumarius—intact | None | Distel | 1/3 |
7 | Guts dissected from non-pollen-dusted P. spumarius | None | None | 0/3 |
8 | Associated exoskeletons from dissected non-pollen-dusted P. spumarius b | None | None | 2/3 |
9 | Pollen only, in tubes | Tulip | None | 3/3 |
Time under UV (Minutes) | NAD—CT1 | NAD—CT2 | NAD—Average CT |
---|---|---|---|
0 | 26.73 | 26.41 | 26.57 |
15 | 29.81 | 30.18 | 30 |
30 | 30.40 | 30.38 | 30.39 |
60 | 33.36 | 33.03 | 33.20 |
120 | 34.69 | 34.51 | 34.60 |
240 | 36.61 | 37 | 36.81 |
Extraction Blank | 40 | 40 | 40 |
Positive Control | 25.95 | 26.11 | 26.03 |
Negative Control | 40 | 40 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGreig, S.; Pufal, H.; Conyers, C.; Jones, E.P.; Haynes, E. Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius. Insects 2024, 15, 732. https://doi.org/10.3390/insects15100732
McGreig S, Pufal H, Conyers C, Jones EP, Haynes E. Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius. Insects. 2024; 15(10):732. https://doi.org/10.3390/insects15100732
Chicago/Turabian StyleMcGreig, Sam, Hollie Pufal, Chris Conyers, Eleanor P. Jones, and Edward Haynes. 2024. "Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius" Insects 15, no. 10: 732. https://doi.org/10.3390/insects15100732
APA StyleMcGreig, S., Pufal, H., Conyers, C., Jones, E. P., & Haynes, E. (2024). Assessment of Surface Sterilisation Approaches for the Removal of Pollen DNA from Philaenus spumarius. Insects, 15(10), 732. https://doi.org/10.3390/insects15100732