Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Infestation Rates and Ear Damage
3.2. Grain Yield and Test Weight
3.3. Mycotoxin Contamination Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koziel, M.G.; Beland, G.L.; Bowman, C.; Carozzi, N.B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat. Biotechnol. 1993, 11, 194–200. Available online: https://www.nature.com/articles/nbt0293-194 (accessed on 22 April 2024). [CrossRef]
- Ostlie, K.R.; Hutchison, W.D.; Hellmich, R.L. Bt Corn and European Corn Borer; North Central Regional Publication 602; Iowa State University Press: Ames, IA, USA, 1997. [Google Scholar]
- Reay-Jones, F.P.; Reisig, D.D. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas. J. Econ. Entomol. 2014, 107, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Bibb, J.L.; Cook, D.; Catchot, A.; Musser, F.; Stewart, S.D.; Leonard, B.R.; Buntin, G.D.; Kerns, D.; Allen, T.W.; Gore, J. Impact of corn earworm (Lepidoptera: Noctuidae) on field corn (Poales: Poaceae) yield and grain quality. J. Econ. Entomol. 2018, 111, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Olivi, B.M.; Gore, J.; Musser, F.M.; Catchot, A.L.; Cook, D.R. Impact of simulated corn earworm (Lepidoptera: Noctuidae) kernel feeding on field corn yield. J. Econ. Entomol. 2019, 112, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Dicke, F.F.; Guthrie, W.D. The most important corn insects. In Corn and Corn Improvement, 3rd ed.; Sprague, G.F., Dudley, J.W., Eds.; American Society of Agronomy number 18; American Society of Agronomy: Madison, WI, USA, 1988; pp. 769–850. [Google Scholar]
- Buntin, G.D.; Lee, R.D.; Wilson, D.M.; McPherson, R.M. Evaluation of YieldGard transgenic resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) on corn. Fla. Entomol. 2001, 84, 37–42. [Google Scholar] [CrossRef]
- Buntin, G.D.; All, J.N.; Lee, R.D.; Wilson, D.M. Plant-incorporated Bacillus thuringiensis resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) in corn. J. Econ. Entomol. 2004, 97, 1603–1611. [Google Scholar] [CrossRef]
- Cook, D.R.; Crow, W.; Gore, J.; Threet, M. Performance of selected Bt corn hybrids/technologies against corn earworm 1, 2020. Arthropod Manag. Tests 2021, 46, tsab087. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.F.; Buntin, G.D.; Reisig, D.D. Interactive effects between yields of Bt and non-Bt corn and planting dates in the southeastern United States. J. Econ. Entomol. submitted.
- USDA-ERS (Economic Research Service). Recent Trends in GE Adoption. 2020. Available online: https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx (accessed on 22 April 2024).
- DeLamar, Z.D.; Flanders, K.L.; Holliman, J.L.; Mask, P.L. Efficacy of transgenic corn against southern insect pests in Marion Junction, Alabama, 1998. Arthropod Manag. Tests 1999, 24, M8. [Google Scholar] [CrossRef]
- DeLamar, Z.D.; Flanders, K.L.; Pegues, M.D.; Mask, P.L. Efficacy of transgenic corn against southern insect pests in Fairhope, Alabama, 1998. Arthropod Manag. Tests 1999, 24, M9. [Google Scholar] [CrossRef]
- Buntin, G.D.; Flanders, K.L.; Lynch, R.E. Assessment of experimental Bt events against fall armyworm and corn earworm in field corn. J. Econ. Entomol. 2004, 97, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Drury, S.M.; Reynolds, T.L.; Ridley, W.P.; Bogdanova, N.; Riordan, S.; Nemeth, M.A.; Sorbet, R.; Trujillo, W.A.; Breeze, M.L. Composition of forage and grain from second-generation insect-protected corn MON 89034 is equivalent to that of conventional corn (Zea mays L.). J. Agric. Food Chem. 2008, 56, 4623–4630. [Google Scholar] [CrossRef] [PubMed]
- Rule, D.M.; Nolting, S.P.; Prasifka, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.F.; Siebert, M.W.; Hendrix, W.H., III. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and Cry2Ab2 expressed in SmartStax corn hybrids against lepidopteran insect pests in the northern United States. J. Econ. Entomol. 2014, 107, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Guo, J.; Brown, S.; Head, J.P.; Price, P.A.; Paula-Moraes, S.; Ni, X.; Dimase, M.; Huang, F. Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A.105/Cry2Ab2 proteins in northeast Louisiana, the United States. J. Invertebr. Pathol. 2019, 163, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; González, J.C.S.; Williams, J.; Cook, D.C.; Gilreath, R.T.; Kerns, D.L. Occurrence and ear damage of Helicoverpa zea on transgenic Bacillus thuringiensis maize in the field in Texas, U.S. and its susceptibility to Vip3A protein. Toxins 2019, 11, 102. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.; Bilbo, T.R.; Reisig, D.D. Decline in sublethal effects of Bt corn on corn earworm (Lepidoptera: Noctuidae) linked to increasing levels of resistance. J. Econ. Entomol. 2020, 113, 2241–2249. [Google Scholar] [CrossRef]
- Dively, G.P.; Kuhar, T.P.; Taylor, S.; Doughty, H.B.; Holmstrom, K.; Gilrein, D.; Nault, B.A.; Ingerson-Mahar, J.; Whalen, J.; Reisig, D.; et al. Sweet corn sentinel monitoring for lepidopteran field-evolved resistance to Bt toxins. J. Econ. Entomol. 2021, 114, 307–319. [Google Scholar] [CrossRef]
- Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crops 2010, 1, 337–343. [Google Scholar] [CrossRef]
- Bilbo, T.R.; Reay-Jones, F.P.; Reisig, D.D.; Greene, J.K. Susceptibility of corn earworm (Lepidoptera: Noctuidae) to Cry1A.105 and Cry2Ab2 in North and South Carolina. J. Econ. Entomol. 2019, 112, 1845–1857. [Google Scholar] [CrossRef]
- Cook, D.R.; Gore, J.; Crow, W. Performance of selected of Bt corn hybrids/technologies against corn earworm, 2016. Arthropod Manag. Tests 2020, 45, tsaa095. [Google Scholar] [CrossRef]
- Yang, F.; González, J.C.S.; Little, N.; Reisig, D.D.; Payne, G.; Dos Santos, R.F.; Jurat-Fuentes, J.L.; Kurtz, R.; Kerns, D.L. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kerns, D.L.; Little, N.S.; González, J.C.S.; Tabashnik, B.E. Early warning of resistance to Bt toxin Vip3Aa in Helicoverpa zea. Toxins 2021, 13, 618. [Google Scholar] [CrossRef]
- McMillian, W.W.; Wilson, D.M.; Widstrom, N.W. Aflatoxin contamination of preharvest corn in Georgia: A six-year study of insect damage and visible Aspergillus flavus. J. Environ. Qual. 1985, 14, 200–202. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Weaver, M.A.; Shier, W.T.; Bruns, H.A.; Bellaloui, N.; Accinelli, C.; Abel, C.A. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States. J. Agric. Food Chem. 2013, 61, 11759–11770. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize ears. Annu. Rev Phytopath. 2003, 17, 233–239. [Google Scholar]
- Pruter, L.S.; Weaver, M.; Brewer, M.J. Overview of risk factors and strategies for management of insect-derived ear injury and aflatoxin accumulation for maize grown in subtropical areas of North America. J. Integr. Pest Manag. 2020, 11, 13. [Google Scholar] [CrossRef]
- Abbas, H.K.; Wilkinson, J.R.; Zablotowicz, R.M.; Accinelli, C.; Abel, C.A.; Bruns, H.A.; Weaver, M.A. Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Rev. 2009, 28, 142–153. [Google Scholar] [CrossRef]
- Pruter, L.S.; Brewer, M.J.; Weaver, M.A.; Murray, S.C.; Isakeit, T.S.; Bernal, J.S. Association of insect-derived ear injury with yield and aflatoxin of maize hybrids varying in Bt transgenes. Environ. Entomol. 2019, 48, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.W.; Munkvold, G.P. Effects of planting date and environmental factors on fusarium ear rot symptoms and fumonisin B1 accumulation in maize grown in six North American locations. Plant Path. 2012, 61, 1130–1142. [Google Scholar] [CrossRef]
- CDC (U.S. Centers for Disease Control). Outbreak of aflatoxin poisoning—Eastern and central provinces, Kenya, January-July 2004. Morb. Mortal. Wkly. Rep. 2004, 53, 790–793. [Google Scholar]
- Smith, M.S.; Riley, T.J. Direct and interactive effects of planting date, irrigation, and corn earworm (Lepidoptera: Noctuidae) damage on aflatoxin production in preharvest field corn. J. Econ. Entomol. 1992, 85, 998–1006. [Google Scholar] [CrossRef]
- Wiatrak, P.J.; Wright, D.L.; Marois, J.J.; Wilson, D. Influence of planting date on aflatoxin accumulation in Bt, non-Bt, and tropical non-Bt hybrids. Agron. J. 2005, 97, 440–445. [Google Scholar] [CrossRef]
- Abbas, H.; Shier, W.; Cartwright, R. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 2007, 88, 41–50. [Google Scholar] [CrossRef]
- Pruter, L.S.; Brewer, M.J.; Murray, S.C.; Isakeit, T.; Pekar, J.J.; Wahl, N.J. Yield, insect-derived ear injury, and aflatoxin among developmental and commercial maize hybrids adapted to the North American subtropics. J. Econ. Entomol. 2020, 113, 2950–2958. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. 2000. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed (accessed on 22 April 2024).
- FDA. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. 2001. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 22 April 2024).
- Lillehoj, E.B.; Kwolek, W.F.; Fennell, D.I.; Milburn, M.S. Aflatoxin incidence and association with bright greenish-yellow fluorescence and insect damage in a limited survey of freshly harvested high-moisture corn. Cereal Chem. 1975, 52, 403–411. [Google Scholar]
- Abel, C.A.; Abbas, H.K.; Zablotowicz, R.M.; Pollan, M.; Dixon, K. The association between corn earworm damage and aflatoxin production in preharvest maize grain. In Proceedings of the 3rd Fungal Genomics, 4th Fumonisin Elimination and 16th Aflatoxin Elimination Workshop, Savannah, Georgia, 13–15 October 2003; Robens, J.F., Brown, R.L., Eds.; p. 47. [Google Scholar]
- Windham, G.L.; Williams, P.W.; Davis, F.M. Effects of the southwestern corn borer on Aspergillus flavus kernel infection and aflatoxin accumulation in maize hybrids. Plant Dis. 1999, 83, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Williams, W.P.; Windham, G.L.; Buckley, P.M.; Daves, C.A. Aflatoxin accumulation in conventional and transgenic corn hybrids infested with southwestern corn borer (Lepidoptera: Crambidae). J. Agric. Urban Entomol. 2002, 19, 227–236. [Google Scholar]
- Bruns, H.A.; Abbas, H.K. Planting date effects on Bt and non-Bt corn in the mid-South. J. Agron. 2006, 98, 100–106. [Google Scholar] [CrossRef]
- Bowers, E.; Hellmich, R.; Munkvold, G. Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. J. Agric. Food Chem. 2014, 62, 6463–6472. [Google Scholar] [CrossRef]
- Farias, C.A.; Brewer, M.J.; Anderson, D.J.; Odvody, G.N.; Xu, W.; Sétamou, M. Native maize resistance to corn earworm, Helicoverpa zea, and fall armyworm, Spodoptera frugiperda, with notes on aflatoxin content. Southwest Entomol. 2014, 39, 411–426. [Google Scholar]
- Yu, J.; Hennessy, D.A.; Wu, F. The impact of Bt corn on aflatoxin-related insurance claims in the United States. Sci. Rep. 2020, 10, 10046. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999, 83, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Bowers, E.; Hellmich, R.; Munkvold, G. Vip3Aa and Cry1Ab proteins in maize reduce Fusarium ear rot and fumonisins by deterring kernel injury from multiple lepidopteran pests. World Mycotoxin J. 2013, 6, 127–135. [Google Scholar] [CrossRef]
- Bowen, K.L.; Flanders, K.L.; Hagan, A.K.; Ortiz, B. Insect damage, aflatoxin content, and yield of Bt corn in Alabama. J. Econ. Entomol. 2014, 107, 1818–1827. [Google Scholar] [CrossRef]
- Parker, N.S.; Anderson, N.R.; Richmond, D.S.; Long, E.Y.; Wise, K.A.; Krupke, C.H. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn. Pest Manag. Sci. 2016, 73, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Limay-Rios, V.; Hooker, D.C.; Schaafsma, A.W. Fusarium graminearum mycotoxins in maize associated with Striacosta albicosta (Lepidoptera: Noctuidae) injury. J. Econ. Entomol. 2018, 111, 1227–1242. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S.; Nuti, M.; Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: A meta-analysis of 21 years of field data. Sci. Rep. 2018, 8, 3113. [Google Scholar] [CrossRef]
- Davis, F.M.; Ng, S.S.; Williams, W.P. Visual rating scales for screening whorl-stage corn for resistance to fall armyworm. Miss. Agric. For. Exp. Stn. Tech. Bull. 1992, 186, 1–9. [Google Scholar]
- Adendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; PMR 109; Iowa States University Extension: Ames, IA, USA, 2011. [Google Scholar]
- NEOGEN. Veratox®® for Aflatoxin. Available online: https://www.neogen.com/solutions/mycotoxins/veratox-aflatoxin/ (accessed on 10 August 2019).
- NEOGEN. Veratox®® for Fumonisin. Available online: https://www.neogen.com/solutions/mycotoxins/veratox-fumonisin/ (accessed on 10 August 2019).
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; Method 2001.06; AOAC International: Rockville, MD, USA, 2019; Available online: https://search.worldcat.org/title/Official-methods-of-analysis-of-AOAC-International/oclc/1112415371 (accessed on 10 September 2020).
- SAS Institute. SAS Version 9.4 User’s Manual; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- SAS Institute. JMP Pro Version 15.0.0 User’s Manual; SAS Institute: Cary, NC, USA, 2019. [Google Scholar]
- Siebert, M.W.; Nolting, S.P.; Hendrix, W.; Dhavala, S.; Craig, C.; Leonard, B.R.; Stewart, S.D.; All, J.N.; Musser, F.R.; Buntin, G.D.; et al. Evaluation of corn hybrids expressing Cry1F, Cry1A. 105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. J. Econ. Entomol. 2012, 105, 1825–1834. [Google Scholar] [CrossRef]
- Huang, F.; Qureshi, J.A.; Meagher, R.L., Jr.; Reisig, D.D.; Head, G.P.; Andow, D.A.; Ni, X.; Kerns, D.; Buntin, G.D.; Niu, Y.; et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 2014, 9, e112958. [Google Scholar] [CrossRef]
- Niu, Y.; Meagher, R.L., Jr.; Yang, F.; Huang, F. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F and corn leaf tissue containing single and pyramided Bt genes. Fla. Entomol. 2013, 96, 701–713. [Google Scholar] [CrossRef]
- Niu, Y.; Oyediran, I.; Yu, W.; Lin, S.; Dimase, M.; Brown, S.; Reay-Jones, F.P.F.; Cook, D.; Reisig, D.D.; Thrash, B.; et al. Populations of Helicoverpa zea (Boddie) in the southeastern United States are commonly resistant to Cry1Ab, but still susceptible to Vip3Aa20 expressed in MIR 162 corn. Toxins 2021, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Welch, K.L.; Unnithan, G.C.; Degain, B.A.; Wei, J.; Zhang, J.; Li, X.; Tabashnik, B.E.; Carrière, Y. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 2015, 132, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, T.R.; Reay-Jones, F.P.; Reisig, D.D.; Musser, F.R.; Greene, J.K. Effects of Bt corn on the development and fecundity of corn earworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 2018, 111, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Buntin, G.D. Corn expressing Cry1Ab or Cry1F endotoxin for fall armyworm and corn earworm (Lepidoptera: Noctuidae) management in field corn for grain production. Fla. Entomol. 2008, 91, 523–530. [Google Scholar]
- Reay-Jones, F.P.F.; Buntin, G.D.; Reisig, D.D.; Bridges, W.C., Jr. Longitudinal trails illustrate interactive effects between declining Bt efficacy against Helicoverpa zea and planting dates in corn. J. Econ. Entomol. 2024, 117, 1901–1912. [Google Scholar] [CrossRef]
- Reisig, D.D.; Akin, D.S.; All, J.N.; Bessin, R.T.; Brewer, M.J.; Buntin, G.D.; Catchot, A.L.; Cook, D.; Flanders, K.L.; Huang, F.-N.; et al. Lepidopteran injury to corn containing single and pyramided Bt traits, and a refuge blend with Cry1Ab x Cry1F, in the southern United States. J. Econ. Entomol. 2015, 108, 157–165. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.F.; Bessin, R.T.; Brewer, M.J.; Buntin, G.D.; Catchot, A.L.; Cook, D.R.; Flanders, K.L.; Kerns, D.L.; Porter, R.P.; Reisig, D.D.; et al. Impact of Lepidoptera (Crambidae, Noctuidae, and Pyralidae) pests on corn containing pyramided Bt traits and a blended refuge in the southern United States. J. Econ. Entomol. 2016, 109, 1859–1871. [Google Scholar] [CrossRef]
- Reay-Jones, F.P. Pest status and management of corn earworm (Lepidoptera: Noctuidae) in field corn in the United States. J. Integr. Pest Manag. 2019, 10, 19. [Google Scholar] [CrossRef]
- Dowd, P.F. Biotic and abiotic factors limiting the efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J. Econ. Entomol. 2001, 94, 1067–1074. [Google Scholar] [CrossRef]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Caprio, M.A.; Kurtz, R.; Catchot, A.; Kerns, D.; Reisig, D.; Gore, J.; Reay-Jones, F.P.F. The corn-cotton agroecosystem in the mid-southern United States: What insecticidal event pyramids should be used in each to extend Vip3A durability. J. Econ. Entomol. 2019, 112, 2894–2906. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Fabrick, J.A.; Carriere, Y. Global patterns of insect resistance to transgenic Bt crops: The first 25 years. J. Econ. Entomol. 2023, 116, 297–309. [Google Scholar] [CrossRef]
- Head, G.P.; Greenplate, J. The design and implementation of inset resistance management program for Bt crops. GM Crops Food 2012, 3, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Fabrick, J.A.; Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016, 34, 291–302. [Google Scholar] [CrossRef]
- Reisig, D.D.; DiFonzo, C.; Dively, G.; Farhan, Y.; Gore, J.; Smith, J. Best management practices to delay the evolution of Bt resistance in lepidopteran pests without high susceptibility to Bt toxins in North America. J. Econ. Entomol. 2022, 115, 16–26. [Google Scholar] [CrossRef]
Brand and Hybrid | Product Name | Bt Toxins a | Year |
---|---|---|---|
DeKalb DKC 6694 | Non-Bt | None | 2019, 2020 |
DeKalb DKC 6697 | Genuity VT Double PRO | Cry1A.105, Cry2Ab2 | 2019, 2020 |
DeKalb DKC 6629 | Genuity Trecepta | Cry1A.105, Cry2Ab2, Vip3Aa20 | 2019, 2020 |
DeKalb DKC 6205 | Non-Bt | None | 2019, 2020 |
DeKalb DKC 6208 | SmartStax | Cry1A.105, Cry2Ab2, Cry1Fa2 | 2019, 2020 |
DeKalb DKC 6824 | Non-Bt | None | 2020 |
DeKalb DKC 6826 | Genuity VT Double PRO | Cry1A.105, Cry2Ab2 | 2020 |
DeKalb DKC 6799 | Genuity Trecepta | Cry1A.105, Cry2Ab2, Vip3Aa20 | 2020 |
Pioneer 1637R | None | None | 2019, 2020 |
Pioneer 1637YHR | Optimum Intrasect | Cry1Ab, Cry1Fa2 | 2019, 2020 |
Pioneer 1637VYHR | Optimum Leptra | Cry1Ab, Cry1Fa2, Vip3Aa20 | 2019 |
Pioneer 1870R | None | None | 2020 |
Pioneer 1870YHR | Optimum Intrasect | Cry1Ab, Cry1Fa2 | 2020 |
Pioneer 2088R | None | None | 2019, 2020 |
Pioneer 2089VYHR | Optimum Leptra | Cry1Ab, Cry1Fa2, Vip3Aa20 | 2019, 2020 |
Brand and Hybrid a | Bt Traits | Infested Ears at R3 (%) | Damaged Ears at R6 (%) | Damage (cm2) by Ear Region | ||
---|---|---|---|---|---|---|
Ear Tip | Kernels | Total | ||||
DKC 6694 | None (RR2) | 55.0 ± 5.2 c | 57.5 ± 5.3 c | 0.92 ± 0.14 e | 1.15 ± 0.28 cd | 2.07 ± 0.38 d |
DKC 6697 | VT Double PRO + | 28.3 ± 4.7 e | 35.8 ± 6.7 d | 0.47 ± 0.10 f | 0.48 ± 0.15 ef | 0.96 ± 0.22 e |
DKC 6629 | Trecepta ++ | 0 f | 0 e | 0 g | 0 f | 0 f |
DKC 6205 | None (RR2) | 65.8 ± 6.1 b | 61.7 ± 5.6 c | 1.39 ± 0.16 cd | 1.32 ± 0.26 cd | 2.72 ± 0.35 cd |
DKC 6208 | SmartStax + | 41.7 ± 6.0 d | 50.8 ± 4.2 c | 1.15 ± 0.16 de | 0.93 ± 0.19 de | 2.08 ± 0.18 d |
Pio 1637R | None (RR2) | 84.2 ± 5.2 a | 90.8 ± 3.3 a | 2.37 ± 0.19 b | 2.75 ± 0.57 b | 5.11 ± 0.66 b |
Pio 1637YHR | Intrasect + | 80.8 ± 4.8 a | 77.5 ± 7.0 b | 1.59 ± 0.30 c | 1.60 ± 0.33 c | 3.19 ± 0.57 c |
Pio 1637VYHR | Leptra ++ | 0 f | 0 e | 0 g | 0 f | 0 f |
Pio 2088R | None (RR2) | 87.5 ± 5.4 a | 96.7 ± 2.2 a | 3.25 ± 0.16 a | 3.47 ± 0.51 a | 6.72 ± 0.57 a |
Pio 2089VYHR | Leptra ++ | 1.7 ± 1.7 f | 0 e | 0 g | 0 f | 0 f |
F > (P) (df = 9, 54) | 96.98 (<0.0001) | 78.72 (<0.0001) | 28.74 (<0.0001) | 26.49 (<0.0001) | 55.84 (<0.0001) |
Brand and Hybrid a | Bt Traits | Infested Ears at R3 (%) | Damaged Ears at R6 (%) | Damage (cm2) by Ear Region | ||
---|---|---|---|---|---|---|
Ear Tip | Kernels | Total | ||||
DKC 6694 | None (RR2) | 42.5 ± 14.3 bc | 38.3 ± 14.3 bc | 0.67 ± 0.26 cd | 0.74 ± 0.28 de | 1.42 ± 0.54 de |
DKC 6697 | VT Double PRO + | 39.2 ± 13.6 bc | 28.3 ± 10.5 c | 0.37 ± 0.14 d | 0.42 ± 0.17 e | 0.78 ± 0.31 e |
DKC 6629 | Trecepta ++ | 2.5 ± 2.5 d | 0.8 ± 0.8 d | 0.02 ± 0.02 e | 0.01 ± 0.01 f | 0.02 ± 0.02 f |
DKC 6205 | None (RR2) | 56.7 ± 10.8 ab | 55.8 ± 15.8 ab | 1.01 ± 0.32 bc | 1.48 ± 0.49 cd | 2.49 ± 0.81 cd |
DKC 6208 | SmartStax+ | 36.8 ± 13.4 c | 35.0 ± 9.9 c | 0.64 ± 0.20 cd | 0.83 ± 0.28 de | 1.47 ± 0.48 de |
DKC 6824 | None (RR2) | 55.0 ± 10.6 abc | 60.8 ± 10.6 a | 1.32 ± 0.28 ab | 2.32 ± 0.44 b | 3.64 ± 0.72 ab |
DKC 6826 | VT Double PRO + | 37.5 ± 10.9 c | 35.8 ± 12.3 c | 0.65 ± 0.25 cd | 1.02 ± 0.45 de | 1.67 ± 0.69 de |
DKC 6799 | Trecepta ++ | 3.3 ± 3.3 d | 0.8 ± 0.8 d | 0.01 ± 0.01 e | 0.02 ± 0.02 f | 0.02 ± 0.02 f |
Pio 2088R | None (RR2) | 49.2 ± 11.2 abc | 65.0 ± 8.1 a | 1.25 ± 0.21 ab | 3.20 ± 0.62 a | 4.45 ± 0.81 a |
Pio 2089VYHR | Leptra ++ | 0 | 4.2 ± 2.5 d | 0.11 ± 0.07 e | 0.05 ± 0.05 f | 0.16 ± 0.12 f |
Pio 1637/1870R | None (RR2) | 63.3 ± 11.1 a | 71.7 ± 9.2 a | 1.48 ± 0.27 a | 2.42 ± 0.45 b | 3.90 ± 0.70 ab |
Pio 1637/1870YHR | Intrasect + | 54.2 ± 10.9 abc | 54.2 ± 10.4 ab | 1.12 ± 0.22 ab | 2.19 ± 0.50 bc | 3.31 ± 0.70 bc |
F > (P) (df = 11, 66) | 11.00 (<0.0001) | 14.93 (<0.0001) | 13.72 (<0.0001) | 16.61 (<0.0001) | 16.69 (<0.0001) |
Brand and Hybrid a | Bt Traits | Grain Yield (kg/ha) | Test Weight (kg/hL) | Aflatoxin (ppb) | Fumonisin (ppm) |
---|---|---|---|---|---|
DKC 6694 | None (RR2) | 14,732 ± 273 abcd | 69.91 ± 1.67 a | 57.00 ± 50.89 bc | 32.00 ± 10.44 cde |
DKC 6697 | VT Double PRO + | 13,954 ± 594 d | 70.71 ± 1.62 a | 39.81 ± 25.08 bc | 31.75 ± 10.47 def |
DKC 6629 | Trecepta ++ | 15,313 ± 651 abc | 69.69 ± 1.74 a | 3.31 ± 1.26 c | 14.88 ± 6.07 f |
DKC 6205 | None (RR2) | 15,658 ± 805 ab | 70.11 ± 1.59 a | 15.19 ± 10.96 bc | 17.44 ± 6.44 ef |
DKC 6208 | SmartStax + | 15,456 ± 779 ab | 70.17 ± 1.57 a | 29.19 ± 16.58 bc | 17.25 ± 5.66 ef |
Pio 1637R | None (RR2) | 15,140 ± 404 abc | 68.63 ± 2.70 ab | 13.19 ± 8.89 bc | 39.50 ± 9.75 bcd |
Pio 1637YHR | Intrasect + | 15,302 ± 477 abc | 68.84 ± 2.06 ab | 184.63 ± 56.43 a | 57.13 ± 8.21 ab |
Pio 1637VYHR | Leptra ++ | 14,201 ± 593 cd | 70.28 ± 1.77 a | 16.56 ± 12.53 bc | 25.44 ± 9.52 ef |
Pio 2088R | None (RR2) | 14,672 ± 682 bcd | 63.31 ± 2.30 c | 120.38 ± 75.79 b | 75.13 ± 11.26 a |
Pio 2089VYHR | Leptra ++ | 15,830 ± 632 a | 66.68 ± 2.55 b | 116.98 ± 73.09 b | 43.62 ± 9.15 abc |
F > (P) (df = 9, 54) | 2.33 (0.0255) | 7.10 (<0.0001) | 3.15 (0.0036) | 8.80 (<0.0001) |
Brand and Hybrid a | Bt Traits | Grain Yield (kg/ha) | Test Weight (kg/hL) | Aflatoxin (ppb) | Fumonisin (ppm) |
---|---|---|---|---|---|
DKC 6694 | None (RR2) | 12,029 ± 412 cd | 75.04 ± 4.00 a | 15.10 ± 14.99 bc | 3.39 ± 0.87 |
DKC 6697 | VT Double PRO + | 13,770 ± 686 a | 70.29 ± 0.40 abc | 8.73 ± 7.77 bc | 4.15 ± 0.91 |
DKC 6629 | Trecepta ++ | 13,478 ± 678 ab | 70.00 ± 0.79 abc | 0.01 ± 0.01 c | 4.36 ± 0.76 |
DKC 6205 | None (RR2) | 12,498 ± 851 bcd | 70.87 ± 1.78 abc | 1.91 ± 1.59 bc | 6.40 ± 2.65 |
DKC 6208 | SmartStax + | 13,272 ± 932 ab | 72.45 ± 4.12 ab | 25.46 ± 18.91 bc | 6.99 ± 3.40 |
DKC 6824 | None (RR2) | 13,049 ± 751 abc | 68.81 ± 1.05 bcd | 1.37 ± 0.94 bc | 3.14 ± 1.15 |
DKC 6826 | VT Double PRO + | 12,853 ± 652 abcd | 68.91 ± 0.44 bcd | 12.60 ± 12.49 bc | 5.19 ± 2.18 |
DKC 6799 | Trecepta ++ | 13,706 ± 797 a | 69.54 ± 0.89 bcd | 0.91 ± 0.62 bc | 3.35 ± 0.93 |
Pio 2088R | None (RR2) | 13,739 ± 556 a | 64.59 ± 0.82 d | 85.01 ± 59.23 a | 6.44 ± 1.44 |
Pio 2089VYHR | Leptra ++ | 13,755 ± 727 a | 66.24 ± 0.64 cd | 58.26 ± 37.91 ab | 5.63 ± 1.64 |
Pio 1637/1870R | None (RR2) | 11,897 ± 1220 d | 68.78 ± 1.47 bcd | 0.29 ± 0.16 bc | 4.27 ± 1.11 |
Pio 1637/1870YHR | Intrasect+ | 12,822 ± 376 abcd | 70.19 ± 1.00 abc | 53.14 ± 34.70 ab | 3.50 ± 0.84 |
F > (P) (df = 11, 66) | 3.37 (0.0008) | 2.13 (0.0263) | 2.35 (0.0150) | 1.08 (0.3906) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barton, W.Y.; Buntin, G.D.; Toews, M.D. Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn. Insects 2024, 15, 914. https://doi.org/10.3390/insects15120914
Barton WY, Buntin GD, Toews MD. Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn. Insects. 2024; 15(12):914. https://doi.org/10.3390/insects15120914
Chicago/Turabian StyleBarton, William Yancey, George David Buntin, and Micheal D. Toews. 2024. "Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn" Insects 15, no. 12: 914. https://doi.org/10.3390/insects15120914
APA StyleBarton, W. Y., Buntin, G. D., & Toews, M. D. (2024). Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn. Insects, 15(12), 914. https://doi.org/10.3390/insects15120914