Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aphids, Endophytes and Plants
2.2. EPG Setup and Methodology
2.3. EPG Waveforms and Variables
2.4. Life-History Bioassays
2.5. Statistical Analyses
3. Results
3.1. Feeding Behaviour Bioassays
3.2. Life-History
3.3. Correlation between Feeding Behaviour and Life History
4. Discussion
4.1. Feeding Deterrence
4.2. Life-History Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Cunningham, P.J.; Blumenthal, M.J.; Anderson, M.W.; Prakash, K.S.; Leonforte, A. Perennial ryegrass improvement in Australia. N. Z. J. Agric. Res. 1994, 37, 295–310. [Google Scholar] [CrossRef]
- Lee, J.M.; Matthew, C.; Thom, E.R.; Chapman, D.F. Perennial ryegrass breeding in New Zealand: A dairy industry perspective. Crop Pasture Sci. 2012, 63, 107–127. [Google Scholar] [CrossRef]
- Popay, A.J.; Wyatt, R.T. Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. In Proceedings of the Forty Eighth New Zealand Plant Protection Conference; Angus, I., Ed.; New Zealand Plant Protection Society: Rotorua, New Zealand, 1995; pp. 229–236. [Google Scholar]
- Ball, O.J.; Miles, C.O.; Prestidge, R.A. Ergopeptine alkaloids and Neotyphodium lolii-mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera: Scarabaeidae). J. Econ. Entomol. 1997, 90, 1382–1391. [Google Scholar] [CrossRef]
- Karpyn, E.M.; Yen, A.L.; Rochfort, S.; Guthridge, K.M.; Powell, K.S.; Edwards, J.; Spangenberg, G.C. A review of perennial ryegrass endophytes and their potential use in the management of African black beetle in perennial grazing systems in Australia. Front. Plant Sci. 2017, 8, 3. [Google Scholar]
- Clement, S.L.; Lester, D.G.; Wilson, A.D.; Pike, K.S. Behavior and performance of Diuraphis noxia (Homoptera: Aphididae) on fungal endophyte-infected and uninfected perennial ryegrass. J. Econ. Entomol. 1992, 85, 583–588. [Google Scholar] [CrossRef]
- Leather, S.R.; Dixon, A.F. Secondary host preferences and reproductive activity of the bird cherry-oat aphid. Rhopalosiphum padi. Ann. Appl. Biol. 1982, 101, 219–228. [Google Scholar] [CrossRef]
- Caradus, J.R.; Johnson, L.J. Improved adaptation of temperate grasses through mutualism with fungal endophytes. In Endophyte Biotechnology: Potential for Agriculture and Pharmacology; Schouten, A., Ed.; CABI: Wallingford, UK, 2019; pp. 85–108. [Google Scholar]
- Vikuk, V.; Young, C.A.; Lee, S.T.; Nagabhyru, P.; Krischke, M.; Mueller, M.J.; Krauss, J. Infection rates and alkaloid patterns of different grass species with systemic Epichloë endophytes. Appl. Environ. Microbiol. 2019, 85, e00465-19. [Google Scholar] [CrossRef]
- Schardl, C.L.; Florea, S.; Pan, J.; Nagabhyru, P.; Bec, S.; Calie, P.J. The epichloae: Alkaloid diversity and roles in symbiosis with grasses. Curr. Opin. Plant Biol. 2013, 16, 480–488. [Google Scholar] [CrossRef]
- Rowan, D.D.; Hunt, M.B.; Gaynor, D.L. Peramine; a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J. Chem. Soc. Chem. Commun. 1986, 12, 935–936. [Google Scholar] [CrossRef]
- Eichenseer, H.; Dahlman, D.L.; Bush, L.P. Influence of endophyte infection; plant age and harvest interval on Rhopalosiphum padi survival and its relation to quantity of N-formyl and N-acetyl loline in tall fescue. Entomol. Exp. Appl. 1991, 60, 29–38. [Google Scholar] [CrossRef]
- Jensen, J.G.; Popay, A.J.; Tapper, B.A. Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N. Z. Plant Prot. 2009, 62, 12–18. [Google Scholar] [CrossRef]
- Wilkinson, H.H.; Siegel, M.R.; Blankenship, J.D.; Mallory, A.C.; Bush, L.P.; Schardl, C.L. Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol. Plant Microbe Interact. 2000, 13, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Ondeyka, J.G.; Helms, G.L.; Hensens, O.D.; Goetz, M.A.; Zink, D.L.; Tsipouras, A.; Shoop, W.L.; Slayton, L.; Dombrowski, A.W.; Polishook, J.D.; et al. Nodulisporic acid A; a novel and potent insecticide from a Nodulisporium sp. Isolation; structure determination; and chemical transformations. J. Am. Chem. Soc. 1997, 119, 8809–8816. [Google Scholar] [CrossRef]
- Klotz, J.L.; Bush, L.P.; Smith, D.L.; Shafer, W.D.; Smith, L.L.; Arrington, B.C.; Strickland, J.R. Ergovaline-induced vasoconstriction in an isolated bovine lateral saphenous vein bioassay. J. Anim. Sci. 2007, 85, 2330–2336. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley, J. & Sons Ltd.: Chichester, UK, 2000; 466p. [Google Scholar]
- Latch, G.C. Incidence of barley yellow dwarf virus in ryegrass pastures in New Zealand. N. Z. J. Agric. Res. 1977, 20, 87–89. [Google Scholar] [CrossRef]
- Valenzuela, I.; Ridland, P.M.; Weeks, A.R.; Hoffmann, A.A. Patterns of genetic variation and host adaptation in an invasive population of Rhopalosiphum padi (Hemiptera: Aphididae). Ann. Entomol. Soc. Am. 2010, 103, 886–897. [Google Scholar] [CrossRef]
- Dean, G.J. Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.); Rhopalosiphum padi (L.) and Macrosiphum avenue (F.) (Hem.; Aphididae). Bull. Entomol. Res. 1974, 63, 401–409. [Google Scholar] [CrossRef]
- Pollard, D.G. Plant penetration by feeding aphids (Hemiptera; Aphidoidea): A review. Bull. Entomol. Res. 1973, 62, 631–714. [Google Scholar]
- Tjallingii, W.F.; Esch, T.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- Gabryś, B.; Dancewicz, K.; Gliszczyńska, A.; Kordan, B.; Wawrzeńczyk, C. Systemic deterrence of aphid probing and feeding by novel β-damascone analogues. J. Pest Sci. 2015, 88, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Tjallingii, W.F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 1978, 24, 721–730. [Google Scholar] [CrossRef]
- McLean, D.L.; Kinsey, M.G. A technique for electronically recording aphid feeding and salivation. Nature 1964, 202, 1358–1359. [Google Scholar] [CrossRef]
- Walker, G.P.; Backus, E.A. Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior; Walker, G.P., Backus, E.A., Eds.; Entomological Society of America: Lanham, MD, USA, 2000. [Google Scholar]
- Tjallingii, W.F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1988; pp. 95–108. [Google Scholar]
- Tjallingii, F.W. EPG Systems. Available online: https://www.epgsystems.eu/epg-measuring (accessed on 5 June 2024).
- Kimmins, F.M.; Tjallingii, W.F. Ultrastructure of sieve element penetration by aphid stylets during electrical recording. Exp. Appl. 1985, 39, 135–141. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Electrical nature of recorded signals during stylet penetration by aphids. Entomol. Exp. Appl. 1985, 38, 177–186. [Google Scholar] [CrossRef]
- Garzo, E.; Moreno, A.; Hernando, S.; Mariño, V.; Torne, M.; Santamaria, E.; Díaz, I.; Fereres, A. Electrical penetration graph technique as a tool to monitor the early stages of aphid resistance to insecticides. Pest Manag. Sci. 2016, 72, 707–718. [Google Scholar] [CrossRef]
- Collinson, N.P.; Mann, R.C.; Giri, K.; Malipatil, M.; Kaur, J.; Spangenberg, G.; Valenzuela, I. Novel bioassay to assess antibiotic effects of fungal endophytes on aphids. PLoS ONE 2020, 15, e0228813. [Google Scholar] [CrossRef] [PubMed]
- Bastias, D.A.; Ueno, A.C.; Machado Assefh, C.R.; Alvarez, A.E.; Young, C.A.; Gundel, P.E. Metabolism or behavior: Explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia 2017, 185, 245–256. [Google Scholar] [CrossRef]
- Ridland, P.M.; Sward, R.J.; Tomkins, R.B. A simple rearing system for cereal aphids; especially suited to transmission studies with barley yellow dwarf viruses. Australas. Plant Pathol. 1988, 17, 17–19. [Google Scholar] [CrossRef]
- Clay, K. Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 1987, 73, 358–362. [Google Scholar] [CrossRef]
- Ruppert, K.G.; Matthew, C.; McKenzie, C.M.; Popay, A.J. Impact of Epichloë endophytes on adult Argentine stem weevil damage to perennial ryegrass seedlings. Entomol. Exp. Appl. 2017, 163, 328–337. [Google Scholar] [CrossRef]
- Hewitt, K.G.; Mace, W.J.; McKenzie, C.M.; Matthew, C.; Popay, A.J. Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment. J. Chem. Ecol. 2020, 46, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Graves, H.; Rayburn, A.L.; Gonzalez-Hernandez, J.L.; Nah, G.; Kim, D.S.; Lee, D.K. Validating DNA polymorphisms using KASP assay in prairie cordgrass (Spartina pectinata Link) populations in the US. Front. Plant Sci. 2016, 6, 166629. [Google Scholar] [CrossRef]
- Wyatt, I.J.; White, P.F. Simple estimation of intrinsic increase rates for aphids and tetranychid mites. J. Appl. Ecol. 1977, 14, 757–766. [Google Scholar] [CrossRef]
- Auad, A.M.; Alves, S.O.; Carvalho, C.A.; Silva, D.M.; Resende, T.T.; Veríssimo, B.A. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphididae) fed with signal grass. Fla. Entomol. 2009, 92, 569–577. [Google Scholar] [CrossRef]
- Sarria, E.; Cid, M.; Garzo, E.; Fereres, A. Excel Workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 2009, 67, 35–42. [Google Scholar] [CrossRef]
- VSN International. Genstat for Windows, 19th ed.; VSN International: Hemel Hamstead, UK, 2015. [Google Scholar]
- Kortbeek, R.W.; van der Gragt, M.; Bleeker, P.M. Endogenous plant metabolites against insects. Eur. J. Plant Pathol. 2019, 154, 67–90. [Google Scholar]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef]
- Bastias, D.A.; Martínez-Ghersa, M.A.; Ballaré, C.L.; Gundel, P.E. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends Plant Sci. 2017, 22, 939–948. [Google Scholar] [CrossRef]
- Miller, T.A.; Hudson, D.A.; Johnson, R.D.; Singh, J.S.; Mace, W.J.; Forester, N.T.; Maclean, P.H.; Voisey, C.R.; Johnson, L.J. Dissection of the epoxyjanthitrem pathway in Epichloë sp. Lp TG-3 strain AR37 by CRISPR gene editing. Front. Fungal Biol. 2022, 3, 944234. [Google Scholar] [CrossRef]
- Reddy, P.; Guthridge, K.; Vassiliadis, S.; Hemsworth, J.; Hettiarachchige, I.; Spangenberg, G.; Rochfort, S. Tremorgenic mycotoxins: Structure diversity and biological activity. Toxins 2019, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Saikia, S.; Parker, E.J.; Koulman, A.; Scott, B. Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Lett. 2006, 580, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Becker, Y.; Green, K.; Scott, B. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium; an appressorium-like leaf exit structure. New Phytol. 2016, 211, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.J.; Voisey, C.R. The biology of the endophyte/grass partnership. NZGA Res. Pract. Ser. 2007, 13, 123–133. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, X. Dark septate endophyte improves the drought-stress resistance of Ormosia hosiei seedlings by altering leaf morphology and photosynthetic characteristics. Plant Ecol. 2021, 222, 761–771. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, D. Volatile organic compounds from endophytic fungi. In Recent Advancement in White Biotechnology through Fungi: Volume 2: Perspective for Value-Added Products and Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 149–175. [Google Scholar]
- Li, T.; Blande, J.D.; Gundel, P.E.; Helander, M.; Saikkonen, K. Epichloë endophytes alter inducible indirect defences in host grasses. PLoS ONE 2014, 9, e101331. [Google Scholar] [CrossRef]
- Fuchs, B.; Krauss, J. Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol. 2019, 38, 98–103. [Google Scholar] [CrossRef]
- Meister, B.; Krauss, J.; Härri, S.A.; Schneider, M.V.; Müller, C.B. Fungal endosymbionts affect aphid population size by reduction of adult life span and fecundity. Basic Appl. Ecol. 2006, 7, 244–252. [Google Scholar] [CrossRef]
- Zuest, T.; Haerri, S.A.; Mueller, C.B. Endophytic fungi decrease available resources for the aphid Rhopalosiphum padi and impair their ability to induce defences against predators. Ecol. Entomol. 2008, 33, 80–85. [Google Scholar] [CrossRef]
Alkaloid Class | Alkaloid Type | SE | AR1 | AR37 | NEA2 | NEA6 |
---|---|---|---|---|---|---|
Ergopeptide | Ergovaline | P | * | * | P | P |
Polyketide | Peramine | P | P | * | P | P |
Indole Diperpene | Epoxyjanthitrems | * | * | P | * | * |
Indole Diterpene | Lolitrem B | P | * | * | T | * |
Feeding Behaviour | Nil_E (n/a) | SE (LEP) | AR1 (P) | AR37 (E) | NEA2 (LEP) | NEA6 (EP) | LSD | p-Value | |
---|---|---|---|---|---|---|---|---|---|
24 | 24 | 20 | 24 | 24 | 24 | ||||
Probing | Number of Potential Drops | 99.88 | 84.00 | 103.10 | 71.63 | 53.00 | 65.71 | 0.20 | 0.018 |
1.94 ab | 1.84 abc | 1.96 a | 1.70 c | 1.68 c | 1.72 c | ||||
Sum of Potential Drop Time (minutes) | 8.01 | 6.80 | 8.55 | 5.53 | 4.38 | 5.39 | 0.20 | 0.016 | |
0.85 ab | 0.75 abc | 0.88 a | 0.60 c | 0.61 c | 0.64 c | ||||
Percentage of Probe Time in C | 33.01 | 24.42 | 25.91 | 22.60 | 21.02 | 20.63 | 0.22 | 0.045 | |
1.45 a | 1.22 b | 1.33 ab | 1.14 b | 1.21 b | 1.14 b | ||||
Sum of C Time (minutes) | 195.07 | 155.13 | 149.78 | 134.96 | 131.73 | 118.82 | 0.21 | 0.040 | |
2.23 a | 2.04 ab | 2.11 ab | 1.94 b | 2.01 b | 1.93 b | ||||
Feeding | Number of E1 Events | 10.29 | 7.58 | 8.65 | 6.96 | 5.29 | 6.63 | 0.22 | 0.042 |
0.96 a | 0.75 ab | 0.85 ab | 0.69 b | 0.63 b | 0.68 b | ||||
Number of E2 Events | 10.13 | 7.46 | 8.60 | 6.75 | 5.25 | 6.46 | 0.23 | 0.045 | |
0.95 a | 0.74 ab | 0.84 ab | 0.67 b | 0.63 b | 0.67 b | ||||
Average Duration of 1st E1 (minutes) | 0.34 | 0.43 | 0.42 | 0.48 | 0.50 | 0.59 | 0.09 | <0.001 | |
−0.50 a | −0.38 bc | −0.41 ab | −0.36 bcd | −0.33 bcd | −0.27 d | ||||
Non- probing | Median Np Time (minutes) | 8.99 | 6.86 | 12.61 | 10.67 | 18.17 | 19.80 | 0.28 | 0.035 |
0.69 b | 0.75 b | 0.90 ab | 0.65 b | 0.80 ab | 1.07 a |
Mortality | Nil_E | SE | AR1 | AR37 | NEA2 | NEA6 | Average Mortality a | LSD | p-Value b |
---|---|---|---|---|---|---|---|---|---|
Nymph mortality (24 h) | 0/24 (0.00) | 1/24 (0.04) | 0/24 (0.00) | 1/24 (0.04) | 3/24 (0.13) | 1/24 (0.04) | 0.05 (0.097) | 0.10 | 0.232 |
Nymph mortality (48 h) | 0/24 (0.00) | 3/24 (0.13) | 1/24 (0.04) | 3/24 (0.13) | 0/24 (0.00) | 0/24 (0.00) | 0.06 (0.103) | 0.10 | 0.042 |
Nymph mortality (72 h) | 0/24 (0.00) | 0/24 (0.00) | 0/24 (0.00) | 0/24 (0.00) | 0/24 (0.00) | 0/24 (0.00) | 0.00 (0.000) | 0.00 | 1.000 |
Nymph mortality (>72 h) | 2/24 (0.08) | 4/24 (0.17) | 4/24 (0.17) | 4/24 (0.17) | 1/24 (0.04) | 5/24 (0.21) | 0.15 (0.161) | 0.19 | 0.477 |
Nymph mortality (total) | 2/24 (0.08) | 8/24 (0.33) | 5/24 (0.21) | 8/24 (0.33) | 4/24 (0.17) | 6/24 (0.25) | 0.26 (0.197) | 0.23 | 0.223 |
Adult mortality (14 days) | 0/24 (0.00) | 3/24 (0.13) | 5/24 (0.21) | 3/24 (0.13) | 2/24 (0.08) | 3/24 (0.13) | 0.13 (0.154) | 0.17 | 0.163 |
Adult mortality (21 days) | 2/24 (0.08) | 4/24 (0.17) | 2/24 (0.08) | 1/24 (0.04) | 4/24 (0.17) | 3/24 (0.13) | 0.12 (0.144) | 0.18 | 0.658 |
Adult mortality (28 days) | 2/24 (0.08) | 2/24 (0.08) | 3/24 (0.13) | 2/24 (0.08) | 2/24 (0.08) | 0/24 (0.00) | 0.08 (0.118) | 0.15 | 0.472 |
Adult mortality (>28 days) | 18/24 (0.75) | 7/24 (0.29) | 9/24 (0.38) | 10/24 (0.42) | 12/24 (0.50) | 12/24 (0.50) | 0.42 (0.222) | 0.27 | 0.031 |
Adult mortality (total) | 22/24 (0.92) | 16/24 (0.67) | 19/24 (0.79) | 16/24 (0.67) | 20/24 (0.83) | 18/24 (0.75) | 0.74 (0.206) | 0.23 | 0.223 |
Fecundity (All Aphids) | Nil_E (n = 21) | SE (n = 16) | AR1 (n = 20) | AR37 (n = 18) | NEA2 (n = 20) | NEA6 (n = 18) | Average Fecundity a | Standard Error | LSD | p-Value b |
---|---|---|---|---|---|---|---|---|---|---|
Fecundity (14 days) | 14.3 | 9.1 | 10.2 | 8.8 | 8.8 | 10.3 | 9.4 | 1.6 | 3.4 | 0.003 |
Fecundity (21 days) | 20.6 | 14.3 | 15.2 | 14.6 | 14.2 | 16.8 | 15 | 2.4 | 4.7 | 0.041 |
Fecundity (28 days) | 21.4 | 15.9 | 17.1 | 16.8 | 15.5 | 18.0 | 16.7 | 2.6 | 5.2 | 0.207 |
Intrinsic rate of increase (rm) | 0.33 | 0.26 | 0.26 | 0.24 | 0.28 | 0.30 | 0.27 | 0.03 | 0.06 | 0.057 |
EPG Metric | Nymph Mortality | Adult Mortality | Fecundity | rm |
---|---|---|---|---|
PROBING | ||||
Number of Potential Drops | −0.25 | 0.25 | 0.50 | 0.19 |
Sum of Potential Drop Time (minutes) | −0.28 | 0.28 | 0.49 | 0.20 |
Percentage of Probe Time in C | −0.60 | 0.60 | 0.79 | 0.53 |
Sum of C Time (minutes) | −0.55 | 0.55 | 0.69 | 0.46 |
FEEDING | ||||
Number of E1 Events | −0.31 | 0.31 | 0.60 | 0.31 |
Number of E2 Events | −0.44 | 0.44 | 0.72 | 0.44 |
Average Duration of 1st E1 (minutes) | 0.32 | 0.32 | −0.48 | −0.12 |
NON-PROBING | ||||
Median Np Time (minutes) | −0.19 | 0.19 | −0.07 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collinson, N.P.; Giri, K.; Kaur, J.; Spangenberg, G.; Malipatil, M.; Mann, R.C.; Valenzuela, I. Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi. Insects 2024, 15, 744. https://doi.org/10.3390/insects15100744
Collinson NP, Giri K, Kaur J, Spangenberg G, Malipatil M, Mann RC, Valenzuela I. Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi. Insects. 2024; 15(10):744. https://doi.org/10.3390/insects15100744
Chicago/Turabian StyleCollinson, Nicholas Paul, Khageswor Giri, Jatinder Kaur, German Spangenberg, Mallik Malipatil, Ross Cameron Mann, and Isabel Valenzuela. 2024. "Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi" Insects 15, no. 10: 744. https://doi.org/10.3390/insects15100744
APA StyleCollinson, N. P., Giri, K., Kaur, J., Spangenberg, G., Malipatil, M., Mann, R. C., & Valenzuela, I. (2024). Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi. Insects, 15(10), 744. https://doi.org/10.3390/insects15100744