Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Land Use Classification and Sites
2.2. Biological Data Collection and Identification
2.2.1. Macroinvertebrate Sample Collection and Identification
2.2.2. Determination of Environmental Factors
2.3. Data Processing
2.3.1. Environmental Factors
2.3.2. Macroinvertebrate Diversity Analysis
3. Results
3.1. Physical and Chemical Characteristics of Water Bodies
3.2. Macroinvertebrate Community Structure
3.2.1. Differences in Species Composition
3.2.2. Macroinvertebrate Species Diversity
3.3. Relationship among Macroinvertebrates and Basin-Scale Environmental Factors
4. Discussion
4.1. Effect of Human Activities on the Characteristics of the Water Environment
4.2. Effects of Watershed Isolation on Water Environment Characteristics and Biological Communities
4.3. Effects of Water Environment Characteristics and Connectivity on Biological Dispersal
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Li, Y.; Su, J.; Liao, B. Urban water health: A conceptual framework and assessment system. Front. Ecol. Evol. 2023, 10, 1081555. [Google Scholar] [CrossRef]
- Hein, T.; Hauer, C.; Schmid, M.; Stöglehner, G.; Stumpp, C.; Ertl, T.; Graf, W.; Habersack, H.; Haidvogl, G.; Hood-Novotny, R.; et al. The coupled socio-ecohydrological evolution of river systems: Towards an integrative perspective of river systems in the 21st century. Sci. Total Environ. 2021, 801, 149619. [Google Scholar] [CrossRef]
- Ranta, E.; Vidal-Abarca, M.R.; Calapez, A.R.; Feio, M.J. Urban stream assessment system (UsAs): An integrative tool to assess biodiversity, ecosystem functions and services. Ecol. Indic. 2021, 121, 106980. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Balaban, O.; Doll, C.; Moreno-Peñaranda, R.; Gasparatos, A.; Iossifova, D.; Suwa, A. Cities and biodiversity: Perspectives and governance challenges for implementing the convention on biological diversity (CBD) at the city level. Biol. Conserv. 2011, 144, 1302–1313. [Google Scholar] [CrossRef]
- Peng, J.; Du, Y.; Liu, Y.; Hu, X. How to assess urban development potential in mountain areas? An approach of ecological carrying capacity in the view of coupled human and natural systems. Ecol. Indic. 2016, 60, 1017–1030. [Google Scholar] [CrossRef]
- Higgins, S.L.; Thomas, F.; Goldsmith, B.; Brooks, S.J.; Hassall, C.; Harlow, J.; Stone, D.; Völker, S.; White, P.C. Urban freshwaters, biodiversity, and human health and well-being: Setting an interdisciplinary research agenda. Wiley Interdiscip. Rev. Water 2019, 6, e1339. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2020, 24, 241–255. [Google Scholar] [CrossRef]
- Ruan, S.; Hong, Y.; Zhuang, Y. Evolution and restoration of water quality in the process of urban development: A case study in urban lake, China. Environ. Monit. Assess. 2021, 193, 407. [Google Scholar] [CrossRef]
- Lepeška, T. The impact of impervious surfaces on ecohydrology and health in urban ecosystems of Banská Bystrica (Slovakia). Soil Water Res. 2016, 11, 29–36. [Google Scholar] [CrossRef]
- Chen, W.Y. Environmental externalities of urban river pollution and restoration: A hedonic analysis in Guangzhou (China). Landsc. Urban Plan. 2017, 157, 170–179. [Google Scholar] [CrossRef]
- Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.E.; Song, X.P.; Wong, L. A conceptual framework to untangle the concept of urban ecosystem services. Landsc. Urban Plan. 2020, 200, 103837. [Google Scholar] [CrossRef]
- Dong, M.; Liu, M.Q.; Yin, L.; Zhou, J.; Sun, D.P. Concept and Practices Involved in Comprehensive River Control Based on the Synergy among Flood Control, Ecological Restoration, and Urban Development: A Case Study on a Valley Reach of Luanhe River in a Semiarid Region in North China. Water 2022, 14, 1413. [Google Scholar] [CrossRef]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, F.; Ciais, P.; Miao, C.; Yang, T.; Jia, Y.; Zhou, X.; Klaus, B.; Yang, T.; Yu, G. Human activities aggravate nitrogen-deposition pollution to inland water over China. Natl. Sci. Rev. 2019, 7, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.M.; Wang, S.; Chen, Y.; Wu, J.; Xue, L.; Fan, T.T. Pollution status of the Yellow River tributaries in middle and lower reaches. Sci. Total Environ. 2020, 722, 137861. [Google Scholar] [CrossRef]
- Begum, W.; Goswami, L.; Sharma, B.; Kushwaha, A. Assessment of urban river pollution using the water quality index and macro-invertebrate community index. Environ. Dev. Sustain. 2023, 25, 8877–8902. [Google Scholar] [CrossRef]
- Hilsenhff, L. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 1988, 7, 65–68. [Google Scholar] [CrossRef]
- Clarke, A.; Nally, R.M.; Bond, N.R.; Lake, P.S. Macroinvertebrate diversity in headwater streams: A review. Freshwater Biology. 2008, 53, 1707–1721. [Google Scholar] [CrossRef]
- Sandridge, P.T. Ecology and Classification of North American Freshwater Invertebrates. J. N. Am. Benthol. Soc. 1991, 10, 466–467. [Google Scholar] [CrossRef]
- Malmqvist, B.; Adler, P.H.; Kuusela, K.; Merritt, R.W.; Wotton, R.S. Black flies in the boreal biome, key organisms in both terrestrial and aquatic environments: A review1. Écoscience 2004, 11, 187–200. [Google Scholar] [CrossRef]
- Elizabeth Graham, S.; Storey, R.G.; Smith, B.J. Dispersal distances of aquatic insects: Upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. N. Z. J. Mar. Freshw. Res. 2017, 51, 146–164. [Google Scholar] [CrossRef]
- Bunn, S.E.; Hughes, J.M. Dispersal and Recruitment in Streams: Evidence from Genetic Studies. J. N. Am. Benthol. Soc. 1997, 16, 338–346. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Liu, Y.; Dong, Y.; Li, M.; An, Y.; Shi, F.; Beazley, R.E. Effects of the interaction among climate, terrain and human activities on biodiversity on the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 794, 148497. [Google Scholar] [CrossRef]
- Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 1992, 65, 514–527. [Google Scholar] [CrossRef]
- Chiu, M.; Ao, S.; He, F.; Resh, V.H.; Cai, Q. Elevation shapes biodiversity patterns through metacommunity-structuring processes. Sci. Total Environ. 2020, 743, 140548. [Google Scholar] [CrossRef]
- Fjellheim, A.; Raddum, G.G.; Vandvik, V.; Boggero, A.; Brancelj, A.; Galas, J.; Šporka, F.; Vidinova, Y.; Bitušík, P.; Kownacki, A.; et al. Diversity and distribution patterns of benthic inverte- brates along alpine gradients. A study of remote European freshwater lakes. Adv. Limnol. 2009, 62, 167–190. [Google Scholar] [CrossRef] [PubMed]
- Füreder, L.; Ettinger, R.; Boggero, A.; Thaler, B.; Thies, H. Macroinvertebrate Diversity in Alpine Lakes: Effects of Altitude and Catchment Properties. Hydrobiologia 2006, 562, 123–144. [Google Scholar] [CrossRef]
- Čiamporová-Zaťovičová, Z.; Hamerlík, L.; Šporka, F.; Bitušík, P. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: A basis for climate change assessment. Hydrobiologia 2010, 648, 19–34. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Tan, L.; Fornacca, D.; Fang, Y.; Zhu, L.; Rao, C.; Cao, Y.; Huang, J.; Ren, G.; et al. The ecological niche and terrestrial environment jointly influence the altitudinal pattern of aquatic biodiversity. Sci. Total Environ. 2021, 800, 149404. [Google Scholar] [CrossRef] [PubMed]
- Baptista, D.F.; Dorvillé, L.F.; Dorvillé, L.F.; Buss, D.F.; Buss, D.F.; Nessiamian, J.L. Spatial and temporal organization of aquatic insects assemblages in the longitudinal gradient of a 16.tropical river. Braz. J. Biol. 2001, 61, 295–304. [Google Scholar] [PubMed]
- Tomanova, S.; Usseglio-Polatera, P. Patterns of benthic community traits in neotropical streams: Relationship to mesoscale spatial variability. Fundam. Appl. Limnol. 2007, 170, 243–255. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Casaux, R.; Archangelsky, M.; Di Prinzio, C.Y.; Brand, C.; Kutschker, A.M. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Sci. Total Environ. 2011, 409, 612–624. [Google Scholar] [CrossRef]
- Konrad, C.P.; Booth, D.B. Hydrologic Changes in Urban Streams and Their Ecological Significance. Am. Fish. Soc. Symp. 2005, 17, 157–177. [Google Scholar]
- Pringle, C.M. Hydrologic connectivity and the management of biological reserves: A global perspective. Ecol. Appl. 2001, 11, 981–998. [Google Scholar] [CrossRef]
- May, C.W.; Horner, R.R.; Karr, J.R.; Mar, B.W.; Welch, E.B. Effects of urbanization on small streams in the Puget Sound Lowland Ecoregion. Feature Artic. Watershed Prot. Tech. 1996, 2, 483–494. [Google Scholar]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Jansson, R.; Nilsson, C.; Malmqvist, B. Restoring freshwater ecosystems in riverine landscapes: The roles of connectivity and recovery processes. Freshw. Biol. 2007, 52, 589–596. [Google Scholar] [CrossRef]
- Wohl, E.E. Human impacts to mountain streams. Geomorphology 2006, 79, 217–248. [Google Scholar] [CrossRef]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.J.; Houben, P.; Klimek, K.; Brazier, R.E.; Oost, K.V.; Pears, B. Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Altermatt, F.; Finn, D.S.; Heino, J.; Olden, J.D.; Pauls, S.U.; Lytle, D.A. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 2018, 63, 141–163. [Google Scholar] [CrossRef]
- Padial, A.A.; Ceschin, F.; Declerck, S.A.; De Meester, L.; Bonecker, C.C.; Lansac-Tôha, F.A.; Rodrigues, L.; Rodrigues, L.C.; Train, S.; Velho, L.F.; et al. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure. PLoS ONE 2014, 9, e111227. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Stoll, S.; Sundermann, A.; Haase, P. Dispersal distance and the pool of taxa, but not barriers, determine the colonisation of restored river reaches by benthic invertebrates. Freshw. Biol. 2014, 59, 1843–1855. [Google Scholar] [CrossRef]
- Brown, B.L.; Swan, C.M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 2010, 79, 571–580. [Google Scholar] [CrossRef]
- Maasri, A.; Gelhaus, J. Stream invertebrate communities of Mongolia: Current structure and expected changes due to climate change. Aquat. Biosyst. 2012, 8, 18. [Google Scholar] [CrossRef]
- Collier, K.J.; Lill, A.W. Spatial patterns in the composition of shallow-water macroinvertebrate communities of a large New Zealand river. N. Z. J. Mar. Freshw. Res. 2008, 42, 129–141. [Google Scholar] [CrossRef]
- Bruno, M.C.; Bottazzi, E.; Rossetti, G. Downward, upstream or downstream? Assessment of meio- and macrofaunal colonization patterns in a gravel-bed stream using artificial substrates. Ann. Limnol.-Int. J. Limnol. 2012, 48, 371–381. [Google Scholar] [CrossRef]
- Rahman, M.A.; Negishi, J.N.; Alam, M.; Yiyang, G.; Tolod, J.R.; Pongsivapai, P. Lateral and longitudinal flight dispersals of a stonefly, Alloperla ishikariana (Plecoptera, Chloroperlidae), from the hyporheic zone in a gravel-bed river in Japan. Limnologica 2021, 89, 125886. [Google Scholar] [CrossRef]
- Hodkinson, I. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513. [Google Scholar] [CrossRef] [PubMed]
- Heino, J.; Melo, A.S.; Siqueira, T.; Soininen, J.; Valanko, S.; Bini, L.M. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 2015, 60, 845–869. [Google Scholar] [CrossRef]
- Grant, E.H.; Lynch, H.J.; Muneepeerakul, R.; Arunachalam, M.; Rodríguez-Iturbe, I.; Fagan, W.F. Interbasin Water Transfer, Riverine Connectivity, and Spatial Controls on Fish Biodiversity. PLoS ONE 2012, 7, e34170. [Google Scholar] [CrossRef] [PubMed]
- Morse, J.C.; Yang, L.; Tian, L. Aquatic Insects of China Useful for Monitoring Water Quality; Hohai University Press: Nanjing, China, 1994. [Google Scholar]
- Epler, J.H. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina: A Guide to the Taxonomy of the Midges of the Southeastern United States, including Florida; North Carolina Department of Environmental and Natural Resources: Raleigh, NA, USA, 2001.
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. An Introduction to the Aquatic Insects of North America, 4th ed.; Kendall and Hunt: Dubuque, IA, USA, 2008. [Google Scholar]
- Liu, Y.; Zhang, W.; Wang, Y. Chinese Economic Zoology-Freshwater Mollusks; Science Press: Beijing, China, 1979; pp. 1–134. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- White, D.A.; Visser, J.M. Water quality change in the Mississippi River, including a warming river, explains decades of wetland plant biomass change within its Balize delta. Aquat. Bot. 2016, 132, 5–11. [Google Scholar] [CrossRef]
- Xu, Q.; Kun, Y.; Wang, G.; Yang, Y. Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: A case study of the Erhai Lake Basin, China. Nat. Hazards 2014, 75, 95–118. [Google Scholar]
- Brauer, C.J.; Hammer, M.P.; Beheregaray, L.B. Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol. Ecol. 2016, 25, 5093–5113. [Google Scholar] [CrossRef]
- Jencso, K.; McGlynn, B.L.; Gooseff, M.N.; Wondzell, S.M.; Bencala, K.E.; Marshall, L.A. Hydrologic connectivity between landscapes and streams: Transferring reach-and plot-scale understanding to the catchment scale. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, Y.; Ding, J.; Liu, Q.; Peng, Q.; Kang, M. Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. J. Freshw. Ecol. 2016, 31, 21–35. [Google Scholar] [CrossRef]
- Yu, D.; Shi, P.; Liu, Y.; Xun, B. Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area. Ecol. Eng. 2013, 53, 205–216. [Google Scholar] [CrossRef]
- Phillipsen, I.C.; Lytle, D.A. Aquatic insects in a sea of desert: Population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 2013, 36, 731–743. [Google Scholar] [CrossRef]
- Roxburgh, S.H.; Shea, K.; Wilson, J. The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence. Ecology 2004, 85, 359–371. [Google Scholar] [CrossRef]
- Herman, M.R.; Nejadhashemi, A.P. A review of macroinvertebrate- and fish-based stream health indices. Ecohydrol. Hydrobiol. 2015, 15, 53–67. [Google Scholar] [CrossRef]
- Koperski, P. Diversity of freshwater macrobenthos and its use in biological assessment: A critical review of current applications. Environ. Rev. 2011, 19, 16–31. [Google Scholar] [CrossRef]
- Frissell, C.A.; Liss, W.J.; Warren, C.E.; Hurley, M.D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 1986, 10, 199–214. [Google Scholar] [CrossRef]
- Dalu, T.; Mwedzi, T.; Wasserman, R.J.; Madzivanzira, T.C.; Nhiwatiwa, T.; Cuthbert, R.N. Land use effects on water quality, habitat, and macroinvertebrate and diatom communities in African highland streams. Sci. Total Environ. 2022, 846, 157346. [Google Scholar] [CrossRef]
- Iñiguez-Armijos, C.; Hampel, H.; Breuer, L. Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four Andean streams. Aquat. Ecol. 2018, 52, 77–92. [Google Scholar] [CrossRef]
- Wu, N.; Cai, Q.; Fohrer, N. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecol. Indic. 2012, 18, 108–117. [Google Scholar] [CrossRef]
- Wang, X.; Tan, X. Macroinvertebrate community in relation to water quality and riparian land use in a substropical mountain stream, China. Environ. Sci. Pollut. Res. 2017, 24, 14682–14689. [Google Scholar] [CrossRef]
- Dohet, A.; Hlúbiková, D.; Wetzel, C.E.; L’Hoste, L.; Iffly, J.F.; Hoffmann, L.; Ector, L. Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading. Sci. Total Environ. 2015, 505, 1112–1126. [Google Scholar] [CrossRef]
- Faria, A.P.; Ligeiro, R.; Calvão, L.B.; Giam, X.; Leibold, M.A.; Juen, L. Land use types determine environmental heterogeneity and aquatic insect diversity in Amazonian streams. Hydrobiologia 2023, 851, 281–298. [Google Scholar] [CrossRef]
- Petrin, Z.; Jensen, T.C.; Lungrin, E.; Eikland, K.A. Road effects on benthic macroinvertebrate assemblages in boreal headwater streams. Sci. Total Environ. 2022, 855, 158957. [Google Scholar] [CrossRef]
- Woodward, G.; Gessner, M.O.; Giller, P.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; Mckie, B.G.; Tiegs, S.D.; Cariss, H.M.; et al. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
Site | Forest Land (m2) | Cropland (m2) | Urban Land (m2) | Total |
---|---|---|---|---|
BHX | 5,680,987 | 5,029,708 | 5,915,036 | 16,625,731 |
ZHX | 3,013,559 | 3,994,146 | 5,623,893 | 12,631,598 |
YXX | 5,622,397 | 2,707,984 | 2,841,034 | 11,171,415 |
SYX | 6,838,849 | 2,919,541 | 2,692,674 | 12,451,064 |
BSX | 9,783,803 | 4,551,497 | 1,913,736 | 16,249,036 |
MYX | 18,119,389 | 6,399,511 | 4,187,368 | 28,706,268 |
JX | 12,933,323 | 3,809,709 | 3,506,424 | 20,249,456 |
WHX | 32,805,788 | 7,721,723 | 8,697,835 | 49,225,346 |
Habitat Factor | Upstream | Midstream | Downstream | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | ||
Chemical factor | Cond (μs/cm) 1 | 41.90 | 193.00 | 107.33 | 54.30 | 163.00 | 119.98 | 63.10 | 220.30 | 121.36 |
Sal (ng/L) 1 | 0.03 | 0.11 | 0.06 | 0.03 | 0.14 | 0.09 | 0.04 | 0.22 | 0.10 | |
TDS (g/L) 1 | 37.70 | 148.85 | 76.79 | 42.90 | 243.00 | 127.47 | 6.75 | 299.00 | 129.22 | |
ORP (mV) 1 | 24.10 | 73.40 | 56.16 | 20.70 | 80.70 | 53.44 | −18.60 | 80.70 | 38.28 | |
DO (mg/L) 2 | 4.13 | 8.41 | 7.13 | 4.93 | 13.57 | 7.64 | 5.12 | 11.86 | 7.46 | |
pH 2 | 6.91 | 7.90 | 7.50 | 7.25 | 8.81 | 7.80 | 7.10 | 9.77 | 8.14 | |
Chl-a (mg/cm2) 2 | 0.38 | 5.88 | 2.52 | 0.56 | 6.49 | 3.12 | 0.21 | 14.03 | 5.08 | |
Physical factor | WT (°C) 1 | 9.40 | 19.30 | 13.90 | 13.40 | 21.50 | 16.71 | 12.20 | 22.50 | 17.44 |
Width (m) 1 | 1.40 | 7.00 | 3.69 | 1.00 | 8.00 | 4.89 | 0.30 | 7.00 | 3.76 | |
FV (m/s) 1 | 0.00 | 0.26 | 0.13 | 0.00 | 0.58 | 0.18 | 0.04 | 0.84 | 0.25 | |
Land-use type | Forest Land (%)2 ** | 81.20 | 100.00 | 95.07 | 0.00 | 25.60 | 9.64 | 0.00 | 0.00 | 0.00 |
Cropland (%)2 ** | 0.00 | 6.90 | 2.33 | 0.00 | 80.90 | 44.98 | 68.80 | 89.60 | 80.26 | |
Urban Land (%)2 ** | 0.00 | 11.90 | 2.60 | 15.40 | 100.00 | 45.38 | 10.40 | 31.20 | 19.74 |
Site | Upstream | Midstream | Downstream |
---|---|---|---|
BHX | 4.3 | 5.7 | 6.2 |
ZHX | - | 5.6 | 5.5 |
YXX | 5.8 | 5.5 | 7.7 |
SYX | 3.6 | 3.6 | 7.7 |
BSX | 4.0 | 3.9 | 5.3 |
JX | 3.9 | 5.5 | 5.3 |
MYX | 4.2 | 6.6 | 6.8 |
WHX | 5.8 | 5.6 | 5.9 |
Average value | 4.6 | 5.1 | 6.4 |
Species Numbering | Cusum | Average | |
---|---|---|---|
$’1_2’ | sp35 | 0.2244153 | 0.14642 |
sp68 | 0.4046277 | 0.11758 | |
sp28 | 0.501261 | 0.06305 | |
sp26 | 0.5976117 | 0.06286 | |
sp58 | 0.6563657 | 0.03833 | |
sp36 | 0.7009538 | 0.02909 | |
$’1_3’ | sp35 | 0.2693694 | 0.20681 |
sp26 | 0.4047368 | 0.10393 | |
sp68 | 0.5180737 | 0.08702 | |
sp58 | 0.6188757 | 0.07739 | |
sp36 | 0.6768917 | 0.04454 | |
sp28 | 0.7179495 | 0.03152 | |
$’2_3’ | sp35 | 0.2565883 | 0.19059 |
sp68 | 0.4332157 | 0.1312 | |
sp26 | 0.562946 | 0.09636 | |
sp58 | 0.6554321 | 0.0687 |
Shannon–Wiener | Richness | Pielou | Forest Land | Cropland | |
---|---|---|---|---|---|
Shannon.wiener | |||||
Richness | 0.582 ** | ||||
Pielou | 0.839 ** | 0.162 | |||
Forest Land | 0.364 | 0.530 ** | 0.197 | ||
Cropland | −0.037 | −0.321 | 0.111 | −0.777 ** | |
Urban Land | −0.448 * | −0.287 | −0.396 | −0.605 ** | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, X.; Yang, R.; Farooq, M.; Tian, Z.; Xu, Y.; Shao, N.; Liu, S.; Xiao, W. Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities. Insects 2024, 15, 131. https://doi.org/10.3390/insects15020131
Li R, Li X, Yang R, Farooq M, Tian Z, Xu Y, Shao N, Liu S, Xiao W. Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities. Insects. 2024; 15(2):131. https://doi.org/10.3390/insects15020131
Chicago/Turabian StyleLi, Rui, Xianfu Li, Ronglong Yang, Muhammad Farooq, Zhen Tian, Yaning Xu, Nan Shao, Shuoran Liu, and Wen Xiao. 2024. "Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities" Insects 15, no. 2: 131. https://doi.org/10.3390/insects15020131
APA StyleLi, R., Li, X., Yang, R., Farooq, M., Tian, Z., Xu, Y., Shao, N., Liu, S., & Xiao, W. (2024). Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities. Insects, 15(2), 131. https://doi.org/10.3390/insects15020131