Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Survey Design
2.1.1. Description
2.1.2. Data Collection
2.2. Biochemical Analysis of CRM-Infested Mandarins
2.2.1. Description
2.2.2. Laboratory Procedures
2.3. Experimental Evaluation of A. largoensis
Description
2.4. Statistical Analysis
- Ne is the number of prey consumed;
- a is the attack rate (i.e., the rate at which the predator encounters and attacks prey);
- N is the prey density;
- Th is the handling time (i.e., the time spent capturing, killing, and consuming a single prey item) [20].
- y is the number of eggs laid by each female A. largoensis;
- x is the prey density;
- a represents the maximum potential egg production rate;
- b is the prey density at which half the maximum egg production rate is achieved.
3. Results
3.1. Ecological Niche and Distribution Pattern
3.2. Changes in Ingredients of CRM-Infested Mandarins
3.2.1. Vitamin C Content
3.2.2. Soluble Solids and Sugar Content
3.2.3. Total Acidity
3.2.4. Mineral Content (Zinc, Calcium, Manganese)
3.3. Efficacy of A. largoensis in Controlling CRMs
3.3.1. Predation Rates
3.3.2. Reproductive Output
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarada, G.; Nagalakshmi, T.; Gopal, K.; Yuvaraj, K. Citrus rust mite (Phyllocoptruta oleivora Ashmead): A review. J. Entomol. Zool. Stud. 2018, 6, 151–158. [Google Scholar]
- Allen, J.C. The effect of citrus rust mite damage on citrus fruit drop. J. Econ. Entomol. 1978, 71, 746–750. [Google Scholar] [CrossRef]
- Demard, E.; Qureshi, J.A. Citrus Rust Mite Phyllocoptruta oleivora (Ashmead) (Arachnida: Acari: Eriophyidae): EENY748/IN1278, 2/2020. EDIS. 2020. Available online: https://edis.ifas.ufl.edu/ (accessed on 20 September 2024).
- Puspitarini, R.D.; Endarto, O. Notes on the Citrus Rust Mite, Phyllocoptruta oleivora (Ashmead), as a Major Pest of Citrus in Indonesia. Agrivita 2021, 43, 550–557. [Google Scholar] [CrossRef]
- Mahmood, S.U.; Bashir, M.H.; Muhammad Abrar, M.A.; Sabri, M.A.; Khan, M.A. Appraising the changes in the nutritional value of stored wheat, Triticum aestivum L. infested with acarid mite, Rhizoglyphus tritici (Acari: Acaridae). Pak. J. Zool. 2013, 45, 1257–1261. [Google Scholar]
- Putnik, P.; Barba, F.J.; Lorenzo, J.M.; Gabrić, D.; Shpigelman, A.; Cravotto, G.; Bursać Kovačević, D. An integrated approach to mandarin processing: Food safety and nutritional quality, consumer preference, and nutrient bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1345–1358. [Google Scholar] [CrossRef]
- Cass, B.N.; Hack, L.M.; Grafton-Cardwell, E.E.; Rosenheim, J.A. Impacts of fruit-feeding arthropod pests on oranges and mandarins in California. J. Econ. Entomol. 2019, 112, 2268–2277. [Google Scholar] [CrossRef]
- Kalita, H.; Avasthe, R.; Kishore, K.; Rameash, K.; Gopi, R. Biorational management of insect pests in Mandarin, Citrus reticulata. Indian J. Plant Prot. 2015, 43, 514–517. [Google Scholar]
- McMurtry, J.; Croft, B. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. of Entomol. 1997, 42, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef]
- Argolo, P.S.; Revynthi, A.M.; Canon, M.A.; Berto, M.M.; Andrade, D.J.; Döker, İ.; Roda, A.; Carrillo, D. Potential of predatory mites for biological control of Brevipalpus yothersi (Acari: Tenuipalpidae). Biol. Control 2020, 149, 104330. [Google Scholar] [CrossRef]
- Melo, J.W.; Lima, D.B.; Staudacher, H.; Silva, F.; Gondim, M.; Sabelis, M. Evidence of Amblyseius largoensis and Euseius alatus as biological control agent of Aceria guerreronis. Exp. Appl. Acarol. 2015, 67, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Donkersley, P.; Silva, F.W.; Carvalho, C.M.; Al-Sadi, A.M.; Elliot, S.L. Biological, environmental and socioeconomic threats to citrus lime production. J. Plant Dis. Prot. 2018, 125, 339–356. [Google Scholar] [CrossRef]
- McCoy, C. Pathogens of eriophyoid mites. In World Crop Pests; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 481–490. [Google Scholar]
- Vacante, V. Citrus Mites; CABI: Wallingford, UK, 2010. [Google Scholar]
- Gutierrez, A.; Messenger, P.S.; van den Bosch, R. An Introduction to Biological Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vacante, V. Review of the phytophagous mites collected on citrus in the world. Citrus Trattato Di Agrumic. 2010, 50, 221–241. [Google Scholar] [CrossRef]
- FAO. Standard for Limes CXS 213-1999; Codex Alimentarius; FAO: Rome, Italy, 1999. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Overmeer, W. Distorted sex ratio control in the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). Z. Angew. Entomol. 1981, 91, 124–130. [Google Scholar] [CrossRef]
- Holling, C.S. The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Juliano, S.A.; Gravel, M.E. Predation and the evolution of prey behavior: An experiment with tree hole mosquitoes. Behav. Ecol. 2002, 13, 301–311. [Google Scholar] [CrossRef]
- Hecht, S.W. Interacting Biotic and Abiotic Effects on Predatory and Phytophagous Mite Species in the Citrus Orchard; University of Haifa: Haifa, Israel, 2019. [Google Scholar]
- Bergh, J. Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in central Florida. Environ. Entomol. 2001, 30, 318–326. [Google Scholar] [CrossRef]
- Qureshi, J.; Stelinski, L.L.; Martini, X.; Diepenbrock, L.M. 2020–2021 Florida Citrus Production Guide: Rust Mites, Spider Mites, and other Phytophagous Mites: Chapter 25, ENY-603/CG002, rev. 3/2020. EDIS. 2020. Available online: https://journals.flvc.org/edis/article/view/121141 (accessed on 11 January 2024).
- Fahim, S.F.; Abdel-Khalek, A.A. Development and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) feeding on two eriophyoid mites. Persian J. Acarol. 2022, 11, 483–496. [Google Scholar]
- Lira, V.d.A.; Jumbo, L.O.V.; de Freitas, G.S.; Rêgo, A.S.; Galvão, A.S.; Teodoro, A.V. Efficacy of Amblyseius largoensis (Muma) as a biocontrol agent of the red palm mite Raoiella indica (Acari: Tenuipalpidae). Phytoparasitica 2021, 49, 103–111. [Google Scholar] [CrossRef]
- Yilmaz, B.; Cimen, B.; Zarifikhosroshahi, M.; Yesiloglu, T.; Incesu, M.; Kafkas, E. Fruit quality and biochemical characteristics of some early ripening mandarin varieties. Fruits 2020, 75, 145–152. [Google Scholar] [CrossRef]
- Aftab, M.; Khan, M.; Habib, U.; Ahmad, M. Biopesticide application on kinnow mandarin (Citrus reticulata Blanco) with improved pruning can enhance cosmetic and physical characters in fruit. Appl. Ecol. Environ. Res. 2021, 19, 5033–5044. [Google Scholar] [CrossRef]
- Ayba, L.; Kulava, L.; Karpun, N.; Konnov, N.; Belous, O.; Filippova, S. Changes in the biochemical components of mandarin fruits after pest control in the Republic of Abkhazia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Cheboksary, Russia, 16 April 2021; p. 012009. [Google Scholar]
- Paladin Soče, I.; Mračić Rajič, I.; Juran, I.; Šimala, M.; Gotlin Čuljak, T.; Skendrović Babojelić, M. Influence of the quarantine pest Aleurocantus spiniferus (quaintance, 1903) (Hemiptera: Aleyrodidae) on pomological and physicochemical properties of citrus unshiu. Appl. Ecol. Environ. Res. 2022, 20, 5183–5196. [Google Scholar] [CrossRef]
- Puspitarini, R.D.; Endarto, O. New Record of Citrus Rust Mite, Phyllocoptruta oleivora Ashmead on Citrus in three Provinces of Indonesia. Agrivita 2021, 43, 639. [Google Scholar]
- de Morais, M.R.; Innocente, L.C.P.; Zanardi, O.Z.; de Andrade, D.J. Occurrence of Tegolophus brunneus and Phyllocoptruta oleivora (Acari: Eriophyidae) on the main citrus belt of Brazil and the differential toxicity of the acaricides to these species. Exp. Appl. Acarol. 2023, 91, 603–613. [Google Scholar] [CrossRef]
- Urbaneja, A.; Grout, T.G.; Gravena, S.; Wu, F.; Cen, Y.; Stansly, P.A. Citrus pests in a global world. In The Genus Citrus; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–348. [Google Scholar]
- Rincón-Barón, E.J.; Torres-Rodríguez, G.A.; Guerra-Sierra, B.E. Histopathological aspects in ripe fruits of Tahiti lime Citrus citrus x latifolia (Rutaceae) affected by phytophagous mites. Pers. J. Acarol. 2022, 11, 713–729. [Google Scholar]
- Radonjić, S.; Hrnčić, S. Overview of the Arthropod Pests of Citrus Plants in Montenegro. Acta Zool. Bulg. 2020, 72, 635. [Google Scholar]
- Biško, A.; Poljak, M.; Benčić, Đ.; Brus, K.; Ivić, D.; Čoga, L. Citrus fruit cultivation in the Republic of Croatia. Alb. J. Agric. Sci. 2021, 20, 11–19. [Google Scholar]
- Pascual-Ruiz, S.; Aguilar-Fenollosa, E.; Ibáñez-Gual, V.; Hurtado-Ruiz, M.A.; Martínez-Ferrer, M.T.; Jacas, J.A. Economic threshold for Tetranychus urticae (Acari: Tetranychidae) in clementine mandarins Citrus clementina. Exp. Appl. Acarol. 2014, 62, 337–362. [Google Scholar] [CrossRef]
- Childers, C.C.; Rodrigues, J.C. An overview of Brevipalpus mites (Acari: Tenuipalpidae) and the plant viruses they transmit. Zoosymposia 2011, 6, 180–192. [Google Scholar] [CrossRef]
- Vermaak, M.; Ueckermann, E.A.; Veldtman, R.; Addison, P. An overview of mites on grapevine and the discovery of a new Phytoseiidae species: Typhlodromus (Typhlodromus) spiceae. S. Afr. J. Enol. Vitic. 2021, 42, 91–99. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Xiao, Y.; Nesbitt, M.; Childers, C.C. Diversity and seasonal abundance of predacious mites in Alabama Satsuma citrus. Ann. Entomol. Soc. Am. 2009, 102, 617–628. [Google Scholar] [CrossRef]
- Fiaboe, K.K.; Gondim, M.G., Jr.; Moraes, G.d.; Ogol, C.; Knapp, M. Surveys for natural enemies of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) in northeastern and southeastern Brazil. Zootaxa 2007, 1395, 33–58. [Google Scholar] [CrossRef]
- Aguilar-Fenollosa, E.; Pascual-Ruiz, S.; Hurtado, M.A.; Jacas, J.A. Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot. 2011, 30, 1328–1333. [Google Scholar] [CrossRef]
- Singh, S.; Reddy, P.; Deka, S. Sucking pests of Citrus. In Sucking Pests Crops; Springer: Singapore, 2020; pp. 481–515. [Google Scholar]
- Bacelar, E.; Pinto, T.; Anjos, R.; Morais, M.C.; Oliveira, I.; Vilela, A.; Cosme, F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. Plants 2024, 13, 1942. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Sci. Total Environ. 2020, 714, 136722. [Google Scholar] [CrossRef]
- Bureš, M.S.; Maslov Bandić, L.; Vlahoviček-Kahlina, K. Determination of bioactive components in mandarin fruits: A review. Crit. Rev. Anal. Chem. 2023, 53, 1489–1514. [Google Scholar] [CrossRef] [PubMed]
- Borredá, C.; Perez-Roman, E.; Talon, M.; Terol, J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC Plant Biol. 2022, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Villamil, D.A.; Balaguera-López, H.E.; Álvarez-Herrera, J.G. Brassinosteroids improve postharvest quality, antioxidant compounds, and reduce chilling injury in ‘Arrayana’mandarin fruits under cold storage. Horticulturae 2023, 9, 622. [Google Scholar] [CrossRef]
- Solomon, M.E. The natural control of animal populations. J. Anim. Ecol. 1949, 18, 1–35. [Google Scholar] [CrossRef]
- Shipp, J.L.; Whitfield, G.H. Functional response of Phytoseiulus persimilis to two-spotted spider mites (Tetranychus urticae) on cucumber at 20 °C and 30 °C. Environ. Entomol. 1991, 20, 694–699. [Google Scholar] [CrossRef]
- De Clercq, P.; Bonte, M.; Van Speybroeck, K.; Bolckmans, K.; Deforce, K. Development and predation by Podisus maculiventris on eggs of the Colorado potato beetle. Bio. Control 2000, 18, 65–71. [Google Scholar] [CrossRef]
- Badii, M.H.; Hernández-Ortiz, E.; Flores, A.E.; Landeros, J. Preference and functional response of Euseius hibisci to various stages of Oligonychus perseae. Exp. Appl. Acarol. 2004, 32, 119–128. [Google Scholar]
- Xiao, Y.; Fadamiro, H.Y. Evaluation of functional response and prey-stage preference of Phytoseiulus persimilis (Acari: Phytoseiidae) on two spotted spider mite. Biol. Control 2010, 52, 143–150. [Google Scholar]
- Carrillo, D.; Pena, J.E. Functional and numerical responses of Neoseiulus californicus (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae). Exp. Appl. Acarol. 2012, 57, 361–372. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Holling, C.S. Principles of insect predation. Annu. Rev. Entomol. 1961, 6, 163–182. [Google Scholar] [CrossRef]
- Holling, C.S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 1965, 45, 3–60. [Google Scholar] [CrossRef]
- Koehler, H.H. Predatory mites (Gamasina, Mesostigmata). Their biology, ecology, and use in biological control. Agric. Ecosyst. Environ. 1999, 74, 395–410. [Google Scholar] [CrossRef]
- Mahmood, S.U.; Mao, R.; Ul Haq, I.; Fang, X. Eriophyid mites in fruit crops: Biology, ecology, molecular aspects, and innovative control strategies. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13781. [Google Scholar] [CrossRef]
- Li, N.; Sun, J.T.; Yin, Y.; Hong, X.Y.; Xue, X.F. Global patterns and drivers of herbivorous eriophyoid mite species diversity. J. Biogeogr. 2023, 50, 330–340. [Google Scholar] [CrossRef]
- Skoracka, A.; Smith, L.; Oldfield, G.; Cristofaro, M.; Amrine, J.W. Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Exp. Appl. Acarol. 2010, 51, 93–113. [Google Scholar] [CrossRef] [PubMed]
Citrus Tree Position | CRM Population on 24 November (Mean ± SD) | CRM Population on 01 February (Mean ± SD) | PM Population on 24 November (Mean ± SD) | PM Population on 1 February (Mean ± SD) |
---|---|---|---|---|
East (Outer Leaf) | 0.87 ± 2.10 | 18.53 ± 39.55 | 0.00 ± 0.00 | 0.00 ± 0.00 |
East (Inner Leaf) | 0.6 ± 1.12 | 9.93 ± 18.39 | 0.00 ± 0.00 | 0.00 ± 0.00 |
North (Outer Leaf) | 11.8 ± 21.07 | 17.4 ± 18.70 | 0.00 ± 0.00 | 0.07 ± 0.26 |
North (Inner Leaf) | 1.07 ± 2.46 | 44.47 ± 59.84 | 0.13 ± 0.52 | 0.00 ± 0.00 |
West (Outer Leaf) | 7.6 ± 23.18 | 36.6 ± 92.10 | 0.00 ± 0.00 | 0.00 ± 0.00 |
West (Inner Leaf) | 3.8 ± 11.28 | 12.67 ± 41.12 | 0.00 ± 0.00 | 0.13 ± 0.52 |
South (Outer Leaf) | 0.13 ± 0.35 | 1.4 ± 1.80 | 0.00 ± 0.00 | 0.00 ± 0.00 |
South (Inner Leaf) | 0.6 ± 1.12 | 1.87 ± 2.61 | 0.13 ± 0.52 | 0.00 ± 0.00 |
Top Canopy Leaf | 2.53 ± 9.81 | 2 ± 4.52 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Mid Canopy Leaf | 16.33 ± 56.15 | 4.93 ± 8.73 | 0.00 ± 0.00 | 0.07 ± 0.26 |
Bottom Canopy Leaf | 1.33 ± 4.37 | 8.67 ± 16.12 | 0.00 ± 0.00 | 0.07 ± 0.26 |
Citrus Tree Position | Temperature (°C) 24 November (Mean ± SD) | Temperature (°C) 1 February (Mean ± SD) | Relative Humidity (%) 24 November (Mean ± SD) | Relative Humidity (%) 1 February (Mean ± SD) |
---|---|---|---|---|
East (Outer Leaf) | 27.01 ± 2.87 | 20.79 ± 0.89 | 52.17 ± 14.06 | 61.66 ± 3.28 |
East (Inner Leaf) | 27.07 ± 3.02 | 21.12 ± 1.06 | 52.06 ± 13.87 | 65.65 ± 3.23 |
North (Outer Leaf) | 27.17 ± 3.08 | 20.07 ± 0.36 | 52.48 ± 13.72 | 65.64 ± 2.39 |
North (Inner Leaf) | 27.11 ± 2.97 | 19.99 ± 0.34 | 52.33 ±13.95 | 64.95 ± 1.41 |
West (Outer Leaf) | 26.98 ± 2.87 | 19.88 ± 0.19 | 52.24 ± 14.05 | 65.98 ±1.54 |
West (Inner Leaf) | 26.84 ± 2.68 | 19.58 ± 0.21 | 53.57 ± 13.16 | 64.96 ± 1.78 |
South (Outer Leaf) | 27.03 ± 2.96 | 18.96 ± 0.30 | 53.15 ± 13.67 | 66.47 ± 1.55 |
South (Inner Leaf) | 27.04 ± 2.83 | 19.02 ± 0.23 | 53.33 ± 13.31 | 68.95 ± 3.14 |
Top Canopy Leaf | 27.19 ± 2.96 | 21.95 ± 1.44 | 52.97 ± 13.64 | 62.74 ± 3.73 |
Mid Canopy Leaf | 27.42 ± 2.78 | 23.72 ± 0.66 | 53.34 ± 13.98 | 59.32 ± 3.61 |
Bottom Canopy Leaf | 27.41 ± 2.80 | 22.59 ± 0.79 | 50.49 ± 13.31 | 58.27 ± 1.80 |
Treatment | Vitamin C (mg/100 g) | Soluble Solids (%) | Soluble Sugar (%) | Total Acid (g/kg) | Zn (mg/kg) | Ca (mg/kg) | Mn (mg/kg) |
---|---|---|---|---|---|---|---|
A (Control) | 19.27 ± 1.75 a | 11.07 ± 0.38 a | 9.03 ± 0.32 a | 6.08 ± 1.34 a | 51.57 ± 1.98 a | 265.33 ± 15.98 a | 106.7 ± 14.99 a |
B (11 to 50%) | 18.37 ± 2.53 a | 10.5 ± 0.36 a | 8 ± 0.1 a | 7.66 ± 1.15 a | 50.20 ± 5.04 a | 174.67 ± 31.51 b | 93.57 ± 5.77 a |
C (Above 50%) | 19.3 ± 1.1 a | 10.73 ± 0.35 a | 8.9 ± 0.56 a | 6.97 ±1.82 a | 59.73 ± 12.07 a | 278.33 ± 35.13 a | 102.3 ± 8.86 a |
D (above 90%) | 18.467 ± 1.43 a | 10.67 ± 0.64 a | 8.77 ± 0.61 a | 7.16 ± 1.17 a | 56.7 ± 7.03 a | 301 ± 35.04 a | 104.83 ± 5.37 a |
P (ANOVA) | 0.8673 | 0.51 | 0.0822 | 0.5921 | 0.4192 | 0.0044 ** | 0.41 |
Parameter | Estimate | SE | t | p |
---|---|---|---|---|
Intercept | 1.230 | 0.350 | 1.985 | 0.0785 |
Linear (b) | −0.474 | 0.92 | 2.862 | 0.0187 |
Quadratic (c) | 0.32 | 0.006 | 3.015 | 0.0146 |
Cubic (d) | −0.001 | 0.000 | 2.753 | 0.0224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.U.; Huang, X.; Mao, R.; Hao, H.; Fang, X. Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis. Insects 2024, 15, 837. https://doi.org/10.3390/insects15110837
Mahmood SU, Huang X, Mao R, Hao H, Fang X. Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis. Insects. 2024; 15(11):837. https://doi.org/10.3390/insects15110837
Chicago/Turabian StyleMahmood, Syed Usman, Xiaoyi Huang, Runqian Mao, Huihua Hao, and Xiaoduan Fang. 2024. "Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis" Insects 15, no. 11: 837. https://doi.org/10.3390/insects15110837
APA StyleMahmood, S. U., Huang, X., Mao, R., Hao, H., & Fang, X. (2024). Integrated Biological Control Strategies for Citrus Rust Mites: Distribution, Impact on Mandarin Quality, and the Efficacy of Amblyseius largoensis. Insects, 15(11), 837. https://doi.org/10.3390/insects15110837