Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design: Technological Realization in Manufacturing, Packaging, and Storage
2.2. Preparation of the Inocula (Microorganisms) and Inoculation of the Sausage Slices
2.3. Methods
2.3.1. Nutrient Analysis
2.3.2. Fatty Acid Analysis
2.3.3. Physicochemical Analysis
2.3.4. Sensory Analysis
2.3.5. Microbiological Analysis
2.4. Statistical Analysis
3. Results
3.1. Analysis of the Unprocessed Insect Larvae
3.1.1. Nutrient Analysis
3.1.2. Fatty Acid Analysis
3.1.3. Microbiological Analysis
3.2. Analysis of the Cooked Sausages After Production and During Storage in Modified Atmosphere Packages
3.2.1. Nutrient Analysis of the Cooked Sausages After Production
3.2.2. Fatty Acid Analysis of the Cooked Sausages After Production
3.2.3. Physicochemical Analysis
Cooking Loss of the Cooked Sausages After Production
Textural Profile Analysis of the Cooked Sausages After Production
Color Analysis
- Cooked sausages after production
- Cooked sausages during storage in modified atmosphere packages.
Water Activitiy (aw-Value), pH Value and Antioxidant Capacity
- Cooked sausages after production
- Cooked sausages during storage in modified atmosphere packages
3.2.4. Sensory Analysis of the Cooked Sausages During Storage in Modified Atmosphere Packages
3.2.5. Microbiological Analysis of the Cooked Sausages After Production
Detection of the Total Viable Number of Microorganisms (TVC) and B. cereus in the Cooked Sausages During Storage in Modified Atmosphere Packages
Inoculation Experiments of the Cooked Sausages During Storage in Modified Atmosphere Packages
3.3. Analysis of the Cooked Sausages (Impact of the Animal Meat Source)
3.3.1. Nutrient Analysis
3.3.2. Fatty Acid Analysis
3.3.3. Physicochemical Analysis
4. Discussion
4.1. Native Insect Larvae
4.2. Cooked Sausages (Impact of the Insect Species, Insect Concentration, and Their Interaction)
4.2.1. Nutrient Analysis
4.2.2. Fatty Acid Analysis
4.2.3. Physicochemical Analysis
4.2.4. Sensory Analysis
4.2.5. Microbiological Analysis
4.3. Cooked Sausages (Impact of the Meat Source (Turkey Meat or Pork))
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boland, M.J.; Rae, A.N.; Vereijken, J.M.; Meuwissen, M.P.M.; Fischer, A.R.H.; van Boekele, M.A.J.S.; Rutherfurd, S.M.; Gruppen, H.; Moughan, P.J.; Hendriks, W.H. The future supply of animal-derived protein for human consumption. Food Sci. Technol. 2013, 29, 62–73. [Google Scholar] [CrossRef]
- United Nations. Global Issues, Population, Our Growing Population. Available online: https://www.un.org/en/global-issues/population#:~:text=Our%20growing%20population&text=The%20world%27s%20population%20is%20expected,billion%20in%20the%20mid%2D2080s (accessed on 11 June 2024).
- Kozlu, A.; Ngasakul, N.; Klojdová, I.; Baigts-Allende, D.K. Edible insect-processing techniques: A strategy to develop nutritional food products and novelty food analogs. Eur. Food Res. Technol. 2024, 250, 1253–1267. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B.; Maya, C.; Roos, N. Nutritional Qualities and Enhancement of Edible Insects. Annu. Rev. Nutr. 2021, 41, 551–576. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-S.; Kim, T.-K.; Choi, H.-D.; Park, J.-D.; Sung, J.-M.; Jeon, K.-H.; Paik, H.-D.; Kim, Y.-B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef]
- Anzani, C.; Boukid, F.; Drummond, L.; Mullena, A.M.; Álvareza, C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Res. Int. 2020, 137, 109575. [Google Scholar] [CrossRef]
- Adámková, A.; Kouřimská, L.; Borkovcová, M.; Kulma, M.; Mlček., J. Nutritional values of edible coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic, Potravinarstvo®. Sci. J. Food Ind. 2016, 10, 663–671. [Google Scholar] [CrossRef]
- Yu, X.; He, Q.; Wang, D. Dynamic Analysis of Major Components in the Different Developmental Stages of Tenebrio molitor. Front. Nutr. 2021, 8, 689746. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- DeFoliart, G. Insects as human food. Crop Prot. 1992, 11, 395–399. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.-B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Akullo, J.; Agea, J.G.; Obaa, B.B.; Okwee-Acai, J.; Nakimbugwe, D. Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int. Food Res. J. 2018, 25, 159–165. [Google Scholar]
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Kim, H.W.; Choi, Y.S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Federal Environmental Agency, Dessau-Roßlau. Brochure: Trend Report on the Assessment of the Environmental Impact of Plant-Based Meat Substitutes-Edible Insects Insects and In Vitro Meatlooking to the Future: Meat of the Future, August 2019. Available online: https://www.umweltbundesamt.de/publikationen/die-zukunft-im-blick-fleisch-der-zukunft (accessed on 4 May 2024).
- Schoesler, H.; de Boer, J.; Boersema, J.J. Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 2012, 58, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Martins, Y.; Pliner, P. “Ugh! That’s disgusting!” Identification of the characteristics of foods underlying rejections based on disgust. Appetite 2006, 46, 75–85. [Google Scholar] [CrossRef]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Ardila, P.; Honrado, A.; Marquina, P.; Beltrán, J.A.; Calanche, J.B. Innovative Plant-Based Burger Enriched with Tenebrio molitor Meal: Characterization and Shelf-Life. Foods 2023, 12, 3460. [Google Scholar] [CrossRef]
- Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules 2022, 27, 6155. [Google Scholar] [CrossRef]
- Aguilar-Miranda, E.D.; López, M.G.; Escamilla-Santana, C.; Barba de la Rosa, A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002, 50, 192–195. [Google Scholar] [CrossRef]
- Banjo, A.D.; Lawal, O.A.; Adeyemi, A.I. The microbial fauna associated with the larvae of Oryctes monocerus. J. Appl. Sci. Res. 2006, 2, 837–843. [Google Scholar]
- Fasolato, L.; Cardazzo, B.; Carraro, L.; Fontana, F.; Novelli, E.; Balzan, S. Edible processed insects from e-commerce: Food safety with a focus on the Bacillus cereus group. Food Microbiol. 2018, 76, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, N.T.; Klein, G. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci. Technol. Int. 2017, 23, 17–23. [Google Scholar] [CrossRef]
- Frentzel, H.; Kelner-Burgos, Y.; Fischer, J.; Heise, J.; Göhler, A.; Wichmann-Schauer, H. Occurrence of selected bacterial pathogens in insect-based food products and in-depth characterisation of detected Bacillus cereus group isolates. Int. J. Food Microbiol. 2022, 379, 109860. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. J. Food Sci. 2017, 82, 2757–2793. [Google Scholar] [CrossRef]
- Kim, T.-K.; Lee, M.H.; Yong, H.I.; Jung, S.; Paik, H.-D.; Jang, H.W.; Choi, Y.-S. Effect of Interaction between Mealworm Protein and Myofibrillar Protein on the Rheological Properties and Thermal Stability of the Prepared Emulsion Systems. Foods 2020, 9, 1443. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; de Pril, I.; van de Voorde, I.; Fraeye, I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods 2023, 12, 4090. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jones, B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins; United States Department of Agriculture: Washington, DC, USA, 1941; Volume 18. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Boulos, S.; Taennler, A.; Nystroem, L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia Illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Kroencke, N.; Benning, R. Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects 2022, 13, 560. [Google Scholar] [CrossRef]
- Syahrulawal, L.; Torske, M.O.; Sapkota, R.; Næss, G.; Khanal, P. Improving the nutritional values of yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) larvae as an animal feed ingredient: A review. J. Anim. Sci. Biotechnol. 2023, 14, 146. [Google Scholar] [CrossRef]
- Siemonowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Jedras, M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci. 2013, 4, 287–291. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Fröhling, A.; Reineke, K.; Knorr, D.; Boguslawski, S.; Ehlbeck, J.; Schlüter, O. Comparison of volumetric and surface decontamination techniques for innovative processing of mealworm larvae (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2014, 26, 232–241. [Google Scholar] [CrossRef]
- Ivanova, S.; Marinova, G.; Batchvarov, V. Comparison of fatty acid composition of various types of edible oils. Bulg. J. Agric. Sci. 2016, 22, 849–856. [Google Scholar]
- Kralik, G.; Margeta, V.; Suchý, P.; Straková, E. Effects of Dietary Supplementation with Rapeseed and Linseed Oil on the Composition of Fatty Acids in Porcine Muscle Tissue. Acta Vet. Brno 2010, 79, 363–367. [Google Scholar] [CrossRef]
- Costache, M.; Custură, I.; Tudorache, M.; Vanthe, I. Nutritional Value Of Meat As Seen Through The Various Poultry Food Species—A Comparative Analysis With A Focus On Proteins, Fatty Acids And Mineral Content. Scientific Papers. Ser. D Anim. Sci. 2019, LXII, 1. [Google Scholar]
- Mattioli, S.; Fratini, F.; Cacchiarelli, C.; Martinis, V.; Tuccinardi, T.; Paci, G.; Mancini, S. Chemical composition, fatty acid profile, antioxidant content, and microbiological loads of lesser mealworm, mealworm, and superworm larvae. Ital. J. Anim. Sci. 2024, 23, 125–137. [Google Scholar] [CrossRef]
- Layé, S. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot. Essent. Fat. Acids (PLEFA) 2010, 82, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Institute of Food Process Engineering (KIT), Karlsruhe, Dr.-Ing. Ulrike van der Schaaf, Launch Date 2010, Final Date 2013, Allipids—Preventive Foods Based on Health-Promoting Lipids, Unpublished Data. Available online: https://lvt.blt.kit.edu/1217_1035.php (accessed on 7 May 2024).
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef] [PubMed]
- Wynants, E.; Crauwels, S.; Lievens, B.; Luca, S.; Claes, J.; Borremans, A.; Bruyninckx, L.; can Campenhout, I. Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2017, 42, 8–15. [Google Scholar] [CrossRef]
- Ng, K.; Xu, D.; Tran, J.; Channon, H.A.; Dunshea, F.R.; Nutritional Composition of Australian Pork 3B-112. Report Prepared for the Co-Operative Research Centre for High Integrity of Australian Pork 2016, Australian Government, Department of Industry, Innovation and Science, Business Cooperative Research Centres Programme. Available online: https://porkcrc.com.au/wp-content/uploads/2016/02/3B-112-Report-Final.pdf (accessed on 31 July 2024).
- Barbin, D.F.; Badaró, A.T.; Honorato, D.C.B.; Ida, E.Y.; Shimokomaki, M. Identification of turkey meat and processed products using near infrared spectroscopy. Food Control 2020, 7, 106816. [Google Scholar] [CrossRef]
- Park, Y.S.; Choi, Y.S.; Hwang, K.E.; Kim, T.K.; Lee, C.W.; Shin, D.M.; Han, S.G. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx mori) and Transglutaminase. Korean J. Food Sci. Anim. Res. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Amarender, R.V.; Bhargava, K.; Dossey, A.T.; Gamagedara, S. Lipid and protein extraction from edible insects—Crickets (Grylldiae). LWT Food Sci. Technol. 2020, 125, 109222. [Google Scholar] [CrossRef]
- Queiroz, L.S.; Nogueira Silva, N.F.; Jessen, F.; Mohammadifar, M.A.; Stephani, R.; de Carvalho, A.F.; Perrone, I.T.; Casanova, F. Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods. Heliyon 2023, 9, e14831. [Google Scholar] [CrossRef]
- Lisitsyn, A.B.; Chernukha, I.M.; Ivankin, A.N. Comparative study of fatty acid composition of meat material from various animal species. Sci. J. Anim. Sci. 2013, 2, 124–131. [Google Scholar]
- Scholliers, J.; Stehen, L.; Fraeye, I. Partial replacement of meat by superworm (Zophobas morio larvae) in cooked sausages: Effect of heating temperature and insect: Meat ratio on structure and physical stability. Innov. Food Sci. Emerg. Technol. 2020, 66, 102535. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. EFSA Panel of Nutrition, Novel Foods and Food Allergens (NDA). Safety of frozen and freeze-dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, 7325. [Google Scholar] [CrossRef]
- Sikes, A.L.; Tobin, A.B.; Tume, R.K. Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov. Food Sci. Emerg. Technol. 2009, 10, 405–412. [Google Scholar] [CrossRef]
- Han, X.; Li, B.; Puolanne, E.; Heinonen, M. Hybrid Sausages Using Pork and Cricket Flour: Texture and Oxidative Storage Stability. Foods 2023, 12, 1262. [Google Scholar] [CrossRef]
- Scholliers, J.; Steen, l.; Fraeye, I. Structure and physical stability of hybrid model systems containing pork meat and superworm (Zophobas morio larvae): The influence of heating regime and insect: Meat ratio. Innov. Food Sci. Emerg. Technol. 2020, 65, 102452. [Google Scholar] [CrossRef]
- Gao, Z.; Fang, Y.; Cao, Y.; Liao, H.; Nishinari, K.; Philipps, G.O. Hydrocolloid-food component interactions. Food Hydrocoll. 2017, 68, 149–156. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013, 4, 112–116. Available online: http://eprints.ugd.edu.mk/11460/ (accessed on 6 August 2024).
- Cruz-Lopez, S.O.; Alvarez-Cisneros, Y.M.; Dominguez-Soberanes, J.; Escalona-Buendia, H.B.; Sanchez, C.N. Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium purpurascens) Flour. Foods 2022, 11, 704. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, C.; Kong, B.; Sun, F.; Shen, X.; Yao, X.; Liu, Q. Pre-dried mealworm larvae flour could partially replace lean meat in frankfurters: Effect of pre-drying methods and replacement ratios. Meat Sci. 2022, 188, 108802. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Cruz, T.d.M.P.; da Silva, M.C.A. Cricket (Acheta domesticus) flour as meat replacer in frankfurters: Nutritional, technological, structural, and sensory characteristics. Innov. Food Sci. Emerg. Technol. 2023, 83, 103245. [Google Scholar] [CrossRef]
- Wendin, K.; Olsson, V.; Langton, M. Mealworms as Food Ingredient—Sensory Investigation of a Model System. Foods 2019, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Stoops, J.; Vandeweyer, D.; Crauwels, S.; Verreth, C.; Boeckx, H.; Van Der Borght, M.; Claes, J.; Lievens, B.; Van Campenhout, L. Minced meat-like products from mealworm larvae (Tenebrio molitor and Alphitobius diaperinus): Microbial dynamics during production and storage. Innov. Food Sci. Emerg. Technol. 2017, 41, 1–9. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuño, J.; Stratakos, A.C.; Linton, M.; Corcionivoschi, N.; Elliott, T.; Koidis, A.; Theodoridou, K. Impact of Thermal and High-Pressure Treatments on the Microbiological Quality and In Vitro Digestibility of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2020, 10, 682. [Google Scholar] [CrossRef]
- Lado, B.; Yousef, A.E. Characteristics of Listeria monocytogenes important to food processors. Ch 6. In Listeria, Listeriosis and Food Safety; Ryser, E.T., Marth, E.H., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2007; Volume 3, pp. 157–213. [Google Scholar] [CrossRef]
- Doyle, M.E.; Mazzotta, A.S.; Wang, T.; Wiseman, D.W.; Scott, V.N. Heat resistance of Listeria monocytogenes. J. Food Prot. 2001, 64, 410–429. [Google Scholar] [CrossRef]
- Benedict, R.C.; Partridge, T.; Wells, D.; Buchanan, R.L. Bacillus cereus: Aerobic Growth Kinetics. J. Food Prot. 1993, 56, 211–214. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.-G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef]
- Boler, D.D. Species of Meat Animals|Pigs. In Encyclopedia of Meat Sciences; Revision Article of Previous Article by Eikelenboom, G., Walstra, P., Huiskes, J.H., Klont, R.E.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 3, pp. 363–368. [Google Scholar] [CrossRef]
- Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022, 11, 3128. [Google Scholar] [CrossRef]
- Klettner, P.G. Influence of the pH value on different parameters of cooked sausage. Fleischwirtschaft 2002, 82, 122–124. [Google Scholar]
Groups/Recipes of Cooked Sausages | Alphitobius diaperinus | Tenebrio molitor | |||
---|---|---|---|---|---|
Control | A 10 | A 20 | T 10 | T 20 | |
Lean meat: pork shoulder 1 or turkey thigh 1 | 50.0 | 40.0 | 30.0 | 40.0 | 30.0 |
Pork fat 1 | 29.0 | 29.0 | 29.0 | 29.0 | 29.0 |
Water (frozen) 1 | 21.0 | 21.0 | 21.0 | 21.0 | 21.0 |
Alphitobius diaperinus 1 | 0 | 10.0 | 20.0 | 0 | 0 |
Tenebrio molitor 1 | 0 | 0 | 0 | 10.0 | 20.0 |
Curing salt (NaNO2) 1 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
Cutter additive, phosphate-based 1 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Spices 1,2 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 |
Nutritional Values in % and Microbial Parameters in log10 cfu/g | A. diaperinus Larvae | T. molitor Larvae | ||
---|---|---|---|---|
M | SD | M | SD | |
Ash content | 1.19 | 0.31 | 1.25 | 0.03 |
Lipid content | 6.84 b | 0.85 | 8.61 a | 0.70 |
Protein content 1 | 18.58 | 2.55 | 16.74 | 0.94 |
Dry matter | 27.86 | 3.13 | 29.49 | 1.08 |
Total water 2 | 72.14 | 3.13 | 70.51 | 1.08 |
TVC 3 | 6.09 | 1.89 | 4.35 | 1.88 |
Yeast/Fungi | 2.30 | 1.34 | 2.38 | 1.53 |
Fatty Acid | Insect Species (Larval Stadium) | |||
---|---|---|---|---|
Alphitobius diaperinus | Tenebrio molitor | |||
M | SD | M | SD | |
Lauric acid (12:0) | 0.05 b | 0.00 | 0.20 a | 0.01 |
Myristic acid (14:0) | 0.74 b | 0.08 | 2.91 a | 0.14 |
Palmitic acid (16:0) | 22.81 b | 0.64 | 14.33 a | 1.65 |
Stearic acid (18:0) | 7.55 a | 0.55 | 2.40 b | 0.47 |
SFAs (Saturated Fatty Acids) | 32.17 a | 1.03 | 20.19 b | 2.01 |
Palmitoleic acid (16:1) | 0.90 b | 0.31 | 1.78 a | 0.10 |
Oleic acid (18:1) | 39.30 | 2.48 | 41.75 | 5.44 |
MUFAs (Mono-unsaturated Fatty Acids) | 40.66 | 2.69 | 43.74 | 5.48 |
Linolelaidic acid (18:2, trans-9) | 0.08 | 0.02 | <0.005 | n.a. |
Linoleic acid (18:2, cis-9,12) | 25.11 b | 3.16 | 34.57 a | 7.20 |
Alpha-Linolenic acid (18:3, cis-9, 12, 15) | 1.11 | 0.52 | 1.36 | 0.38 |
Eicosapentaenoic acid (20:5, cis-5, 8, 11, 14, 17) | 0.24 | 0.24 | <0.005 | n.a. |
Docosahexaenoic acid (22:6, cis-4, 7, 10, 13, 16, 19) | 0.06 | 0.04 | <0.005 | n.a. |
PUFAs (Poly-unsaturated Fatty Acids) | 27.16 b | 3.44 | 36.06 a | 7.52 |
TFA (Total fatty acid amount) | 20.75 b | 3.85 | 25.48 a | 2.37 |
Fatty Acid Composition (All Values in %) | Groups of Cooked Sausages | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pork Cooked Sausages | Turkey Cooked Sausages | |||||||||
Control | A 10 | A 20 | T 10 | T 20 | Control | A 10 | A 20 | T 10 | T 20 | |
Lauric acid (12:0) | 0.07 ± 0.0 by | 0.07 ± 0.0 by | 0.07 ± 0.0 by | 0.08 ± 0.0 ay | 0.08 ± 0.0 ay | 0.11 ± 0.0 x | 0.09 ± 0.0 x | 0.09 ± 0.0 x | 0.12 ± 0.0 x | 0.12 ± 0.0 x |
Myristic acid (14:0) | 1.22 ± 0.0 | 1.22 ± 0.1 | 1.24 ± 0.0 | 1.31 ± 0.1 | 1.33 ± 0.1 | 1.27 ± 0.1 | 1.29 ± 0.0 | 1.31 ± 0.0 | 1.36 ± 0.1 | 1.38 ± 0.0 |
Palmitic acid (16:0) | 26.46 ± 0.4 | 26.16 ± 0.5 | 26.98 ± 0.9 | 26.99 ± 1.0 | 26.57 ± 0.9 | 26.64 ± 0.6 | 26.78 ± 0.7 | 26.56 ± 0.6 | 26.65 ± 0.6 | 26.74 ± 0.2 |
Stearic acid (18:0) | 14.55 ± 1.1 | 14.28 ± 0.7 | 14.49 ± 1.1 | 14.41 ± 1.0 | 14.08 ± 0.6 | 14.03 ± 0.5 | 13.68 ± 0.4 | 13.85 ± 0.2 | 13.43 ± 0.4 | 13.45 ± 0.4 |
SFAs (Saturated Fatty Acids) | 42.60 ± 1.1 | 42.10 ± 0.8 | 43.10 ± 1.8 | 43.10 ± 1.7 | 42.37 ± 1.3 | 42.41 ± 1.0 | 42.21 ± 0.4 | 42.19 ± 0.7 | 41.91 ± 0.7 | 42.04 ± 0.4 |
Palmitoleic acid (16:1, cis-9) | 2.06 ± 0.2 | 2.01 ± 0.2 | 2.09 ± 0.2 | 2.20 ± 0.3 | 2.11 ± 0.2 | 2.18 ± 0.1 | 2.46 ± 0.3 | 2.44 ± 0.5 | 2.46 ± 0.1 | 2.48 ± 0.1 |
Oleic acid (18:1, cis-9) | 43.41 ± 0.3 | 43.53 ± 2.0 | 43.68 ± 0.4 | 42.45 ± 1.4 | 43.44 ± 0.6 | 41.84 ± 0.8 | 41.97 ± 1.5 | 41.71 ± 0.5 | 42.44 ± 1.2 | 42.53 ± 0.7 |
MUFAs (Mono-unsaturated Fatty Acids) | 46.50 ± 0.3 x | 46.59 ± 2.0 x | 46.84 ± 0.2 x | 45.68 ± 1.4 x | 46.59 ± 0.7 x | 45.16 ± 0.8 y | 45.60 ± 1.6 y | 45.33 ± 0.8 y | 46.10 ± 1.2 y | 46.18 ± 0.7 y |
Linoleic acid (18:2, cis-9,12) | 9.13 ± 1.0 | 9.58 ± 1.9 | 8.47 ± 1.4 | 9.53 ± 2.3 | 9.40 ± 1.4 | 10.59 ± 1.6 | 10.37 ± 1.4 | 10.46 ± 0.5 | 10.27 ± 1.5 | 10.05 ± 0.7 |
Alpha-Linoleic acid (18:3, cis-9, 12, 15) | 0.79 ± 0.1 | 0.84 ± 0.1 | 0.70 ± 0.2 | 0.78 ± 0.2 | 0.76 ± 0.2 | 0.83 ± 0.1 | 0.83 ± 0.1 | 0.83 ± 0.1 | 0.77 ± 0.2 | 0.79 ± 0.1 |
Eicosapentaenoic acid (20:5, cis-5, 8, 11, 14, 17) | 0.01 ± 0.0 | 0.02 ± 0.0 | 0.03 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 | 0.02 ± 0.0 | 0.02 ± 0.0 | 0.03 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 |
Docosahexaenoic acid (22:6, cis-4, 7, 10, 13, 16, 19) | 0.02 ± 0.0 | 0.02 ± 0.0 | 0.02 ± 0.0 | 0.01 ± 0.0 | 0.02 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 | 0.01 ± 0.0 |
PUFAs (Poly-unsaturated Fatty Acids) | 10.85 ± 1.0 y | 11.35 ± 2.1 y | 10.05 ± 1.6 y | 11.21 ± 2.6 y | 10.96 ± 1.7 y | 12.43 ± 1.7 x | 12.19 ± 1.5 x | 12.47 ± 0.5 x | 11.99 ± 1.7 x | 11.78 ± 0.9 x |
TFA (Total fatty acid amount) | 54.22 ± 3.7 | 55.53 ± 3.1 | 52.81 ± 3.3 | 52.74 ± 2.5 | 53.48 ± 2.2 | 53.57 ± 2.2 | 54.27 ± 2.8 | 52.98 ± 4.9 | 54.91 ± 1.8 | 53.68 ± 1.8 |
Groups of Cooked Sausages | Cooking Losses in % | |||
---|---|---|---|---|
Turkey Cooked Sausages | Pork Cooked Sausages | |||
M | SD | M | SD | |
Control | 0.45 | 0.06 | 0.47 | 0.27 |
A 10 | 0.43 | 0.07 | 0.52 | 0.24 |
A 20 | 0.49 | 0.07 | 0.67 | 0.24 |
T 10 | 0.45 | 0.03 | 0.43 | 0.21 |
T 20 | 0.59 | 0.14 | 0.47 | 0.13 |
p-value S | 0.2211 | 0.2112 | ||
p-value C | 0.0529 | 0.4144 | ||
p-value S*C | 0.3837 | 0.6142 |
Groups of Cooked Sausages | Color Analysis of the Cooked Sausages After Production (Day 0) and on Storage Days 7 and 14 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ||||||||||||||||
Day 0 | Day 7 | Day 14 | Day 0 | Day 7 | Day 14 | Day 0 | Day 7 | Day 14 | ||||||||||
M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | |
Pork cooked sausages | ||||||||||||||||||
Control | 73.6 | 0.8 | 73.8 | 1.1 | 74.2 | 1.2 | 12.1ae | 0.7 | 11.6ae | 0.4 | 11.4ae | 0.7 | 11.2bg | 0.3 | 11.2bg | 0.3 | 11.3bg | 0.1 |
A 10 | 71.9 | 3.0 | 70.8 | 4.4 | 71.4 | 3.5 | 10.1bf | 0.8 | 9.7cf | 0.6 | 9.9bf | 0.7 | 12.4af | 0.4 | 12.3af | 0.1 | 12.7af | 0.1 |
A 20 | 69.7 | 2.8 | 68.4 | 4.3 | 69.3 | 4.0 | 9.3bf | 0.4 | 9.2cf | 0.3 | 9.4bf | 0.5 | 13.4ae | 0.4 | 13.6ae | 0.6 | 13.6ae | 0.4 |
T 10 | 73.1 | 1.8 | 72.6 | 2.0 | 73.0 | 1.7 | 10.8bf | 0.6 | 10.4bf | 0.5 | 10.5bf | 0.8 | 12.4af | 0.8 | 12.4af | 0.3 | 12.6af | 0.3 |
T 20 | 71.4 | 1.8 | 71.1 | 1.2 | 71.6 | 1.0 | 10.2bf | 0.3 | 9.9bf | 0.5 | 10.0bf | 0.5 | 13.7ae | 0.4 | 13.4ae | 1.3 | 13.9ae | 0.3 |
p S | 0.2010 | 0.0828 | 0.0735 | <0.0001 | <0.0001 | 0.0017 | 0.0009 | 0.0079 | <0.0001 | |||||||||
p C | 0.0914 | 0.1070 | 0.0905 | 0.0001 | <0.0001 | 0.0024 | <0.0001 | <0.0001 | <0.0001 | |||||||||
p S*C | 0.7641 | 0.7377 | 0.8080 | 0.7586 | 0.8848 | 0.9647 | 0.5646 | 0.6563 | 0.2565 | |||||||||
Turkey-meat cooked sausages | ||||||||||||||||||
Control | 73.0e | 0.9 | 72.8 | 0.9 | 72.6 | 1.1 | 11.4 | 1.6 | 11.9ae | 0.5 | 120ae | 1.0 | 11.7f | 0.8 | 11.2 | 0.5 | 11.3ag | 0.3 |
A 10 | 73.2e | 1.2 | 72.9 | 0.9 | 72.9 | 1.3 | 10.4 | 1.0 | 10.5bef | 0.5 | 10.2bf | 0.7 | 12.2f | 0.1 | 12.3 | 0.2 | 12.4bf | 0.4 |
A 20 | 70.5f | 0.6 | 70.8 | 1.5 | 70.5 | 0.3 | 10.1 | 0.6 | 10.2bf | 0.3 | 10.1bf | 0.9 | 13.5e | 0.2 | 12.2 | 0.5 | 13.7be | 0.2 |
T 10 | 72.6e | 0.8 | 72.0 | 1.1 | 72.2 | 2.0 | 10.6 | 0.8 | 10.9abef | 0.6 | 10.4bf | 0.6 | 12.0f | 0.8 | 12.8 | 1.8 | 12.1bf | 0.4 |
T 20 | 71.4f | 0.5 | 71.3 | 2.1 | 71.4 | 1.3 | 9.8 | 0.6 | 10.6abf | 1.5 | 9.4bf | 0.8 | 13.0e | 0.8 | 12.4 | 1.5 | 13.3be | 0.8 |
p S | 0.7610 | 0.4436 | 0.5619 | 0.9460 | 0.0157 | 0.0049 | 0.3405 | 0.7483 | 0.0104 | |||||||||
p C | 0.0025 | 0.0938 | 0.0701 | 0.3874 | 0.0189 | 0.0033 | 0.0027 | 0.7712 | <0.0001 | |||||||||
p S*C | 0.1424 | 0.3508 | 0.3034 | 0.6721 | 0.9091 | 0.3861 | 0.8113 | 0.4489 | 0.8355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemke, B.; Röpper, D.; Arki, A.; Visscher, C.; Plötz, M.; Krischek, C. Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. Insects 2024, 15, 843. https://doi.org/10.3390/insects15110843
Lemke B, Röpper D, Arki A, Visscher C, Plötz M, Krischek C. Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. Insects. 2024; 15(11):843. https://doi.org/10.3390/insects15110843
Chicago/Turabian StyleLemke, Barbara, Darleen Röpper, Anahita Arki, Christian Visscher, Madeleine Plötz, and Carsten Krischek. 2024. "Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters" Insects 15, no. 11: 843. https://doi.org/10.3390/insects15110843
APA StyleLemke, B., Röpper, D., Arki, A., Visscher, C., Plötz, M., & Krischek, C. (2024). Processing of Larvae of Alphitobius diaperinus and Tenebrio molitor in Cooked Sausages: Effects on Physicochemical, Microbiological, and Sensory Parameters. Insects, 15(11), 843. https://doi.org/10.3390/insects15110843