Predicted Spatial Patterns of Suitable Habitats for Troides aeacus Under Different Climate Scenarios
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Distribution Data
2.2. Environmental Variables and Data Processing
2.3. MaxEnt Model Construction and Result Evaluation
2.4. Suitable Grade Zoning
3. Results
3.1. Model Performance and Key Environmental Variables
3.2. The Main Environmental Factors Influencing the Distribution of T. aeacus
3.3. Environmental Variables Influencing the Geographic Distribution of the T. aeacus
3.4. Potential Distribution of the T. aeacus in the Current Period
3.5. Potential Future Distribution of the T. aeacus
3.6. Migration of the Centroid of Potential Distribution for the T. aeacus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, I.; Yang, P.; Liu, C.; Yeh, W. Genetic differentiation of Troides aeacus formosanus (Lepidoptera: Papilionidae), based on cytochrome oxidase I sequences and amplified fragment length polymorphism. Ann. Entomol. Soc. Am. 2010, 103, 1018–1024. [Google Scholar] [CrossRef]
- Chen, P.; Arikawa, K.; Yang, E. Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus. PLoS ONE 2013, 8, e62240. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.; Kuo, Y.; Perng, J.; Lee, T.; Lee, H. Oviposition preference and larval survival of Troides aeacus formasanus (Lepidoptera: Papilionidae) on Aristolochia zollingeriana in different environments in the Kenting area. Taiwan J. For. Sci. 2010, 25, 353–368. [Google Scholar]
- Koh, L.P. Impacts of land use change on South-east Asian forest butterflies: A review. J. Appl. Ecol. 2007, 44, 703–713. [Google Scholar] [CrossRef]
- Cao, Y.; Li, R.; Zhou, S.; Song, L.; Quan, R.; Hu, H. Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China. J. Ethnobiol. Ethnomed. 2020, 16, 1–23. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Zhang, Y.; Schweiger, O.; Settele, J.; Yang, Q. On the conservation biology of a Chinese population of the birdwing Troides aeacus (Lepidoptera: Papilionidae). J. Insect Conserv. 2010, 14, 257–268. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, T.; Chang, Z.; Wang, T.; Lee, S.J.; Kim, J.C.; Kim, J.S.; Chiu, K.; Nai, Y. Genomic sequencing of Troides aeacus nucleopolyhedrovirus (TraeNPV) from golden birdwing larvae (Troides aeacus formosanus) to reveal defective Autographa californica NPV genomic features. BMC Genom. 2019, 20, 419. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, Y.; Gao, K.; Ding, C.; Zhang, Y. Butterfly communities along the Heihe River Basin in Shaanxi Province, a biodiversity conservation priority area in China. J. Insect Conserv. 2019, 23, 873–883. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Pizzi, F.; Caroli, A.M.; Landini, M.; Galluccio, N.; Mezzelani, A.; Milanesi, L. Conservation of endangered animals: From biotechnologies to digital preservation. Nat. Sci. 2013, 5, 903–913. [Google Scholar] [CrossRef]
- Pilling, D.; Hoffmann, I. Climate change and animal genetic resources for food and agriculture: State of knowledge, risks and opportunities. FAO CGRFA Backgr. Study Pap. 2011, 53, 28. [Google Scholar]
- Rumpf, S.B.; Hülber, K.; Klonner, G.; Moser, D.; Schütz, M.; Wessely, J.; Willner, W.; Zimmermann, N.E.; Dullinger, S. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA 2018, 115, 1848–1853. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; de Siqueira, M.F.; Grainger, A.; Hannah, L. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 2009, 15, 289–298. [Google Scholar] [CrossRef]
- Yu, D.; Chen, M.; Zhou, Z.; Eric, R.; Tang, Q.; Liu, H. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia 2013, 700, 23–32. [Google Scholar] [CrossRef]
- Coro, G.; Vilas, L.G.; Magliozzi, C.; Ellenbroek, A.; Scarponi, P.; Pagano, P. Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea. Ecol. Model. 2018, 371, 37–49. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, W. Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Comput. Electron. Agric. 2021, 190, 106430. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander Jr, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Xiang, Y.; Ye, J. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model. J. Nanjing For. Univ. 2015, 58, 6. [Google Scholar]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e2186. [Google Scholar] [CrossRef]
- Beirão, M.V.; Campos-Neto, F.C.; Pimenta, I.A.; Freitas, A.V. Population biology and natural history of Parides burchellanus (Papilionidae: Papilioninae: Troidini), an endangered Brazilian butterfly. Ann. Entomol. Soc. Am. 2012, 105, 36–43. [Google Scholar] [CrossRef]
- Zhang, D.H.; Hu, Y.M.; Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2019, 30, 2329–2337. [Google Scholar]
- Wei, X.; Xu, D.; Zhuo, Z. Predicting the impact of climate change on the geographical distribution of leafhopper, Cicadella viridis in China through the MaxEnt model. Insects 2023, 14, 586. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 2018, 13, e192153. [Google Scholar]
- Zhu, G.; Petersen, M.; Bu, W. Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion. PLoS ONE 2012, 7, e46247. [Google Scholar] [CrossRef]
- Zhu, G.; Guoqing, L.; Bu, W.; Yubao, G. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 2013, 21, 90–98. [Google Scholar]
- Rose, C. Pearson A, Field J, Jordan Z. Evidence-based clinical practice in nursing and health care: Assimilating research, experience and expertise. Oxford: Blackwell, 2007. Evid. Based Med. 2007, 12, 156. [Google Scholar] [CrossRef]
- Jones, M.C.; Dye, S.R.; Fernandes, J.A.; Frölicher, T.L.; Pinnegar, J.K.; Warren, R.; Cheung, W.W. Predicting the impact of climate change on threatened species in UK waters. PLoS ONE 2013, 8, e54216. [Google Scholar] [CrossRef] [PubMed]
- Ab Lah, N.Z.; Yusop, Z.; Hashim, M.; Mohd Salim, J.; Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 2021, 12, 1449. [Google Scholar] [CrossRef]
- Yang, X.; Kushwaha, S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Abolmaali, S.M.; Tarkesh, M.; Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 2018, 43, 116–123. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Y.; Xu, D.; Zhuo, Z. Meta-Analysis and MaxEnt Model Prediction of the Distribution of Phenacoccus solenopsis Tinsley in China under the Context of Climate Change. Insects 2024, 15, 675. [Google Scholar] [CrossRef]
- Gao, X.; Lin, F.; Li, M.; Mei, Y.; Li, Y.; Bai, Y.; He, X.; Zheng, Y. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Sci. Rep. 2024, 14, 24438. [Google Scholar] [CrossRef]
- Peterson, A.T. Predicting species’ geographic distributions based on ecological niche modeling. The condor 2001, 103, 599–605. [Google Scholar] [CrossRef]
- Jing, W.; Qi, G.; Jun, M.A.; Ren, Y.; Rui, W.; McKirdy, S. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 2020, 19, 2072–2082. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Cobos, M.E.; Townsend Peterson, A.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, 6281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.P.; Yuan, X.J.; Fan, J.Y.; Wang, M.L. Effects of model parameters in MaxEnt modeling of ecological niche and geographic distribution: Case study of the brown marmorated stink bug, Halyomorpha haly. J. Biosaf. 2018, 27, 46–51. [Google Scholar]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Sharma, R.; Khan, S.; Kaul, V. Predicting the potential habitat suitability and distribution of “Weed-Onion” (Asphodelus tenuifolius Cavan.) in India under predicted climate change scenarios. J. Agric. Food Res. 2023, 14, 100697. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Osorio-Olvera, L.; Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019, 53, 100983. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, C.; Xie, Y.; Jiang, X. Nature reserves and reforestation expend the potential habitats for endangered plants: A model study in Cangshan, China. J. Nat. Conserv. 2024, 77, 126533. [Google Scholar] [CrossRef]
- Araujo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef]
- Yilmaz, M.; Erkan Buğday, S. Planiranje šumskih rekreacijskih usluga na razini provincije s višekriterijskim pristupom: Slučaj Turske. Šumarski List 2024, 148, 29–37. [Google Scholar] [CrossRef]
- Heng, S.; Li, N.; Yang, Q.; Liang, J.; Liu, X.; Wang, Y. Effects of environment and human activities on rice planting suitability based on MaxEnt model. Int. J. Biometeorol. 2024, 68, 2413–2429. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Holt, R.D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. S2), 19659–19665. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Harsch, M.A.; HilleRisLambers, J. Climate warming and seasonal precipitation change interact to limit species distribution shifts across Western North America. PLoS ONE 2016, 11, e0159184. [Google Scholar] [CrossRef]
- Pardini, R.; Nichols, E.; Püttker, T. Biodiversity response to habitat loss and fragmentation. Encycl. Anthr. 2017, 3, 229–239. [Google Scholar]
Symbol | Environmental Variable | Unit |
---|---|---|
Annual mean temperature | bio1 | °C |
Mean diurnal range (monthly mean) (max. temp–min. temp) | bio2 | °C |
Isothermality (bio2/bio7) (×100) | bio3 | °C |
Temperature seasonality (standard deviation × 100) | bio4 | °C |
Max. temperature of the Warmest Month | bio5 | °C |
Min. temperature of the Coldest Month | bio6 | °C |
Temperature annual range (bio5–bio6) | bio7 | °C |
Mean temperature of the Wettest Quarter | bio8 | °C |
Mean temperature of the Driest Quarter | bio9 | °C |
Mean temperature of the Warmest Quarter | bio10 | °C |
Mean temperature of the Coldest Quarter | bio11 | °C |
Annual precipitation | bio12 | mm |
Precipitation of the Wettest Month | bio13 | mm |
Precipitation of the Driest Month | bio14 | mm |
Precipitation seasonality (coefficient of variation) | bio15 | % |
Precipitation of the Wettest Quarter | bio16 | mm |
Precipitation of the Driest Quarter | bio17 | mm |
Precipitation of the Warmest Quarter | bio18 | mm |
Precipitation of the Coldest Quarter | bio19 | mm |
Altitude | elev | m |
Slope | slope | degree |
Aspect | aspect | degree |
Code | Environmental Variables | Contribution Rate |
---|---|---|
bio7 | Temperature annual range (bio5–bio6) | 26.50% |
bio12 | Annual precipitation | 20.10% |
bio6 | Min. temperature of the Coldest Month | 15.00% |
slope | Slope | 10.00% |
bio19 | Precipitation of the Coldest Quarter | 10.00% |
bio10 | Mean temperature of the Warmest Quarter | 7.90% |
bio14 | Precipitation of the Driest Month | 6.70% |
elev | Altitude | 3.10% |
aspect | Aspect | 0.80% |
Predicted Area (104 km2) | Comparison with Current Distribution (%) | ||||||
---|---|---|---|---|---|---|---|
Period | Scenarios | Low-Suitability | Medium-Suitability | High-Suitability | Low-Suitability | Medium-Suitability | High-Suitability |
Current | - | 83.73 | 113.03 | 74.2 | - | - | - |
2050s | SSP1-2.6 | 95.53 | 109.46 | 74.22 | 0.14 | −0.03 | 0 |
SSP2-4.5 | 86.53 | 110.43 | 89.41 | 0.03 | −0.02 | 0.2 | |
SSP5-8.5 | 98.1 | 105.14 | 110.4 | 17.16 | −6.98 | 48.79 | |
2090s | SSP1-2.6 | 96.63 | 107.41 | 84.82 | 15.41 | −1.87 | 14.28 |
SSP2-4.5 | 100.2 | 104.42 | 107.71 | 19.67 | −7.62 | 45.16 | |
SSP5-8.5 | 105.78 | 89.98 | 115.38 | 26.33 | −20.39 | 55.5 |
Scene | Period | Angle (°) | Direction | Displacement (km) |
---|---|---|---|---|
SSP1-2.6 | Current to 2050s | 297.3 | northwest | 28.01 |
2050s to 2090s | 108.92 | southeast | 94.99 | |
Current to 2090s | 105.6 | southeast | 67.39 | |
SSP2-4.5 | Current to 2050s | 53.62 | northeast | 115.89 |
2050s to 2090s | 54.27 | northeast | 116.58 | |
Current to 2090s | 53.74 | northeast | 232.47 | |
SSP5-8.5 | Current to 2050s | 27.52 | northeast | 160.04 |
2050s to 2090s | 151.58 | southeast | 47.5 | |
Current to 2090s | 43.98 | northeast | 139.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Deng, X.; Liu, Z.; Wei, X.; Zhang, H.; Xu, D.; Zhuo, Z. Predicted Spatial Patterns of Suitable Habitats for Troides aeacus Under Different Climate Scenarios. Insects 2024, 15, 901. https://doi.org/10.3390/insects15110901
Liu B, Deng X, Liu Z, Wei X, Zhang H, Xu D, Zhuo Z. Predicted Spatial Patterns of Suitable Habitats for Troides aeacus Under Different Climate Scenarios. Insects. 2024; 15(11):901. https://doi.org/10.3390/insects15110901
Chicago/Turabian StyleLiu, Biyu, Xinqi Deng, Zhiqian Liu, Xinju Wei, Honghua Zhang, Danping Xu, and Zhihang Zhuo. 2024. "Predicted Spatial Patterns of Suitable Habitats for Troides aeacus Under Different Climate Scenarios" Insects 15, no. 11: 901. https://doi.org/10.3390/insects15110901
APA StyleLiu, B., Deng, X., Liu, Z., Wei, X., Zhang, H., Xu, D., & Zhuo, Z. (2024). Predicted Spatial Patterns of Suitable Habitats for Troides aeacus Under Different Climate Scenarios. Insects, 15(11), 901. https://doi.org/10.3390/insects15110901