Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatic Analysis
2.2. Fly Genetics, Immunohistochemistry, and Microscopy
3. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cooper, S.J. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 2008, 51, 419–427. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Flavell, S.W.; Gogolla, N.; Lovett-Barron, M.; Zelikowsky, M. The emergence and influence of internal states. Neuron 2022, 110, 2545–2570. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Orr, A.L.; Perevoshchikova, I.V.; Quinlan, C.L. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol. 2013, 169 (Suppl. S2), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Eaton, A.F.; Merkulova, M.; Brown, D. The H+-ATPase (V-ATPase): From proton pump to signaling complex in health and disease. Am. J. Physiol. Cell Physiol. 2021, 320, C392–C414. [Google Scholar] [CrossRef]
- Muench, S.P.; Trinick, J.; Harrison, M.A. Structural divergence of the rotary ATPases. Q. Rev. Biophys. 2011, 44, 311–356. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta Bioenerg. 1992, 1100, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Forgac, M. Structure and properties of the Vacuolar H+-ATPases. J. Biol. Chem. 1999, 274, 12951–12954. [Google Scholar] [CrossRef] [PubMed]
- Kellokumpu, S. Golgi pH, ion and redox homeostasis: How much do they really matter? Front. Cell Dev. Biol. 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Colacurcio, D.J.; Nixon, R.A. Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 2016, 32, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Mindell, J.A. Lysosomal Acidification Mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86. [Google Scholar] [CrossRef]
- Hnasko, T.S.; Edwards, R.H. Neurotransmitter Corelease: Mechanism and Physiological Role. Annu. Rev. Physiol. 2012, 74, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Brown, D. Regulation of luminal acidification by the V-ATPase. Physiology 2013, 28, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef]
- Paroutis, P.; Touret, N.; Grinstein, S. The pH of the secretory pathway: Measurement, determinants, and regulation. Physiology 2004, 19, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, F.R.; McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 2004, 5, 121–132. [Google Scholar] [CrossRef]
- Naslavsky, N.; Caplan, S. The enigmatic endosome—Sorting the ins and outs of endocytic trafficking. J. Cell Sci. 2018, 131, jcs216499. [Google Scholar] [CrossRef]
- Forgac, M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 2007, 8, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Sun-Wada, G.-H.; Wada, Y.; Futai, M. Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: Toward the physiological understanding of inside acidic compartments. Biochim. Biophys. Acta Bioenerg. 2004, 1658, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Lorenzo, A.; Skinner, M.; Annan, J.E.; Futai, M.; Sun-Wada, G.-H.; Bourgoin, S.; Casanova, J.; Wildeman, A.; Bechoua, S.; Ausiello, D.A.; et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 2006, 8, 124–136. [Google Scholar] [CrossRef]
- Nishi, T.; Forgac, M. The vacuolar H+-ATPases—Nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 2002, 3, 94–103. [Google Scholar] [CrossRef]
- Sun-Wada, G.-H.; Wada, Y. Role of vacuolar-type proton ATPase in signal transduction. Biochim. Biophys. Acta Bioenerg. 2015, 1847, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, Y.; Maeda, M.; Futai, M. The role of V-ATPase in neuronal and endocrine systems. J. Exp. Biol. 1992, 172, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.A. Active transport of potassium by the malpighian tubules of insects. J. Exp. Biol. 1953, 30, 358–369. [Google Scholar] [CrossRef]
- Wolfersberger, M.G.; Harvey, W.R.; Cioffi, M. Transepithelial Potassium Transport in Insect Midgut by an Electrogenic Alkali Metal Ion Pump. In Current Topics in Membranes and Transport; Kleinzeller, A., Bronner, F., Slayman, C.L., Eds.; Academic Press: Cambridge, MA, USA, 1982; Volume 16, pp. 109–133. [Google Scholar]
- Harvey, W.R.; Cioffi, M.; Wolfersberger, M.G. Chemiosmotic potassium ion pump of insect epithelia. Am. J. Physiol. 1983, 244, R163–R175. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.R.; Maddrell, S.H.P.; Telfer, W.H.; Wieczorek, H. H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids. Integr. Comp. Biol. 1998, 38, 426–441. [Google Scholar] [CrossRef]
- Wieczorek, H.; Putzenlechner, M.; Zeiske, W.; Klein, U. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J. Biol. Chem. 1991, 266, 15340–15347. [Google Scholar] [CrossRef]
- Wieczorek, H.; Grüber, G.; Harvey, W.R.; Huss, M.; Merzendorfer, H.; Zeiske, W. Structure and regulation of insect plasma membrane H+ V-ATPase. J. Exp. Biol. 2000, 203, 127–135. [Google Scholar] [CrossRef]
- Wieczorek, H.; Beyenbach, K.W.; Huss, M.; Vitavska, O. Vacuolar-type proton pumps in insect epithelia. J. Exp. Biol. 2009, 212, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Klein, U.; Zimmermann, B. The vacuolar-type ATPase from insect plasma membrane: Immunocytochemical localization in insect sensilla. Cell Tissue Res. 1991, 266, 265–273. [Google Scholar] [CrossRef]
- Klein, U.; Löffelmann, G.; Wieczorek, H. The midgut as a model system for insect K+-transporting epithelia: Immunocytochemical localization of a vacuolar-type H+ pump. J. Exp. Biol. 1991, 161, 61–75. [Google Scholar] [CrossRef]
- Thurm, U.; Küppers, J. Epithelial Physiology of Insect Sensilla. In Insect Biology in the Future; Academic Press: Cambridge, MA, USA, 1980; pp. 735–763. [Google Scholar]
- Dow, J.; Davies, S.; Guo, Y.; Graham, S.; Finbow, M.; Kaiser, K. Molecular genetic analysis of V-ATPase function in Drosophila melanogaster. J. Exp. Biol. 1997, 200, 237–245. [Google Scholar] [CrossRef]
- Wieczorek, H.; Weerth, S.; Schindlbeck, M.; Klein, U. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J. Biol. Chem. 1989, 264, 11143–11148. [Google Scholar] [CrossRef] [PubMed]
- Küppers, J.; Bunse, I. A primary cation transport by a V-type ATPase of low specificity. J. Exp. Biol. 1996, 199, 1327–1334. [Google Scholar] [CrossRef]
- Weng, X.-H.; Huss, M.; Wieczorek, H.; Beyenbach, K.W. The V-type H+-ATPase in malpighian tubules of Aedes aegypti: Localization and activity. J. Exp. Biol. 2003, 206, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Dow, J.A. The multifunctional Drosophila melanogaster V-ATPase is encoded by a multigene family. J. Bioenerg. Biomembr. 1999, 31, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.A.; Goodwin, S.F.; Kelly, D.C.; Wang, Z.; Sözen, M.A.; Kaiser, K.; Dow, J.A. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J. Biol Chem. 1996, 271, 30677–30684. [Google Scholar] [CrossRef]
- Lee, S.-K.; Li, W.; Ryu, S.-E.; Rhim, T.; Ahnn, J. Vacuolar (H+)-ATPases in Caenorhabditis elegans: What can we learn about giant H+ pumps from tiny worms? Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1687–1695. [Google Scholar] [CrossRef]
- Shanbhag, S.R.; Müller, B.; Steinbrecht, R.A. Atlas of olfactory organs of Drosophila melanogaster: 1. Types, external organization, innervation and distribution of olfactory sensilla. Int. J. Insect Morphol. Embryol. 1999, 28, 377–397. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Stocker, R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 2007, 30, 505–533. [Google Scholar] [CrossRef]
- Shanbhag, S.R.; Müller, B.; Steinbrecht, R.A. Atlas of olfactory organs of Drosophila melanogaster: 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev. 2000, 29, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Nava Gonzales, C.; McKaughan, Q.; Bushong, E.A.; Cauwenberghs, K.; Ng, R.; Madany, M.; Ellisman, M.H.; Su, C.-Y. Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster. eLife 2021, 10, e69896. [Google Scholar] [CrossRef] [PubMed]
- Prelic, S.; Pal Mahadevan, V.; Venkateswaran, V.; Lavista-Llanos, S.; Hansson, B.S.; Wicher, D. Functional interaction between Drosophila olfactory sensory neurons and their support cells. Front. Cell. Neurosci. 2022, 15, 789086. [Google Scholar] [CrossRef] [PubMed]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef]
- Gao, Q.; Chess, A. Identification of candidate Drosophila olfactory receptors from Genomic DNA sequence. Genomics 1999, 60, 31–39. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Amrein, H.; Morozov, P.S.; Rzhetsky, A.; Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999, 96, 725–736. [Google Scholar] [CrossRef]
- Benton, R.; Vannice, K.S.; Gomez-Diaz, C.; Vosshall, L.B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 2009, 136, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, E.M.; Gisselmann, G.; Zhang, W.; Dooley, R.; Störtkuhl, K.; Hatt, H. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 2005, 8, 15–17. [Google Scholar] [CrossRef]
- Vosshall, L.B.; Hansson, B.S. A Unified Nomenclature System for the Insect Olfactory Coreceptor. Chem. Senses 2011, 36, 497–498. [Google Scholar] [CrossRef]
- Wicher, D.; Miazzi, F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors. Cell Tissue Res. 2021, 383, 7–19. [Google Scholar] [CrossRef]
- Ni, L. The structure and function of ionotropic receptors in Drosophila. Front. Mol. Neurosci. 2021, 13, 638839. [Google Scholar] [CrossRef] [PubMed]
- Abuin, L.; Bargeton, B.; Ulbrich, M.H.; Isacoff, E.Y.; Kellenberger, S.; Benton, R. Functional architecture of olfactory ionotropic glutamate receptors. Neuron 2011, 69, 44–60. [Google Scholar] [CrossRef]
- Sato, K.; Pellegrino, M.; Nakagawa, T.; Nakagawa, T.; Vosshall, L.B.; Touhara, K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008, 452, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Wicher, D.; Schäfer, R.; Bauernfeind, R.; Stensmyr, M.C.; Heller, R.; Heinemann, S.H.; Hansson, B.S. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008, 452, 1007–1011. [Google Scholar] [CrossRef]
- Dow, J.A.T. V-ATPases in insects. In Organellar Proton-ATPases; Springer: Berlin/Heidelberg, Germany, 1995; pp. 75–102. [Google Scholar] [CrossRef]
- Shiao, M.-S.; Fan, W.-L.; Fang, S.; Lu, M.-Y.J.; Kondo, R.; Li, W.-H. Transcriptional profiling of adult Drosophila antennae by high-throughput sequencing. Zool. Stud. 2013, 52, 42. [Google Scholar] [CrossRef]
- Menuz, K.; Larter, N.K.; Park, J.; Carlson, J.R. An RNA-Seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genet. 2014, 10, e1004810. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.A.; Brbić, M.; Spanier, K.; et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022, 375, eabk2432. [Google Scholar] [CrossRef]
- Chen, W.; Gardeux, V.; Meireles-Filho, A.; Deplancke, B. Profiling of single-cell transcriptomes. Curr. Protoc. Mouse Biol. 2017, 7, 145–175. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Awasaki, T.; Ito, K. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J. Comp. Neurol. 2009, 514, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Stieber, R.; Kaltofen, S.; Hansson, B.S.; Wicher, D. A new Drosophila melanogaster fly that expresses GFP-tagged Orco. Front. Ecol. Evol. 2023, 11, 1150532. [Google Scholar] [CrossRef]
- Nicolaï, L.J.; Ramaekers, A.; Raemaekers, T.; Drozdzecki, A.; Mauss, A.S.; Yan, J.; Landgraf, M.; Annaert, W.; Hassan, B.A. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 20553–20558. [Google Scholar] [CrossRef]
- Halty-deLeon, L.; Pal Mahadevan, V.; Wiesel, E.; Hansson, B.S.; Wicher, D. Response plasticity of Drosophila olfactory sensory neurons. Int. J. Mol. Sci. 2024, 25, 7125. [Google Scholar] [CrossRef]
- Chintapalli, V.R.; Wang, J.; Herzyk, P.; Davies, S.A.; Dow, J.A.T. Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia. BMC Genom. 2013, 14, 518. [Google Scholar] [CrossRef] [PubMed]
- Allan, A.K.; Du, J.; Davies, S.A.; Dow, J.A.T. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol. Genom. 2005, 22, 128–138. [Google Scholar] [CrossRef]
- Mohapatra, P.; Menuz, K. Molecular profiling of the Drosophila antenna reveals conserved genes underlying olfaction in insects. G3 Genes Genom. Genet. 2019, 9, 3753–3771. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Chandel, A.; Turner, H.; Wang, S.; Liman, E.R.; Montell, C. Requirement for an otopetrin-like protein for acid taste in Drosophila. Proc. Natl. Acs. Sci. USA 2021, 118, e2110641118. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Z.; Carter, A.; Kaiser, K.; Dow, J.A.T. Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacuolar ATPase. Biochim. Biophys. Acta Bioenerg. 1996, 1283, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.D.; Zhu, J.; Han, Y.-G.; Kernan, M.J. NompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron 2001, 29, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Barolo, S.; Walker, R.G.; Polyanovsky, A.D.; Freschi, G.; Keil, T.; Posakony, J.W. A notch-independent activity of suppressor of hairless is required for normal mechanoreceptor physiology. Cell 2000, 103, 957–970. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, K.; Prelic, S.; Hansson, B.S.; Wicher, D. Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells. Insects 2024, 15, 1016. https://doi.org/10.3390/insects15121016
Jain K, Prelic S, Hansson BS, Wicher D. Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells. Insects. 2024; 15(12):1016. https://doi.org/10.3390/insects15121016
Chicago/Turabian StyleJain, Kalpana, Sinisa Prelic, Bill S. Hansson, and Dieter Wicher. 2024. "Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells" Insects 15, no. 12: 1016. https://doi.org/10.3390/insects15121016
APA StyleJain, K., Prelic, S., Hansson, B. S., & Wicher, D. (2024). Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells. Insects, 15(12), 1016. https://doi.org/10.3390/insects15121016