Mitogenomes Provide Insights into the Species Boundaries and Phylogenetic Relationships among Three Dolycoris Sloe Bugs (Hemiptera: Pentatomidae) from China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Extraction, and Sequencing
2.2. Mitogenome Assembly and Annotation
2.3. Sequence Analyses
2.4. Species Delimitation
2.5. Phylogenetic Analyses
3. Results
3.1. Mitogenome Features of the Three Dolycoris Species
3.2. Species Delimitation
3.3. Phylogenetic Analyses
4. Discussion
4.1. Mitogenome Features
4.2. Species Boundaries and Phylogenetics of the Three Dolycoris Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Z.; Hasegawa, H.; Cooley, J.R.; Simon, C.; Yoshimura, J.; Cai, W.; Sota, T.; Li, H. Mitochondrial Genomics Reveals Shared Phylogeographic Patterns and Demographic History among Three Periodical Cicada Species Groups. Mol. Biol. Evol. 2019, 36, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.E.; Wei, J.; Zhang, S.K.; Vogler, A.P.; Wu, L.; Konstantinov, A.S.; Li, W.Z.; Yang, X.K.; Xue, H.J. Diversification of mitogenomes in three sympatric Altica flea beetles (Insecta, Chrysomelidae). Zool. Scr. 2019, 48, 657–666. [Google Scholar] [CrossRef]
- Camacho, M.A.; Cadar, D.; Horváth, B.; Merino-Viteri, A.; Murienne, J. Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification. Zool. J. Linn. Soc. 2022, 196, 1591–1607. [Google Scholar] [CrossRef]
- Johnston, N.P.; Piwczyński, M.; Trzeciak, P.; Walczak, K.; Szpila, K. Integration of mitogenomic and morphological data disentangles the systematics of Pollenia and establishes a revised phylogenetic hypothesis for the Polleniidae. Syst. Entomol. 2022, 48, 296–315. [Google Scholar] [CrossRef]
- Nielsen, M.; Margaryan, A.; Nielsen, T.L.; Enghoff, H.; Allentoft, M.E. Complete mitochondrial genomes from museum specimens clarify millipede evolution in the Eastern Arc Mountains. Zool. J. Linn. Soc. 2022, 196, 924–939. [Google Scholar] [CrossRef]
- Kunde, M.N.; Barlow, A.; Klittich, A.M.; Yakupova, A.; Patel, R.P.; Fickel, J.; Forster, D.W. First mitogenome phylogeny of the sun bear Helarctos malayanus reveals a deep split between Indochinese and Sundaic lineages. Ecol. Evol. 2023, 13, e9969. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Ge, X.; Peng, L.; Vogler, A.P.; Morse, J.C.; Yang, L.; Sun, C.; Wang, B. Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). Syst. Entomol. 2022, 48, 278–295. [Google Scholar] [CrossRef]
- Lin, X.L.; Liu, Z.; Yan, L.P.; Duan, X.; Bu, W.J.; Wang, X.H.; Zheng, C.G. Mitogenomes provide new insights of evolutionary history of Boreheptagyiini and Diamesini (Diptera: Chironomidae: Diamesinae). Ecol. Evol. 2022, 12, e8957. [Google Scholar] [CrossRef] [PubMed]
- Nyman, T.; Wutke, S.; Koivisto, E.; Klemola, T.; Shaw, M.R.; Andersson, T.; Haraldseide, H.; Hagen, S.B.; Nakadai, R.; Ruohomaki, K. A curated DNA barcode reference library for parasitoids of northern European cyclically outbreaking geometrid moths. Ecol. Evol. 2022, 12, e9525. [Google Scholar] [CrossRef] [PubMed]
- Zito, A.; Rigon, T.; Dunson, D.B. Inferring taxonomic placement from DNA barcoding aiding in discovery of new taxa. Methods Ecol. Evol. 2022, 14, 529–542. [Google Scholar] [CrossRef]
- Huang, X.C.; Su, J.H.; Ouyang, J.X.; Ouyang, S.; Zhou, C.H.; Wu, X.P. Towards a global phylogeny of freshwater mussels (Bivalvia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. Mol. Phylogenet. Evol. 2019, 130, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wu, Y.; Liu, Y.; Zhao, P.; Chen, Z.; Song, F.; Li, H.; Cai, W. Comparative Mitogenomics and Phylogenetic Analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes 2021, 12, 1306. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zheng, C.; Dong, X.; Zhang, H.; Ye, Z.; Xue, H.; Bu, W. Species boundary and phylogeographical pattern provide new insights into the management efforts of Megacopta cribraria (Hemiptera: Plataspidae), a bean bug invading North America. Pest Manag. Sci. 2022, 78, 4871–4881. [Google Scholar] [CrossRef]
- Hsiao, T.Y.; Ren, S.Z.; Zheng, L.Y. A Handbook for the Determination of the Chinese Hemiptera-Heteroptera; Science Press: Beijing, China, 1977; Volume 1. [Google Scholar]
- Nakamura, K. Effect of photoperiod on development and growth in a pentatomid bug, Dolycoris baccarum. Entomol. Sci. 2003, 6, 11–16. [Google Scholar] [CrossRef]
- Durak, D. Morphology and chemical composition of metathoracic scent glands in Dolycoris baccarum (Linnaeus, 1758) (Heteroptera: Pentatomidae). Acta Zool. 2007, 89, 193–199. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Yang, X.Z.; Zhang, L.; Feng, R.Q.; Zhu, Q.H.; Chen, J.Y.; Yuan, M.L. Adaptive evidence of mitochondrial genomes in Dolycoris baccarum (Hemiptera: Pentatomidae) to divergent altitude environments. Mitochondrial DNA Part A 2019, 30, 9–15. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic. Acids. Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.; Yiu, S.M.; Chin, F.Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef]
- Fujisawa, T.; Barraclough, T.G. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 2013, 62, 707–724. [Google Scholar] [CrossRef]
- Pons, J.; Barraclough, T.G.; Gomez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006, 55, 595–609. [Google Scholar] [CrossRef]
- Lladó Fernández, S.; Větrovský, T.; Baldrian, P. The concept of operational taxonomic units revisited: Genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol. 2019, 64, 19–23. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Song, F.; Zhao, Y.; Wilson, J.J.; Cai, W. Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Syst. Entomol. 2019, 44, 810–819. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic. Acids. Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Li, W.X.; Jakovlić, I.; Zou, H.; Zhang, J.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kück, P.; Meid, S.A.; Groß, C.; Wägele, J.W.; Misof, B. AliGROOVE—Visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinform. 2014, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Clary, D.O.; Wolstenholme, D.R. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 1985, 22, 252–271. [Google Scholar] [CrossRef]
- Yuan, M.L.; Zhang, Q.L.; Guo, Z.L.; Wang, J.; Shen, Y.Y. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC Genom. 2015, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ji, Y.; Li, H.; Song, F.; Zhang, L.; Wang, M. Characterization of the complete mitochondrial genome of Pentatoma semiannulata (Hemiptera: Pentatomidae). Mitochondrial DNA Part B-Resour. 2021, 6, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Lian, D.; Wei, J.; Chen, C.; Niu, M.; Zhang, H.; Zhao, Q. Comparative analysis and phylogeny of mitochondrial genomes of Pentatomidae (Hemiptera: Pentatomoidea). Front. Genet. 2022, 13, 1045193. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.; Leger, N.; Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst. Biol. 2005, 54, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef]
- Zheng, C.; Ye, Z.; Zhu, X.; Zhang, H.; Dong, X.; Chen, P.; Bu, W. Integrative taxonomy uncovers hidden species diversity in the rheophilic genus Potamometra (Hemiptera: Gerridae). Zool. Scr. 2019, 49, 174–186. [Google Scholar] [CrossRef]
Species | Individuals | Length (bp) | T% | C% | A% | G% | A + T% | AT-Skew | GC-Skew |
---|---|---|---|---|---|---|---|---|---|
D. baccarum | HEBCZ | 15,662 | 31.3 | 15.5 | 41.9 | 11.3 | 73.2 | 0.14 | −0.16 |
JSPD | 15,474 | 31.3 | 15.6 | 41.9 | 11.3 | 73.2 | 0.14 | −0.16 | |
JXLS | 15,785 | 31.3 | 15.5 | 41.9 | 11.2 | 73.2 | 0.14 | −0.16 | |
NMJS | 15,554 | 31.3 | 15.5 | 41.9 | 11.3 | 73.2 | 0.14 | −0.16 | |
QHQQ | 15,484 | 31.3 | 15.5 | 41.9 | 11.3 | 73.2 | 0.14 | −0.16 | |
SNZC | 15,712 | 31.3 | 15.5 | 41.9 | 11.3 | 73.2 | 0.14 | −0.16 | |
D. indicus | YNLJ | 15,686 | 31.3 | 15.5 | 41.7 | 11.5 | 73.0 | 0.14 | −0.15 |
YNNN | 15,770 | 31.4 | 15.5 | 41.6 | 11.5 | 73.0 | 0.14 | −0.15 | |
YNYY | 15,255 | 31.2 | 15.6 | 41.8 | 11.4 | 73.0 | 0.15 | −0.16 | |
D. penicillatus | XJBS | 15,630 | 31.2 | 15.6 | 41.9 | 11.3 | 73.1 | 0.15 | −0.16 |
XJHQ | 15,526 | 31.2 | 15.6 | 41.9 | 11.3 | 73.1 | 0.15 | −0.16 | |
XJTP | 15,460 | 31.2 | 15.6 | 41.9 | 11.3 | 73.1 | 0.15 | −0.16 | |
XJTS | 15,508 | 31.2 | 15.6 | 41.9 | 11.3 | 73.1 | 0.15 | −0.16 | |
XJTY | 15,558 | 31.2 | 15.6 | 41.9 | 11.4 | 73.1 | 0.15 | −0.16 | |
XJYB | 15,558 | 31.2 | 15.6 | 41.9 | 11.3 | 73.1 | 0.15 | −0.16 |
Gene | Intraspecific Distance (%) | Interspecific Distance (%) | ||||
---|---|---|---|---|---|---|
DB | DI | DP | DB-DI | DB-DP | DI-DP | |
ATP6 | 0.19 | 0.29 | 0.18 | 2.88 | 0.93 | 3.11 |
ATP8 | 0.43 | 0.87 | 0.60 | 3.78 | 3.32 | 6.13 |
COI | 0.18 | 0.13 | 0.28 | 2.91 | 1.55 | 3.12 |
COII | 0.27 | 0.10 | 0.29 | 3.12 | 0.79 | 2.70 |
COIII | 0.29 | 0.00 | 0.25 | 2.20 | 0.96 | 2.34 |
CytB | 0.38 | 0.06 | 0.11 | 3.71 | 1.23 | 3.16 |
ND1 | 0.34 | 0.07 | 0.28 | 1.92 | 1.34 | 1.77 |
ND2 | 0.20 | 0.07 | 0.14 | 2.44 | 1.32 | 2.50 |
ND3 | 0.36 | 0.00 | 0.29 | 3.16 | 2.32 | 2.67 |
ND4 | 0.22 | 0.10 | 0.22 | 2.95 | 0.97 | 3.09 |
ND4L | 0.12 | 0.23 | 0.23 | 3.20 | 0.18 | 3.14 |
ND5 | 0.31 | 0.08 | 0.17 | 2.47 | 1.05 | 2.20 |
ND6 | 0.47 | 0.00 | 0.35 | 4.06 | 1.07 | 3.68 |
13 PCGs | 0.27 | 0.10 | 0.22 | 2.84 | 1.20 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Zhu, X.; Wang, Y.; Dong, X.; Yang, R.; Tang, Z.; Bu, W. Mitogenomes Provide Insights into the Species Boundaries and Phylogenetic Relationships among Three Dolycoris Sloe Bugs (Hemiptera: Pentatomidae) from China. Insects 2024, 15, 134. https://doi.org/10.3390/insects15020134
Zheng C, Zhu X, Wang Y, Dong X, Yang R, Tang Z, Bu W. Mitogenomes Provide Insights into the Species Boundaries and Phylogenetic Relationships among Three Dolycoris Sloe Bugs (Hemiptera: Pentatomidae) from China. Insects. 2024; 15(2):134. https://doi.org/10.3390/insects15020134
Chicago/Turabian StyleZheng, Chenguang, Xiuxiu Zhu, Ying Wang, Xue Dong, Ruijuan Yang, Zechen Tang, and Wenjun Bu. 2024. "Mitogenomes Provide Insights into the Species Boundaries and Phylogenetic Relationships among Three Dolycoris Sloe Bugs (Hemiptera: Pentatomidae) from China" Insects 15, no. 2: 134. https://doi.org/10.3390/insects15020134
APA StyleZheng, C., Zhu, X., Wang, Y., Dong, X., Yang, R., Tang, Z., & Bu, W. (2024). Mitogenomes Provide Insights into the Species Boundaries and Phylogenetic Relationships among Three Dolycoris Sloe Bugs (Hemiptera: Pentatomidae) from China. Insects, 15(2), 134. https://doi.org/10.3390/insects15020134