Inheritance and Resistance Mechanisms of Field-Evolved Resistance to Pyrethroids in a Fall Armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) Strain from Puerto Rico
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Populations
2.2. Chemicals and Insecticides
2.3. Pyrethroid Bioassays
2.4. Inheritance of Resistance
2.5. Synergist Bioassays
2.6. Statistical Analysis
3. Results
3.1. Bioassays and Inheritance of Resistance
3.2. Synergism Bioassay
4. Discussion
Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barros, E.; de Freitas Bueno, A. Oviposition, development, and reproduction of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) fed on different hosts of economic importance. Neotrop. Entomol. 2010, 39, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Nagoshi, R.N.; Rosas-Garcia, N.M.; Meagher, R.L.; Fleischer, S.J.; Westbrook, J.K.; Sappington, T.W.; Hay-Roe, M.; Thomas, J.M.G.; Murua, G.M. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 2015, 108, 135–144. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef]
- Montezano, D.; Specht, A.; Sosa-Gómez, D.; Roque-Specht, V.; Sousa-Silva, J.; Paula-Moraes, S.; Peterson, J.; Hunt, T. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Johnson, S.J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. Int. J. Trop. Insect Sci. 1987, 8, 543–549. [Google Scholar] [CrossRef]
- Gutierrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Teran-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database (APRD). 2023. Available online: http://www.pesticideresistance.org/ (accessed on 10 June 2023).
- Biondi, A.; Guedes, R.N.C.; Wan, F.-H.; Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef]
- Kasoma, C.; Shimelis, H.; Laing, M.D. Fall armyworm invasion in Africa: Implications for maize production and breeding. J. Crop Improv. 2021, 35, 111–146. [Google Scholar] [CrossRef]
- FAO. The Global Action for Fall Armyworm Control: A Resource Mobilization Guide; FAO: Rome, Italy, 2022. [Google Scholar]
- Nagoshi, R.N.; Koffi, D.; Agboka, K.; Tounou, K.A.; Banerjee, R.; Jurat-Fuentes, J.L.; Meagher, R.L. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 2017, 12, e0181982. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Sun, J.; Chen, Y.; Bao, H.; Zhang, L.; Nkunika, P.O.Y.; Zang, L. Discovery of three egg parasitoid species for the control of Spodoptera frugiperda (Smith). J. Jilin Agric. Univ. 2019, 41, 505–509. [Google Scholar]
- Wennmann, J.T.; Tepa-Yotto, G.T.; Jehle, J.A.; Goergen, G. Genome sequence of a Spodoptera frugiperda multiple nucleopolyhedrovirus isolated from fall armyworm (Spodoptera frugiperda) in Nigeria, West Africa. Microbiol. Resour. Ann. 2021, 10, 10–1128. [Google Scholar] [CrossRef]
- Feldmann, F.; Rieckmann, U.; Winter, S. The spread of the fall armyworm Spodoptera frugiperda in AfricaWhat should be done next? J. Plant Dis. Prot. 2019, 126, 97–101. [Google Scholar] [CrossRef]
- NATESC—National Agricultural Technology Extension Service Center. Recent reports of fall armyworm in China and neighboring countries. In Plant Pathogen and Pest Information; NATESC: Beijing, China, 2019; pp. 4–26. [Google Scholar]
- Richardson, E.B.; Troczka, B.J.; Gutbrod, O.; Davies, T.G.E.; Nauen, R. Diamide resistance: 10 years of lessons from lepidopteran pests. J. Pest Sci. 2020, 93, 911–928. [Google Scholar] [CrossRef]
- Tepa-Yotto, G.T.; Tonnang, H.E.Z.; Goergen, G.; Subramanian, S.; Kimathi, E.; Abdel-Rahman, E.M.; Flø, D.; Thunes, K.H.; Fiaboe, K.K.M.; Niassy, S.; et al. Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): Key parasitoids considered for its biological control. Insects 2021, 12, 273. [Google Scholar] [CrossRef]
- Qi, G.-J.; Ma, J.; Wan, J.; Ren, Y.-L.; McKirdy, S.; Hu, G.; Zhang, Z.-F. Source regions of the first immigration of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) invading Australia. Insects 2021, 12, 1104. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kalleshwaraswamy, C.M.; Asokan, R.; Mahadeva Swamy, H.M.; Maruthi, M.S.; Pavithra, H.B.; Hegde, K.; Navi, S.; Prabhu, S.T.; Goergen, G. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 2018, 24, 23–29. [Google Scholar]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.A.; Day, R.; Desneux, N.; Harrison, R.; Kriticos, D.; Rwomushana, I.; Van den Berg, J.; et al. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2023, 43, 187–241. [Google Scholar] [CrossRef]
- Davis, F.M.; Ng, S.S.; Williams, W.P. Visual rating scales for screening whorl-stage corn for resistance to fall armyworm. Tech. Bull.—Miss. Agric. For. Exp. Stn. 1992, 186, 1–9. [Google Scholar]
- Hruska, A.J.; Gladstone, S.M. Effect of Period and Level of Infestation of the Fall Armyworm, Spodoptera frugiperda, on Irrigated Maize Yield. Fla. Entomol. 1988, 71, 249–254. [Google Scholar] [CrossRef]
- PRABIA. Agricultural Biotechnology in Puerto Rico. Available online: https://www.prabia.org/agbio-puerto-rico (accessed on 10 June 2023).
- Head, G. IRAC-US Efforts in Puerto Rico. Available online: www.irac-online.org/documents/puerto-rico-task-team/ (accessed on 10 June 2023).
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef]
- Andersen, H.R.; David, A.; Freire, C.; Fernández, M.F.; D’Cruz, S.C.; Reina-Pérez, I.; Fini, J.-B.; Blaha, L. Pyrethroids and developmental neurotoxicity—A critical review of epidemiological studies and supporting mechanistic evidence. Environ. Res. 2022, 214, 113935. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, Y.; Zhong, Y.; Lao, Z.; O’Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere 2020, 254, 126779. [Google Scholar] [CrossRef]
- Ware, G.W. The Pesticide Book; Thomson Publications: Stamford, CT, USA, 1989. [Google Scholar]
- Du, Y.; Nomura, Y.; Zhorov, B.S.; Dong, K. Sodium channel mutations and pyrethroid resistance in Aedes aegypti. Insects 2016, 7, 60. [Google Scholar] [CrossRef]
- Bloomquist, J.R. Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1993, 106, 301–314. [Google Scholar] [CrossRef]
- Yu, S.J. The Toxicology and Biochemistry of Insecticides; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yan, R.; Zhou, Q.; Xu, Z.; Zhu, G.; Dong, K.; Zhorov, B.S.; Chen, M. Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids. Insect Biochem. Mol. Biol. 2020, 123, 103411. [Google Scholar] [CrossRef]
- Narahashi, T. Toxins that modulate the sodium channel gating mechanisma. Ann. N. Y. Acad. Sci. 1986, 479, 133–151. [Google Scholar] [CrossRef]
- Corbett, J.R.; Wright, K.; Baillie, A.C. The Biochemical Mode of Action of Pesticides; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Matsumura, F. Toxicology of Insecticides; Springer: New York, NY, USA, 2012. [Google Scholar]
- Yu, S.J.; Nguyen, S.N.; Abo-Elghar, G.E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 2003, 77, 1–11. [Google Scholar] [CrossRef]
- Belay, D.K.; Huckaba, R.M.; Foster, J.E. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to different insecticides. Fla. Entomol. 2012, 95, 476–478. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Mota-Sanchez, D.; Whalon, M.E.; Hollingworth, R.M.; Carrière, Y. Defining Terms for Proactive Management of Resistance to Bt Crops and Pesticides. J. Econ. Entomol. 2014, 107, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Physiol. 1991, 39, 84–91. [Google Scholar] [CrossRef]
- Mao, K.-K.; Li, H.-R.; Zhu, J.-Y.; Jin, M.-H.; Wang, P.; Peng, Y.; Xiao, Y.-T. Rapid test to detect insecticide resistance in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). Front. Physiol. 2023, 14, 1254765. [Google Scholar] [CrossRef]
- León-García, I.; Rodríguez-Leyva, E.; Ortega-Arenas, L.D.; Solís-Aguilar, J.F. Susceptibilidad de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) a insecticidas asociada a Césped en Quintana Roo, México. Agrociencia 2012, 46, 279–287. [Google Scholar]
- Morillo, F.; Notz, A. Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. Entomotropica 2001, 16, 79–87. [Google Scholar]
- Diez-Rodriguez, G.; Omoto, C. Herança da resistencia de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotrop. Entomol. 2001, 30, 311–316. [Google Scholar] [CrossRef]
- Carvalho, R.A.; Omoto, C.; Field, L.M.; Williamson, M.S.; Bass, C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS ONE 2013, 8, e62268. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Díez, J.D.; Saldamando-Benjumea, C.I. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. J. Econ. Entomol. 2011, 104, 1698–1705. [Google Scholar] [CrossRef]
- Hafeez, M.; Li, X.; Zhang, Z.; Huang, J.; Wang, L.; Zhang, J.; Shah, S.; Khan, M.M.; Xu, F.; Fernández-Grandon, G.M.; et al. De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% EC (lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects 2021, 12, 132. [Google Scholar] [CrossRef]
- Zhang, D.-d.; Xiao, Y.-t.; Xu, P.-j.; Yang, X.-m.; Wu, Q.-l.; Wu, K.-m. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 2021, 20, 783–791. [Google Scholar] [CrossRef]
- Do Nascimento, A.R.B.; Rodrigues, J.G.; Kanno, R.H.; de Amaral, F.; Malaquias, J.B.; Silva-Brandao, K.L.; Consoli, F.L.; Omoto, C. Susceptibility monitoring and comparative gene expression of susceptible and resistant strains of Spodoptera frugiperda to lambda-cyhalothrin and chlorpyrifos. Pest Manag. Sci. 2023, 79, 2206–2219. [Google Scholar] [CrossRef]
- Yu, S.J. Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1992, 85, 675–682. [Google Scholar] [CrossRef]
- Al-Sarar, A.; Hall, F.R.; Downer, R.A. Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (J.E. Smith). Pest Manag. Sci. 2006, 62, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, D.; Buer, B.; Hamaekers, N.; Maiwald, F.; Nauen, R. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Manag. Sci. 2021, 77, 3713–3726. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.A.; Wilson, B.H.; Graves, J.B. Influence of host plant on the susceptibility of the fall armyworm to insecticides. J. Econ. Entomol. 1981, 74, 96–98. [Google Scholar] [CrossRef]
- Luginbill, P. The Fall Armyworm; U.S. Deptartment of Agriculture: Washington, DC, USA, 1928.
- Oliver, A.D.; Chapin, J.B. Biology and Illustrated Key for the Identification of Twenty Species of Economically Important Noctuid Pests; Louisiana State University Agricultural Experiment Station: Baton Rouge, LA, USA, 1981. [Google Scholar]
- Smith, J.E. The Natural History of the Rarer Lepidopterous Insects of Georgia Including Their Systematic Characters, the Particulars of Their Several Metamorphoses, and the Plants on Which They Feed: Collected from the Observations of Mr John Abbot, Many Years Resident in that Country; BHL: London, UK, 1797. [Google Scholar]
- Mahmoud, Y.H.H.; Neven, E.E. Identification and taxonomic notes of Spodoptera species (Lepidoptera: Noctuidae) known to occur In Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 161–175. [Google Scholar]
- Hallman, G. Taxonomic keys for the species of Heliothis lepidoptera Noctuidae in Colombia. Rev. Colomb. Entomol. 1978, 4, 61–69. [Google Scholar] [CrossRef]
- Guzmán-Prada, D.A.; Rodríguez-Chalarca, J.; Valencia-Cataño, S.J. Identification of Lepidoptera Larval Stages—A Maize Pest; CIAT Publication: Cali, Colombia, 2018; p. 48. [Google Scholar]
- Bourguet, D.; Genissel, A.; Raymond, M. Insecticide Resistance and Dominance Levels. J. Econ. Entomol. 2000, 93, 1588–1595. [Google Scholar] [CrossRef]
- Stone, B.F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325–326. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; p. 333. [Google Scholar]
- SAS Institute. SAS User’s Guide, Statistics Version 9, 1st ed.; SAS Institute: Cary, NC, USA, 2009. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- PoloJR. PoloJR Suite; LeOra Software, Version 1.0; LLC: Parma, MO, USA, 2021. [Google Scholar]
- GraphPad Software, I. Prism; Version 10; Dotmatics: Boston, MA, USA, 2023. [Google Scholar]
- Teran-Santofimio, H. Final Report of the Training Workshop on Insecticide Resistance Bioassays to Detect Susceptibility of Fall Armyworm (FAW) to Insecticides in Puerto Rico; IRAC (Insecticide Resistance Action Committee): Salinas, Puerto Rico, 2019. [Google Scholar]
- Hołyńska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How they affect human and animal health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Tabashnik, B.E.; Ullman, D.E.; Johnson, M.W.; Messing, R. Resistance of Aphis gossypii (Homoptera, Aphididae) to insecticides in Hawaii—Spatial patterns and relation to insecticide use. J. Econ. Entomol. 1994, 87, 293–300. [Google Scholar] [CrossRef]
- Omer, A.D.; Johnson, M.W.; Tabashnik, B.E.; Costa, H.S.; Ullman, D.E. Sweet-potato whitefly resistance to insecticides in Hawaii—Intra-island variation is related to insecticide use. Entomol. Exp. Appl. 1993, 67, 173–182. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Cushing, N.L.; Johnson, M.W. Diamondback moth (Lepidoptera, Plutellidae) resistance to insecticides in Hawaii—Intra-island variation and cross-resistance. J. Econ. Entomol. 1987, 80, 1091–1099. [Google Scholar] [CrossRef]
- Sayyed, A.H.; Attique, M.N.R.; Khaliq, A.; Wright, D.J. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Manag. Sci. 2005, 61, 636–642. [Google Scholar] [CrossRef]
- Rodrigues, A.R.S.; Torres, J.B.; Siqueira, H.A.A.; Lacerda, D.P.A. Inheritance of lambda-cyhalothrin resistance in the predator lady beetle Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Biol. Control 2013, 64, 217–224. [Google Scholar] [CrossRef]
- Achaleke, J.; Brevault, T. Inheritance and stability of pyrethroid resistance in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Central Africa. Pest Manag. Sci. 2010, 66, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.C.; Fisk, J.H. Inheritance of metabolic resistance to the synthetic pyrethroids in australian Helicoverpa-armigera (Lepidoptera, Noctuidae). Bull. Entomol. Res. 1992, 82, 5–12. [Google Scholar] [CrossRef]
- Gunning, R.V.; Easton, C.S.; Balfe, M.E.; Ferris, I.G. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pestic. Sci. 1991, 33, 473–490. [Google Scholar] [CrossRef]
- Stacke, R.F.; Godoy, D.N.; Halberstadt, S.A.; Bronzatto, E.S.; Giacomelli, T.; Hettwer, B.L.; Muraro, D.S.; Guedes, J.V.C.; Bernardi, O. Inheritance of lambda-cyhalothrin resistance, fitness costs and cross-resistance to other pyrethroids in soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). Crop Prot. 2020, 131, 8. [Google Scholar] [CrossRef]
- Susurluk, H.; Gurkan, M.O. Mode of inheritance and biochemical mechanisms underlying lambda-cyhalothrin and bifenthrin resistance in the laboratory-selected two-spotted spider mite, Tetranychus urticae. Crop Prot. 2020, 137, 8. [Google Scholar] [CrossRef]
- Watson, T.F.; Kelly, S.E. Inheritance of resistance to permethrin by the tobacco budworm, Heliothis-virescens (F)—implications for resistance management. Southw. Entomol. 1991, 15, 135–141. [Google Scholar]
- Barbosa, P.R.R.; Michaud, J.P.; Rodrigues, A.R.S.; Torres, J.B. Dual resistance to lambda-cyhalothrin and dicrotophos in Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 2016, 159, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Posos-Parra, O.; Mota-Sanchez, D.; Pittendrigh, B.R.; Wise, J.C.; DiFonzo, C.; Patterson, E. Characterization of the inheritance of field-evolved resistance to diamides in the fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae) population from Puerto Rico. PLoS ONE 2024, 19, e0295928. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J.; Nguyen, S.N. Inheritance of carbaryl resistance and microsomal oxidases in the fall armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1994, 87, 301–304. [Google Scholar] [CrossRef]
- Garlet, C.G.; Gubiani, P.D.; Palharini, R.B.; Moreira, R.P.; Godoy, D.N.; Farias, J.R.; Bernardi, O. Field-evolved resistance to chlorpyrifos by Spodoptera frugiperda (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns, and synergism. Pest Manag. Sci. 2021, 77, 5367–5374. [Google Scholar] [CrossRef]
- Lira, E.C.; Bolzan, A.; Nascimento, A.R.B.; Amaral, F.S.A.; Kanno, R.H.; Kaiser, I.S.; Omoto, C. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Manag. Sci. 2020, 76, 2674–2680. [Google Scholar] [CrossRef] [PubMed]
- Okuma, D.M.; Bernardi, D.; Horikoshi, R.J.; Bernardi, O.; Silva, A.P.; Omoto, C. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag. Sci. 2018, 74, 1441–1448. [Google Scholar] [CrossRef]
- Muraro, D.S.; Neto, D.D.A.; Kanno, R.H.; Kaiser, I.S.; Bernardi, O.; Omoto, C. Inheritance patterns, cross-resistance and synergism in Spodoptera frugiperda (Lepidoptera: Noctuidae) resistant to emamectin benzoate. Pest Manag. Sci. 2021, 77, 5049–5057. [Google Scholar] [CrossRef]
- Stacke, R.F.; Godoy, D.N.; Pretto, V.E.; Fuhr, F.M.; Gubiani, P.D.; Hettwer, B.L.; Garlet, C.G.; Somavilla, J.C.; Muraro, D.S.; Bernardi, O. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 2020, 259, 127499. [Google Scholar] [CrossRef]
- do Nascimento, A.R.B.; Pavinato, V.A.C.; Rodrigues, J.G.; Silva-Brandao, K.L.; Consoli, F.L.; Michel, A.; Omoto, C. There is more than chitin synthase in insect resistance to benzoylureas: Molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda. J. Pest Sci. 2022, 95, 129–144. [Google Scholar] [CrossRef]
- Ahrnad, M.; Sayyed, A.H.; Crickmore, N.; Saleem, M.A. Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci. 2007, 63, 1002–1010. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Haider, M.S. Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L.; from Pakistan. Ecotoxicology 2015, 24, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, A.H.; Pathan, A.K.; Faheem, U. Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pestic. Biochem. Physiol. 2010, 98, 325–332. [Google Scholar] [CrossRef]
- Huang, S.-j.; Jiang, J.-l.; Han, Z.-j. Relative fitness and inheritance mode of deltamethrin resistance in common cutworm, Spodoptera litura (Fab.). Acta Agric. Univ. Jiangxiensis 2007, 29, 24–29. [Google Scholar]
- Bouvier, J.C.; Bues, R.; Boivin, T.; Boudinhon, L.; Beslay, D.; Sauphanor, B. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity 2001, 87, 456–462. [Google Scholar] [CrossRef]
- Xi, J.; Pan, Y.O.; Bi, R.; Gao, X.W.; Chen, X.W.; Peng, T.F.; Zhang, M.; Zhang, H.; Hu, X.Y.; Shang, Q.L. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura. Pestic. Biochem. Physiol. 2015, 118, 77–81. [Google Scholar] [CrossRef]
- Thalavaisundaram, S.; Herron, G.A.; Clift, A.D.; Rose, H. Pyrethroid resistance in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and implications for its management in Australia. Aust. J. Entomol. 2008, 47, 64–69. [Google Scholar] [CrossRef]
- Achaleke, J.; Martin, T.; Ghogomu, R.T.; Vaissayre, M.; Brevault, T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag. Sci. 2009, 65, 1147–1154. [Google Scholar] [CrossRef]
- Armes, N.J.; DeSouza, K.R.; Jadhav, D.R. A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull. Entomol. Res. 1996, 86, 499–514. [Google Scholar] [CrossRef]
- Tchakounte, A.; Tchouakui, M.; Chiang, M.C.; Tchapga, W.; Kopia, E.; Soh, P.T.; Njiokou, F.; Riveron, J.M.; Wondji, C.S. Exposure to the insecticide-treated bednet PermaNet 2.0 reduces the longevity of the wild African malaria vector Anopheles funestus but GSTe2-resistant mosquitoes live longer. PLoS ONE 2019, 14, 16. [Google Scholar] [CrossRef]
- Boaventura, D.; Martin, M.; Pozzebon, A.; Mota-Sanchez, D.; Nauen, R. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects 2020, 11, 545. [Google Scholar] [CrossRef]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef]
- Eldefrawi, M.E.; Eldefrawi, A.T. Nervous-system-based insecticides. In Safer Insecticides; CRC Press: Boca Raton, FL, USA, 2020; pp. 155–207. [Google Scholar]
- Williamson, M.S.; Denholm, I.; Bell, C.A.; Devonshire, A.L. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol. Gen. Genet. 1993, 240, 17–22. [Google Scholar] [CrossRef]
- Quarterman, K.D. The Status of Fly Resistance to Insecticides in the Savannah Area and Its Implications in the General Problem of Fly Control; CDC Bulletin: Atlanta, GA, USA, 1950. [Google Scholar]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef]
- Davies, T.G.; Field, L.M.; Usherwood, P.N.; Williamson, M.S. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 2007, 59, 151–162. [Google Scholar] [CrossRef]
- Hu, Z.; Du, Y.; Nomura, Y.; Dong, K. A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids. Insect Biochem. Mol. Biol. 2011, 41, 9–13. [Google Scholar] [CrossRef]
- Soderlund, D.M.; Knipple, D.C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 2003, 33, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Nagoshi, R.N.; Goergen, G.; Koffi, D.; Agboka, K.; Adjevi, A.K.M.; Du Plessis, H.; Van den Berg, J.; Tepa-Yotto, G.T.; Winsou, J.K.; Meagher, R.L.; et al. Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior. Sci. Rep. 2022, 12, 1941. [Google Scholar] [CrossRef] [PubMed]
- Nagoshi, R.N.; Htain, N.N.; Boughton, D.; Zhang, L.; Xiao, Y.; Nagoshi, B.Y.; Mota-Sanchez, D. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 2020, 10, 1421. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.R.; Huang, L.S.; Dong, Y.Y.; Huang, W.J.; Ma, H.Q.; Zhang, H.S.; Zhang, X.Y.; Chen, X.Y.; Xu, Y.L. Migration risk of fall armyworm (Spodoptera frugiperda) from North Africa to Southern Europe. Front. Plant Sci. 2023, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Storer, N.P.; Kubiszak, M.E.; Ed King, J.; Thompson, G.D.; Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 2012, 110, 294–300. [Google Scholar] [CrossRef] [PubMed]
Compound | Location | Year | Slope | 1 RR50 | Source |
---|---|---|---|---|---|
bifenthrin | USA | 1991 | 2.9 | 29.4 | [40] |
China | 2023 | 2.05 | 21.8 | [41] | |
cyfluthrin | México | 2012 | 1.04 | 162.7 | [42] |
cyhalothrin | USA | 1991 | 1.8 | 12.5 | [40] |
cyhalothrin-lambda | 3 Venezuela | 2001 | 1.31 | 19.4 | [43] |
1.26 | 41.9 | ||||
1.08 | 65.7 | ||||
1.23 | 62 | ||||
Brazil | 1998 | 1.62 | 12.8 | [44] | |
México | 2008 | 1.08 | 204.5 | [42] | |
Brazil | 2008 | 3.11 | 28.2 | [45] | |
Colombia | 2010 | 4.10 | 34.62 | [46] | |
Colombia | 2010 | 4.84 | 50.01 | ||
China | 2021 | 1.8 | 31.2 | [47] | |
3 China | 2021 | 0.76 | 29 | [48] | |
2.56 | 317 | ||||
0.58 | 32 | ||||
0.86 | 72 | ||||
0.70 | 26 | ||||
Brazil | 2023 | 2.92 | 21.5 | [49] | |
cypermethrin | USA | 1992 | 0.8 | 9.3 | [50] |
USA | 2006 | 2.61 | 10.18 | [51] | |
cypermethrin-zeta | Puerto Rico | 2018 | 1.9 | 35 | [6] |
deltamethrin | México | 2008 | 1.04 | 1002.2 | [42] |
Puerto Rico | 2018 | 1.9 | 25 | [6] | |
Brazil | 2020 | 1.76 | 14.23 | [52] | |
3 China | 2021 | 3.21 | 12 | [48] | |
3.76 | 10 | ||||
2.94 | 12 | ||||
2.31 | 20 | ||||
China | 2023 | 2.24 | 13.9 | [41] | |
fenvalerate | USA | 1992 | 2.2 | 15 | [50] |
3 China | 2021 | 0.51 | 15 | [48] | |
0.98 | 33 | ||||
1.72 | 26 | ||||
1.55 | 11 | ||||
fluvalinate | USA | 1991 | 2.9 | 216 | [40] |
permethrin | USA | 1981 | 2 n/a | 17 | [53] |
USA | 1991 | 3.3 | 13.9 | [40] | |
USA | 1992 | 2 | 40 | [50] | |
Mexico | 2018 | 2 | 19 | [6] | |
Puerto Rico | 2018 | 1.6 | 48 | ||
tau-fluvalinate | USA | 1992 | 1.5 | 263.9 | [50] |
tralomethrin | USA | 1991 | 5.4 | 41.2 | [40] |
Pyrethroid | Strain | n | Slope | SE | 1 LCs50 | (95% CI) | 1 LCs90 | (95% CI) | 2 RR50 | 2 RR90 |
---|---|---|---|---|---|---|---|---|---|---|
esfen | PPR | 233 | 1.9 | 0.4 | 3.8 | (1.3, 6.7) | 17 | (8.9, 183) | 62 | 123 |
SUS | 287 | 3.5 | 0.6 | 0.06 | (0.04, 0.08) | 0.1 | (0.09, 0.33) | 1 | 1 | |
H1 (♂ SUS × ♀ PPR) | 369 | 9.7 | 1.8 | 0.8 | (0.7, 0.87) | 1 | (0.97, 1.37) | 13 | 8 | |
H2 (♀ SUS × ♂ PPR) | 424 | 1.9 | 0.2 | 2.2 | (1.85, 2.65) | 10 | (7.9, 14.9) | 34 | 62 | |
delta | PPR | 228 | 3.9 | 0.41 | 0.41 | (0.35, 0.46) | 0.87 | (0.74, 1.07) | 15 | 20 |
SUS | 240 | 5.8 | 1.1 | 0.03 | (0.02, 0.03) | 0.04 | (0.03, 0.10) | 1 | 1 | |
H1 (♂ SUS × ♀ PPR) | 287 | 3.7 | 0.4 | 0.3 | (0.26, 0.34) | 0.7 | (0.58, 0.84) | 12 | 16 | |
H2 (♀ SUS × ♂ PPR) | 335 | 2.9 | 0.40 | 0.398 | (0.3, 0.5) | 1.11 | (0.79, 2.03) | 15 | 25 |
Pyrethroid | Synergists | Strain | n | Slope | SE | 1 LCs50 | (95% CI) | 1 LCs90 | (95% CI) | 3 RR50 | 2 SR50 | 2 SR90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
esfen | - | PPR | 233 | 1.9 | 0.4 | 3.76 | (1.3, 6.7) | 17.2 | (8.9, 183) | 62 | - | - |
PBO | 327 | 1.7 | 0.3 | 1.07 | (0.6, 1.7) | 6.0 | (3.3, 19) | 18 | 3.5 | 2.9 | ||
DEM | 528 | 1.8 | 0.4 | 0.49 | (0.2, 0.76) | 2.4 | (1.4, 8) | 8 | 7.7 | 7.1 | ||
DEF | 384 | 1.8 | 0.1 | 0.53 | (0.4, 0.66) | 2.8 | (2.1, 4) | 9 | 7.1 | 6.1 | ||
VER | 432 | 3.0 | 0.6 | 0.80 | (0.52, 1.2) | 2.1 | (1.3, 5.3) | 13 | 4.7 | 8.1 | ||
PBO + DEM + DEF + VER | 335 | 1.9 | 0.3 | 0.31 | (0.2, 0.45) | 1.4 | (0.9, 3) | 5 | 12 | 12 | ||
- | SUS | 287 | 3.5 | 0.6 | 0.06 | (0.04, 0.08) | 0.1 | (0.09, 0.33) | 1 | - | - | |
PBO | 288 | 2.6 | 0.3 | 0.01 | (0.011, 0.015) | 0.04 | (0.03, 0.06) | 0 | 4.6 | 3.3 | ||
DEM | 432 | 2.5 | 1.2 | 0.33 | * - | 1.1 | * - | 5 | 0.2 | 0.1 | ||
DEF | 240 | 3.1 | 0.3 | 0.04 | (0.036, 0.05) | 0.1 | (0.09, 0.15) | 1 | 1.4 | 1.3 | ||
VER | 479 | 3.5 | 0.3 | 0.12 | (0.1, 0.13) | 0.3 | (0.23, 0.32) | 2 | 0.5 | 0.5 | ||
PBO + DEM + DEF + VER | 430 | 4.1 | 1.6 | 0.07 | (0.032, 0.28) | 0.1 | (0.08, 245) | 1 | 0.9 | 1.0 |
Pyrethroid | Synergists | Strain | n | Slope | SE | 1 LCs50 | (95% CI) | 1 LCs90 | (95% CI) | 3 RR50 | 2 SR50 | 2 SR90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
delta | - | PPR | 228 | 3.9 | 0.4 | 0.406 | (0.3, 0.4) | 0.9 | (0.74, 1.07) | 15 | - | - |
PBO | 239 | 2.0 | 0.5 | 0.184 | (0.04, 0.44) | 0.8 | (0.3, 55) | 7 | 2 | 1 | ||
DEM | 239 | 2.4 | 0.3 | 0.207 | (0.16, 0.24) | 0.7 | (0.54, 0.97) | 7.8 | 2 | 1 | ||
DEF | 335 | 1.3 | 0.2 | 0.024 | (0.008, 0.05) | 0.3 | (0.1, 1.2) | 0.92 | 17 | 3 | ||
VER | 335 | 2.3 | 0.4 | 0.091 | (0.05, 0.17) | 0.3 | (0.17, 1.61) | 3.4 | 4 | 3 | ||
- | SUS | 240 | 5.8 | 1.1 | 0.026 | (0.021, 0.034) | 0.04 | (0.03, 0.106) | 1 | - | - | |
PBO | 283 | 2.6 | 0.4 | 0.009 | (0.005, 0.012) | 0.03 | (0.017, 0.07) | 0.34 | 3 | 1.6 | ||
DEM | 336 | 3.4 | 0.5 | 0.026 | (0.02, 0.03) | 0.06 | (0.045. 0.11) | 1 | 1 | 0.7 | ||
DEF | 239 | 2.3 | 0.4 | 0.02 | (0.015, 0.023) | 0.07 | (0.05, 0.14) | 0.76 | 1.3 | 0.6 | ||
VER | 528 | 2.7 | 0.3 | 0.028 | (0.02, 0.03) | 0.08 | (0.063, 0.12) | 1.05 | 1 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posos-Parra, O.A.; Pittendrigh, B.R.; Wise, J.C.; DiFonzo, C.; Patterson, E.; Mota-Sanchez, D. Inheritance and Resistance Mechanisms of Field-Evolved Resistance to Pyrethroids in a Fall Armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) Strain from Puerto Rico. Insects 2024, 15, 912. https://doi.org/10.3390/insects15120912
Posos-Parra OA, Pittendrigh BR, Wise JC, DiFonzo C, Patterson E, Mota-Sanchez D. Inheritance and Resistance Mechanisms of Field-Evolved Resistance to Pyrethroids in a Fall Armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) Strain from Puerto Rico. Insects. 2024; 15(12):912. https://doi.org/10.3390/insects15120912
Chicago/Turabian StylePosos-Parra, Omar Alejandro, Barry R. Pittendrigh, John C. Wise, Christina DiFonzo, Eric Patterson, and David Mota-Sanchez. 2024. "Inheritance and Resistance Mechanisms of Field-Evolved Resistance to Pyrethroids in a Fall Armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) Strain from Puerto Rico" Insects 15, no. 12: 912. https://doi.org/10.3390/insects15120912
APA StylePosos-Parra, O. A., Pittendrigh, B. R., Wise, J. C., DiFonzo, C., Patterson, E., & Mota-Sanchez, D. (2024). Inheritance and Resistance Mechanisms of Field-Evolved Resistance to Pyrethroids in a Fall Armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) Strain from Puerto Rico. Insects, 15(12), 912. https://doi.org/10.3390/insects15120912