An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Classification, and Mechanisms of the Amino Acids
4. Metabolism of the Amino Acids and Their Functions in Silkworms and Fish
4.1. AAs Metabolism in Silkworms
4.2. Amino Acids Metabolism in Fish
5. Amino Acids Composition
5.1. Amino Acids Profile throughout the Chain Value of Silkworm B. mori L.
5.2. Amino Acids Composition in Fish
5.3. Factors Influencing Availability and/or Absorption of AAs
6. Amino Acids Requirements
6.1. Requirements of Silkworm Larvae
6.2. Requirements of Fish
7. Silkworm Pupae in Fish Feeding
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldsmith, M.R. Bombyx mori. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 1, pp. 351–361. [Google Scholar] [CrossRef]
- Sashina, E.S.; Yakovleva, O.I. The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials. Fibers 2023, 11, 56. [Google Scholar] [CrossRef]
- Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Nutritional Value of Silkworm Pupae (Bombyx mori) with Emphases on Fatty Acids Profile and Their Potential Applications for Humans and Animals. Insects 2023, 14, 254. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Komal, J.; Samal, I.; Bhoi, T.K.; Dubey, V.K.; Pradhan, K.; Nekkanti, A.; Gouda, M.N.R.; Saini, V.; Negi, N.; et al. Nutritional aspects and dietary benefits of “Silkworms”: Current scenario and future outlook. Front. Nutr. 2023, 10, 1121508. [Google Scholar] [CrossRef] [PubMed]
- Altomare, A.A.; Baron, G.; Aldini, G.; Carini, M.; D’Amato, A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr. 2020, 8, 2652–2661. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, I.U.; Banday, M.T.; Baba, I.A.; Adil, S.; Shaista, S.N.; Bushra, Z.; BulbuI, K.H. Utilization of silkworm pupae meal as an alternative source of protein in the diet of livestock and poultry: A review. J. Entomol. Zool. Stud. 2018, 6, 1010–1016. [Google Scholar]
- Wu, X.; He, K.; Cirkovic Velickovic, T.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.U. Chemical composition and nutritional evaluation of spent silkworm pupae. J. Agric. Food Chem. 1994, 42, 2201–2203. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, L.; Tong, L.; Liu, H. Silkworms culture as a source of protein for humans in space. Adv. Space Res. 2009, 43, 1236–1242. [Google Scholar] [CrossRef]
- Ito, T. Amino Acid Nutrition of the Silkworm, Bomhyx mori. Proc. Jpn. Acad. 1972, 48, 613–618. [Google Scholar] [CrossRef]
- Kumar, D.; Dev, P.; Kumar, R.V. Biomedical Applications of Silkworm Pupae Proteins. In Biomedical Applications of Natural Proteins; Biochemistry and Molecular Biology; Springer: New Delhi, India, 2015; Chapter 3; pp. 41–49. [Google Scholar] [CrossRef]
- Wu, G.; Li, P. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Han, D. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. J. Food Compos. Anal. 2006, 19, 850–853. [Google Scholar] [CrossRef]
- Lamberti, C.; Gai, F.; Cirrincione, S.; Giribaldi, M.; Purrotti, M.; Manfredi, M.; Marengo, E.; Sicuro, B.; Saviane, A.; Cappellozza, S.; et al. Investigation of the protein profile of silkworm (Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet. PeerJ 2019, 7, e6723. [Google Scholar] [CrossRef] [PubMed]
- Shukurova, Z.Y.; Khalilov, Z.M.; Shukurlu, I.H. Study of the organic and mineral composition of living pupae of the wild silkworm Saturnia pyri for use as food additives. Int. J. Ind. Entomol. 2021, 43, 52–58. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Duan, H.; Wang, J.; Yan, W. Silkworm Pupae: A Functional Food with Health Benefits for Humans. Foods 2022, 11, 1594. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D.; Weiler, K. Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses used in Isolation and Recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Lin, H.; Kong, L.; Ma, J.; Long, Z.; Qin, H.; Huang, Z.; Lin, Y.; Liu, L.; Li, Z. Effects of Mulberry Leaf Extract on the Liver Function of Juvenile Spotted Sea Bass (Lateolabrax maculatus). Aquac. Nutr. 2023, 2023, 2892463. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L. Effect of Amino Acids on Larvae and Adults of Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2004, 97, 529–535. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2010; ISBN 13: 978-1-4398-6190-5. [Google Scholar]
- Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm pupae (Bombyx mori) are new source of high quality protein and lipid. J. Nutr. Sci. Vitaminol. 2010, 56, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H.K. Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. J. Asia-Pac. Entomol. 2019, 22, 372–378. [Google Scholar] [CrossRef]
- Herman, R.A.; Yan, C.-H.; Wang, J.-Z.; Xun, X.-Z.; Wu, C.-K.; Li, Z.-N.; Ayepa, E.; You, S.; Gong, L.-G.; Wang, J. Insight into the silkworm pupae: Modification technologies and functionality of the protein and lipids. Trends Food Sci. 2022, 129, 408–420. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp. Committee on the Nutrient Requirements of Fish and Shrimp, Board on Agriculture and Natural Resources, Division on Earth and Life Studies, National Research Council of the National Academies. 2011. Available online: https://nap.nationalacademies.org/catalog/13039/nutrient-requirements-of-fish-and-shrimp (accessed on 15 February 2024).
- Raja, K.P.; Aanand, S.; Sampathkumar, S.J.; Padmavathy, P. Silkworm pupae meal as alternative source of protein in fish feed. J. Entomol. Zool. Stud. 2019, 7, 78–85. [Google Scholar]
- Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Silkworms pupae as protein source for pigs—A review. Sci. Pap. Ser. D Anim. Sci. 2023, LXVI, 116–125. [Google Scholar]
- Teles, A.O.; Couto, A.; Enes, P.; Peres, H. Dietary protein requirements of fish—A meta-analysis. Rev. Aquac. 2019, 12, 1445–1477. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Swamy, S.; Mannur, V.S.; Yashwanth, B.S.; Pinto, N.; Pradeep, A.; Prathik, M.R. Dietary protein requirement for maintenance, growth, and reproduction in fish: A review. J. Entomol. Zool. Stud. 2020, 8, 208–215. [Google Scholar]
- Mahesh, D.S.; Vidhathri, B.S.; Vidyashree, D.N.; Narayanaswamy, T.K.; Subbarayappa, C.T.; Muthuraju, R. Biochemical composition and pharmacological properties of mulberry (Morus spp.)—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2207–2217. [Google Scholar] [CrossRef]
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, A.U.; Bakonyi, T.; Ando, I.; Kurucz, E.; Solymosi, N.; Pongrac, P.; Berčič, R.L. The effect of feeding with central european local mulberry genotypes on the development and health status of silkworms and quality parameters of raw silk. Insects 2022, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Tassoni, L.; Cappellozza, S.; Zotte, A.D.; Belluco, S.; Antonelli, P.; Marzoli, F.; Saviane, A. Nutritional Composition of Bombyx mori Pupae: A Systematic Review. Insects 2022, 13, 644. [Google Scholar] [CrossRef]
- Ying, L.Y.; Ying, L.H.; Sofian-Seng, N.-S.; Mustapha, W.A.W.; Mohd Razal, N.S. Physicochemical Characteristics and Microbiological Quality of Silkworm (Bombyx mori) Larval and Pupae Powder: Comparative Study. Sains Malays. 2022, 51, 547–558. [Google Scholar]
- D’Andrea, G. Classifying amino acids as gluco(glyco)genic, ketogenic, or both. Biochem. Educ. 2000, 28, 27–28. [Google Scholar] [CrossRef]
- Wu, M.-H.; Wan, L.-Z.; Zhang, Y.Q. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material. Sci. Rep. 2013, 4, 4428. [Google Scholar] [CrossRef]
- Khan, R.H.; Siddiqi, M.K.; Salahuddin, P. Protein Structure and Function; Austin Publishing Group: Irving, TX, USA, 2017. [Google Scholar]
- Ademola, O.A.; Omolara, A.H.; Abioye, O.R. Amino acids profile of bee brood, soldier termite, snout beetle larva, silkworm larva and pupa: Nutritional implications. Adv. Anal. Chem. 2017, 7, 31–38. [Google Scholar]
- Li, X.; Zheng, S.; Wu, G. Nutrition and functions of amino acids in fish. Chapter in: Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Adv. Exp. Med. Biol. 2021, 1285, 169–198. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2020, 7, 639–659. [Google Scholar] [CrossRef]
- Chen, X.; Ye, A.; Wu, X.; Qu, Z.; Xu, S.; Sima, Y.; Wang, Y.; He, R.; Jin, F.; Zhan, P.; et al. Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int. J. Biol. Macromol. 2022, 209, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Energy and Protein Requirements; FAO/WHO: Rome, Italy, 1973. [Google Scholar]
- Nagaraju, J.; Goldsmith, M.R. Silkworm genomic-progress and prospect. Curr. Sci. India 2002, 83, 4. [Google Scholar]
- Chen, P.S. Amino acid and protein metabolism in insect development. Adv. Insect Phys. 1966, 3, 53–132. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Fu, Q.; Jia, L.; Xiang, Z.; He, N. Proteomic Analysis of Larval Midgut from the Silkworm (Bombyx mori). Int. J. Genom. 2011, 2011, 876064. [Google Scholar] [CrossRef] [PubMed]
- Shinbo, H.; Konno, K.; Hirayama, C.; Watanabe, K. Digestive sites of dietary proteins and absorptive sites of amino acids along the midgut of the silkworm, Bombyx mori. J. lnsect Physiol. 1996, 42, 1129–1138. [Google Scholar] [CrossRef]
- Horie, Y.; Watanabe, K.; Sakamoto, E. Evidence of stepwise digestion of protein in the digestive system of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 1982, 17, 358–363. [Google Scholar] [CrossRef]
- Shyamala, M.B.; Bhat, J.V. Intestinal transport in the silkworm, Bombyx mori L., of amino acids from mixtures. J. Insect Physiol. 1966, 12, 129–135. [Google Scholar] [CrossRef]
- Murugesh, K.A.; Aruna, R.; Chozhan, K. Influence of amino acids on the economic characters of silkworm, Bombyx mori L. Madras Agric. J. 2021, 108, 1. [Google Scholar] [CrossRef]
- Bheemeswar, B.; Srrenivasaya, M. Occurrence of transaminase in the silkworm Bombyx mori L. Curr. Sci. 1952, 21, 253–255. [Google Scholar]
- Fukuda, T. Conversion of pyruvic acid to alanine in the silkworm larva. Nature 1957, 180, 245. [Google Scholar] [CrossRef]
- Chen, P.S.; Bachmann-Diem, C. Studies on the transamination reactions in the larval fat body of Drosophila melanogaster. J. Insect Physiol. 1964, 10, 819–829. [Google Scholar] [CrossRef]
- Bheemeswar, B. Studies on transaminase and decarboxylase catalysed by extracts of the silkworm, Bombyx mori L. Nature 1955, 176, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Bricteux, S.; Fukuda, T.; Dewandre, A.; Florkin, M. Contributions to silkworm biochemistry VIII. Conversion of pyruvate into alanine glycine and serine of silkfibroin. Arch. Int. Physiol. Biochim. 1959, 67, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, H.; Shi, Z.; Chen, O.; Kang, X.; Wang, Y.; Zhao, P. Enhanced silk yield in transgenic silkworm (Bombyx mori) via ectopic expression of BmGT1-L in the posterior silk gland. Insect Mol. Biol. 2020, 29, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Laufer, H. Studies of changes in enzymatic activities of blood proteins in the developing silk moth. Proc. Int. Cong. Entom. 1960, 3, 194–200. [Google Scholar]
- Mahmoud Souad, M.; El-Shafei, A.M.; Moustafa, A.A.; El-Banna, A.A.; Moustafa, M.N. Enzymatic activity of the silkworm, Bombyx mori L. heamolymph reared on different mulberry varieties. Egypt. J. Agric. Res. 2013, 91, 1407–1413. [Google Scholar] [CrossRef]
- Benitez, L.V. Amino acid and fatty acid profiles in aquaculture nutrition studies. In Fish Nutrition Research in Asia: Proceedings of the Third Asian Fish Nutrition Network Meeting, 6–10 June 1988, Bangkok, Thailand; De Silva, S.S., Ed.; Asian Fisheries Society: Manila, Philippines, 1989; Volume 4, pp. 23–35. [Google Scholar]
- Borlongan, I.; Coloso, R.; Golez, N.G. Feeding Habits and Digestive Physiology of Fishes. In Biology, Agriculture and Food Sciences Nutrition In Tropical Aquaculture: Essentials Of Fish Nutrition, Feeds, And Feeding of Tropical Aquatic Species; 2002; Chapter 3; Available online: http://hdl.handle.net/10862/3316 (accessed on 15 February 2024).
- Munilla-Morán, R.; Saborido-Rey, F. Digestive enzymes in marine species. I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp. Biochem. Physiol. 1996, 113B, 395–402. [Google Scholar] [CrossRef]
- Konnert, G.D.P.; Martin, E.; Gerrits, W.J.J.; Gussekloo, S.W.S.; Masagounder, K.; Mas-Muñoz, J.; Schrama, J.W. Interactive effects of protein and energy intake on nutrient partitioning and growth in Nile tilapia. Animal 2022, 6, 494. [Google Scholar] [CrossRef] [PubMed]
- Jürss, K.; Bastrop, R. Amino acid metabolism in fish. In Fish Molecular Biology and Biochemistry; Hochachka, P., Mommsen, T., Eds.; Elsevier Press: Amsterdam, The Netherlands, 1995; pp. 159–189. [Google Scholar]
- Bröer, S. Intestinal amino acid transport and metabolic health. Annu. Rev. Nutr. 2023, 43, 73–99. [Google Scholar] [CrossRef] [PubMed]
- Conceição, L.E.C.; Aragãoa, C.; Rønnestad, I. Protein metabolism and amino acid requirements in fish larvae. Avances en Nutrición Acuicola X 2010, 250–263. [Google Scholar]
- Millamena, O.M. The essential nutrients: Energy. In Nutrition in Tropical Aquaculture: Essentials of fish NUTRITION, Feeds, and Feeding of Tropical Aquatic Species; Millamena, O.M., Coloso, R.M., Pascual, F.P., Eds.; Aquaculture Department, Southeast Asian Fisheries Development Center: Tigbauan, Philippines, 2002; Chapter 2; pp. 41–44. [Google Scholar]
- Berge, G.E.; Goodman, M.; Espe, M.; Lied, E. Intestinal absorption of amino acids in fish: Kinetics and interaction of the in vitro uptake of L-methionine in Atlantic salmon (Salmo salar L.). Aquaculture 2004, 229, 265–273. [Google Scholar] [CrossRef]
- Rohela, G.K.; Shukla, P.; Kallur, M.; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Machii, H.; Katagiri, K. Varietal differences in nutritive values of mulberry leaves for rearing silkworms. JARQ 1991, 25, 202–208. [Google Scholar]
- Machii, H.; Koyama, A.; Yamanouchi, H. Mulberry breeding, cultivation and utilization in Japan. In FAO Electronic Conference on Mulberry for Animal Production (Morus 1-l); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002. [Google Scholar]
- Yao, J.; Yan, B.; Wang, X.Q.; Liu, J.X. Nutritional evaluation of mulberry leaves as feed for ruminants. Livest. Res. Rural Dev. 2000, 12, 9–16. [Google Scholar]
- Wang, C.; Yang, F.; Wang, Q.; Zhou, X.; Xie, M.; Kang, P.; Wang, Y.; Peng, X. Nutritive value of mulberry leaf meal and its effect on the performance of 35-70-day-old geese. J. Poult. Sci. 2017, 54, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Al-kirshi, R.A.; Alimon, A.R.; Zulkifli, I.; Zahari, M.W.; Sazil, A.Q. The chemical composition and nutritive value of mulberry leaf as a protein source in poultry diets. The 1st International Seminar on Animal Industry 2009|Faculty of Animal Science, Bogor Agricultural University. Feed. Nutr. 2009, 98–102, Proceedings [2790]. Available online: http://repository.ipb.ac.id/handle/123456789/33831 (accessed on 15 February 2024).
- Astuti, D.A.; Becker, K.; Richter, N. Energy and protein balance of Nile tilapia fed with moringa and mulberry leaves. J. Pengolah. Has. Perikan. Indones. 2012, 15. [Google Scholar]
- Olteanu, M.; Criste, R.D.; Cornescu, G.M.; Ropota, M.; Panaite, T.; Varzaru, I. Effect of dietary mulberry (Morus alba) leaves on performance parameters and quality of breast meat of broilers. Indian J. Anim. Sci. 2014, 85, 291–295. [Google Scholar]
- Anootthato, S.; Therdthai, N.; Ritthiruangdej, P. Characterization of Protein Hydrolysate from Silkworm Pupae (Bombyx mori). J. Food Process. Preserv. 2019, 43, e14021. [Google Scholar] [CrossRef]
- Kwon, M.-G.; Kim, D.-S.; Lee, J.-H.; Park, S.-W.; Choo, Y.-K.; Han, Y.-S.; Kim, J.-S.; Hwang, K.-A.; Ko, K.; Ko, K. Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomol. Res. 2012, 42, 55–62. [Google Scholar] [CrossRef]
- Akande, O.A.; Falade, O.O.; Badejo, A.A.; Adekoya, I. Assessment of mulberry silkworm pupae and african palm weevil larvae as alternative protein sources in snack fillings. Heliyon 2020, 6, e03754. [Google Scholar] [CrossRef]
- Ji, S.-D.; Kim, N.-S.; Kweon, H.Y.; Choi, B.H.; Yoon, S.M.; Kim, K.-Y.; Koh, Y.H. Nutrient compositions of Bombyx mori mature silkworm larval powders suggest their possible health improvement effects in humans. J. Asia-Pac. Entomol. 2016, 19, 1027–1033. [Google Scholar] [CrossRef]
- Šelih, M.; Petkovšek, M.M.; Krajnc, D.; Berčič, R.L.; Krajnc, A.U. Screening of leaf metabolites in historical mulberry trees (Morus alba L.) from different eco-geographical regions of Slovenia. Trees 2020, 34, 971–986. [Google Scholar] [CrossRef]
- Yeruva, T.; Jayaram, H.; Aurade, R.; Shunmugam, M.M.; Shinde, V.S.; Venkatesharao, S.R.B.; Azhiyakathu, M.J. Profiling of nutrients and bioactive compounds in the pupae of silkworm, Bombyx mori. Food Chem. Adv. 2023, 3, 100382. [Google Scholar] [CrossRef]
- Bechtel, P.J. Properties of different fish processing by-products from pollock, cod and salmon. J. Food Process. Preserv. 2003, 27, 101–116. [Google Scholar] [CrossRef]
- Bechtel, P.J.; Morey, A.; Oliveira, A.C.M.; Wu, T.H.; Plante, S.; Bower, C.K. Chemical and nutritional properties of Pacific Ocean perch (Sebastes alutus) whole fish and by-products. J. Food Process. Preserv. 2010, 34 (Suppl. S1), 55–72. [Google Scholar] [CrossRef]
- Mohanty, B.; Mahanty, A.; Ganguly, S.; Sankar, T.V.; Chakraborty, K.; Rangasamy, A.; Baidyanath, P.; Debajit, S.; Suseela, M.; Kurukkan, K.A.; et al. Amino acid compositions of 27 food fishes and their importance in clinical nutrition. J. Amino Acids 2014, 2014, 269797. [Google Scholar] [CrossRef]
- Cieslik, I.; Migdał, W.; Topolska, K.; Mickowska, B.; Cieslik, E. Changes of amino acid and fatty acid profile in freshwater fish after smoking. J. Food Process. Preserv. 2018, 42, e13357. [Google Scholar] [CrossRef]
- Elavarasan, K. Importance of Fish in Human Nutrition. Training Manual on Seafood Value Addition; ICAR-Central Institute of Fisheries Technology: Kochi, India, 2018. [Google Scholar]
- Fatma, N.; Taslim, N.A.; Nurilmala, M. The protein and albumin contents in some species of marine and brackishwater fish of South Sulawesi, Indonesia. Aquac. Aquar. Conserv. Legis. 2020, 13, 1976–1985. [Google Scholar]
- Wang, L.; Gao, C.; Wang, B.; Wang, C.; Sagada, G.; Yan, Y. Methionine in fish health and nutrition: Potential mechanisms, affecting factors, and future perspectives. Aquaculture 2023, 568, 739310. [Google Scholar] [CrossRef]
- Mukhtar, B.; Malik, M.F.; Shah, S.H.; Azzam, A.; Liaqat, I. Lysine Supplementation in Fish Feed. Int. J. Appl. Biol. Forensics 2017, 1, 26–31. [Google Scholar]
- Chandang, P.; Thongprajukaew, K.; Chotimanothum, B.; Kovitvadhi, A.; Kovitvadhi, U.; Pakkong, P. The effects on in vitro digestibility from different developmental stages of silkworm larvae, Bombyx mori (Lepidoptera: Bombycidae) and position of mulberry leaves, Morus alba (Rosales: Moraceae). J. Asia Pac. Entomol. 2017, 20, 1134–1139. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, K.M.; Chandrasekharaiah, M.; Soren, N.M.; Prasad, K.S.; David, C.G.; Thirupathaiah, Y.; Shivaprasad, V. Silkworm pupae meal: An alternative protein source for livestock. Pharm. Innov. J. 2023, 12, 3691–3696. [Google Scholar]
- Xing, S.; Liang, X.; Zhang, X.; Oliva-Teles, A.; Peres, H.; Li, M.; Wang, H.; Mai, K.; Kaushik, S.J.; Xue, M. Essential amino acid requirements of fish and crustaceans, a meta-analysis. Rev. Aquac. 2023, 1–18. [Google Scholar] [CrossRef]
- Rønnestad, I.; Tonheim, S.K.; Fyhn, H.J.; Rojas-Garcıa, C.R.; Kamisaka, Y.; Koven, W.; Finn, R.N.; Terjesen, B.F.; Barr, Y.; Conceição, L.E.C. The supply of amino acids during early feeding stages of marine fish larvae: A review of recent findings. Aquaculture 2003, 227, 147–164. [Google Scholar] [CrossRef]
- Rathore, S.S.; Yusufzai, S.I.; Katira, N.N.; Jaiswal, K. Fish Larval Nutrition: A Review on New Developments. Int. J. Eng. Sci. 2016, 5, 40–47. [Google Scholar]
- Conceição, L.E.C.; Grasdalen, H.; Rønnestad, I. Amino acid requirements of fish larvae and post-larvae: New tools and recent findings. Aquaculture 2003, 227, 221–232. [Google Scholar] [CrossRef]
- Ramesha, C.; Lakshmi, H.; Kumari, S.S.; Anuradha, C.M.; Kumar, C.S. Nutrigenetic screening strains of the mulberry silkworm, Bombyx mori, for nutritional efficiency. J. Insect Sci. 2012, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Raghuvanshi, T.; Bali, R.K.; Bukhari, R. Effect of Different Feeding Frequencies on the Commercial Characters of Silkworm (Bombyx mori L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3193–3203. [Google Scholar] [CrossRef]
- Sanchez, M.D. Mulberry: An exceptional forage available almost worldwide! World Anim. 2000, 93, 1–21. [Google Scholar]
- Sanchez-Salcedo, E.M.; Amoros, A.; Hernandez, F.; Martinez, J.J. Physicochemical properties of white (Morus alba) and black (Morus nigra) mulberry leaves, a new food supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar]
- Iqbal, S.; Younas, U.; Sirajuddin Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar] [CrossRef] [PubMed]
- Adeduntan, S.A.; Oyerinde, A.S. Evaluation of nutritional and antinutritional characteristics of obeche (Triplochition scleroxylon scleroxylon) and several mulberry (Morus alba) leaves. Afr. J. Biochem. Res. 2010, 4, 175–178. [Google Scholar]
- Muzamil, A.; Tahir, H.M.; Ali, A.; Bhatti, M.F.; Munir, F.; Ijaz, F.; Adnan, M.; Khan, H.A.; Qayyum, K.A. Effect of amino acid fortified mulberry leaves on economic and biological traits of Bombyx mori L. Heliyon 2023, 9, e21053. [Google Scholar] [CrossRef]
- Radjabi, R. Effect of mulberry leaves enrichment with amino acid supplementary nutrients on silkworm, Bombyx mori L. at North of Iran. Acad. J. Entomol. 2010, 3, 45–51. [Google Scholar]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 5, 305313. [Google Scholar] [CrossRef]
- Bhojne, I.; Naik, R.L.; Kharbade, S.B. Effect of leaf supplementation with secondary metabolites on economic traits of mulberry silkworm. Int. J. Entomol. Res. 2014, 2, 29–32. [Google Scholar]
- Horie, Y. Recent advances of nutritional physiology and artificial diet of the silkworm, Bombyx mori, in Japan. Korean J. Seric. Sci. 1995, 37, 235–243. [Google Scholar]
- Yin, X.; Zhang, Y.; Yu, D.; Li, G.; Wang, X.; Wei, Y.; He, C.; Liu, Y.; Li, Y.; Xu, K.; et al. Effects of artificial diet rearing during all instars on silk secretion and gene transcription in Bombyx mori (Lepidoptera: Bombycidae). J. Econ. Entomol. 2023, 116, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Borah, S.D.; Boro, P. A review of nutrition and its impact on silkworm. J. Entomol. Zool. Stud. 2020, 8, 1921–1925. [Google Scholar]
- Buddington, K.K.; Kuz’mina, V. Digestive system. Part 4. Microscopic functional anatomy. In The Laboratory Fish; Ostrander, G.K., Ed.; Academic Press: San Diego, CA, USA, 2000; p. 379. [Google Scholar]
- Buddington, K.K.; Kuz’mina, V. Digestive system. Part 3 Gross functional anatomy. In The Laboratory Fish; Ostrander, G.K., Ed.; Academic Press: San Diego, CA, USA, 2000; p. 173. [Google Scholar]
- Cowey, C.B.; Cho, C.Y. Nutritional requirements of fish. Proc. Nutr. Soc. 1993, 52, 417–426. [Google Scholar] [CrossRef]
- Hua, K.; Bureau, D.P. Estimating changes in essential amino acid requirements of rainbow trout and Atlantic salmon as a function of body weight or diet composition using a novel factorial requirement model. Aquaculture 2019, 513, 734440. [Google Scholar] [CrossRef]
- Rollin, X.; Wauters, J.-B.; Bodin, N.; Larondelle, Y.; Ooghe, W.; Wathelet, B.; Abboudi, T. Maintenance threonine requirement and efficiency of its use for accretion of whole-body threonine and protein in Atlantic salmon (Salmo salar L.) fry. Br. J. Nutr. 2006, 95, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.P.; Halver, J.E. Protein and Amino Acid Requirements of Fishes. Annu. Rev. Nutr. 1986, 6, 225–244. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/3/Y2775E/y2775e0e.htm (accessed on 15 February 2024).
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish. Aquac. Res 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Jia, S.; Song, F.; Zhou, C.; Wu, G. Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids 2020, 52, 1017–1032. [Google Scholar] [CrossRef]
- Calo, J.; Blanco, A.M.; Comesaña, S.; Conde-Sieira, M.; Morais, S.; Soengas, J.L. First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Sci. Rep. 2021, 11, 4933. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yi, C.; Mo, Y.; He, Z.; Xu, Z.; He, Y.; Ouyang, Y.; Mao, Z.; Qu, F.; Tang, J.; et al. Effects of Different Protein Sources on Growth Performance, Muscle Flavor Substances and Quality Structure in Triploid Crucian Carp. Fishes 2024, 9, 23. [Google Scholar] [CrossRef]
- Jørgensen, H.; Sauer, W.C.; Thacker, P.A. Amino acid availabilities in soybean meal, sunflower meal, fish meal and meat and bone meal fed to growing pigs. J. Anim. Sci. 1984, 58, 926–934. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Aguilar Aguilar, F.A.; Sonoda, D.Y.; Cyrino, J.E.P. Poultry by-product meal as dietary protein source for dourado, Salminus brasiliensis: An economic appraisal. Sci. Agric. 2017, 76, 190–197. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Montes de Oca, G.A.R.; Reyes, J.C.R.R.; Villarreal-Cavazos, D.A.; Nieto-Lopez, M.; Cruz-Suarez, L.E. Assessment of the relative contribution of dietary nitrogen from fish meal and biofloc meal to the growth of Pacific white shrimp (Litopenaeus vannamei). Aquac. Res. 2016, 48, 2963–2972. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Fish meal—Nutritive value. J. Anim. Physiol. Anim. Nutr. 2010, 95, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Ido, A.; Kaneta, M. Fish oil and fish meal production from urban fisheries biomass in Japan. Sustainability 2020, 12, 3345. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, W.; Dan, Z.; Zhuang, Y.; Liu, Y.; Mai, K.; Ai, Q. Replacement of dietary fish meal with Clostridium autoethanogenum meal on growth performance, intestinal amino acids transporters, protein metabolism and hepatic lipid metabolism of juvenile turbot (Scophthalmus maximus L.). Front. Physiol. 2022, 13, 981750. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.S.C.; Sonoda, D.Y.; Lorenz, E.K.; Cyrino, J.E.P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. 2018, 75, 184–190. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, L.-J.; Li, C.; Bureau, D.P. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides). Aquaculture 2006, 261, 1307–1313. [Google Scholar] [CrossRef]
- Thakur, M.; Hurburgh, C.R. Quality of US Soybean Meal Compared to the Quality of Soybean Meal from Other Origins. J. Am. Oil Chem. Soc. 2007, 84, 835–843. [Google Scholar] [CrossRef]
- Dozier, W.A.; Hess, J.B. Soybean Meal Quality and Analytical Techniques. In Chapter 6 in Soybean and Nutrition; El-Shemy, H., Ed.; Books on Demand: Norderstedt, Germany, 2011. [Google Scholar] [CrossRef]
- Lagos, L.V.; Stein, H.H. Chemical composition and amino acid digestibility of soybean meal produced in the United States, China, Argentina, Brazil, or India. J. Anim. Sci. 2017, 95, 1626–1636. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.K.; Grieshop, C.M.; Spears, J.K.; Fahey, G.C., Jr. Amino Acid, Carbohydrate, and Fat Composition of Soybean Meals Prepared at 55 Commercial, U.S. Soybean Processing Plants. J. Agric. Food Chem. 2005, 53, 2146–2150. [Google Scholar] [CrossRef] [PubMed]
- Haghbayan, S.; Mehrgan, M.S. The Effect of Replacing Fish Meal in the Diet with Enzyme-Treated Soybean Meal (HP310) on Growth and Body Composition of Rainbow Trout Fry. Molecules 2015, 20, 21058–21066. [Google Scholar] [CrossRef]
- Rahimnejad, S.; Hu, S.; Song, K.; Wang, L.; Lu, K.; Wu, R. Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2019, 510, 150–159. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/893 of 24 May 2017, Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/eli/reg/2017/893 (accessed on 15 February 2024).
- Commission Regulation (EU) 2021/1925 of 5 November 2021 Amending Certain Annexes to Regulation (EU) No 142/2011 as Regards the Requirements for Placing on the Market of Certain Insect Products and the Adaptation of a Containment Method. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1925 (accessed on 15 February 2024).
- Commission Regulation (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border under That Directive. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:054:0001:0254:EN:PDF (accessed on 15 February 2024).
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Rahmasari, R.; Sumiati, S.; Astuti, D.A. The effect of silkworm pupae (Bombyx mori) meal to substitute fish meal on prodution and physical quality of quail eggs (Cortunix cortunix japonica). J. Indones. Trop. Anim. Agric. 2014, 39, 180–187. [Google Scholar] [CrossRef]
- Zhou, J.S.; Chen, Y.S.; Ji, H.; Yu, E.M. The effect of replacing fish meal with fermented meal mixture of silkworm pupae, rapeseed and wheat on growth, body composition and health of mirror carp (Cyprinus carpio var. Specularis). Aquac. Nutr. 2016, 23, 741–754. [Google Scholar] [CrossRef]
- Begum, N.N.; Chakraborty, S.C.; Zaher, M.; Abdul, M.M.; Gupta, M.V. Replacement of fishmeal by low-cost animal protein as a quality fish feed ingredient for Indian major carp, labeo rohita, fingerlings. J. Sci. Food Agric. 1994, 64, 191–197. [Google Scholar] [CrossRef]
- Shakoori, M.; Gholipour, M.; Naseri, S. Effect of replacing dietary fish meal with silkworm (Bombyx mori) pupae on hematological parameters of rainbow trout Oncorhynchus mykiss. Comp. Clin. Path. 2014, 24, 139–143. [Google Scholar] [CrossRef]
Amino Acids % DM * | Value ± SD | Mulberry Leaves | Larvae | Pupae |
---|---|---|---|---|
Protein | Mean | 23.55 ± 0.35 | 52.87 ± 6.83 | 60.47 ± 2.36 |
Minimum | 11.75 | 22.59 | 26.0 | |
Maximum | 37.36 | 68.0 | 95.0 | |
EAAs | ||||
Lysine | Mean | 2.09 ± 0.30 | 2.45 ± 0.14 | 6.01 ± 0.64 |
Minimum | 1.0 | 2.14 | 1.37 | |
Maximum | 5.0 | 2.93 | 9.09 | |
Methionine | Mean | 0.54 ± 0.12 | 0.96 ± 0.16 | 3.94 ± 0.48 |
Minimum | 0.21 | 0.64 | 0.45 | |
Maximum | 1.89 | 1.42 | 6.50 | |
Threonine | Mean | 1.54 ± 0.25 | 2.45 ± 0.33 | 4.88 ± 0.54 |
Minimum | 0.77 | 1.97 | 1.14 | |
Maximum | 4.0 | 3.77 | 9.70 | |
Arginine | Mean | 1.27 ± 0.07 | 2.48 ± 0.33 | 4.22 ± 0.54 |
Minimum | 0.88 | 1.95 | 1.06 | |
Maximum | 5.0 | 3.80 | 6.80 | |
Histidine | Mean | 0.89 ± 0.21 | 1.72 ± 0.48 | 6.63 ± 1.73 |
Minimum | 0.35 | 1.08 | 0.66 | |
Maximum | 3.56 | 3.65 | 25.0 | |
Valine | Mean | 1.83 ± 0.32 | 2.82 ± 0.43 | 4.67 ± 0.37 |
Minimum | 0.85 | 2.29 | 1.29 | |
Maximum | 5.0 | 4.55 | 6.18 | |
Phenylalanine | Mean | 1.80 ± 0.30 | 1.82 ± 0.08 | 4.14 ± 0.53 |
Minimum | 0.91 | 1.73 | 0.88 | |
Maximum | 5.0 | 2.08 | 7.33 | |
Isoleucine | Mean | 1.54 ± 0.29 | 1.52 ± 0.24 | 3.49 ± 0.39 |
Minimum | 0.74 | 1.18 | 0.83 | |
Maximum | 5.0 | 2.25 | 5.70 | |
Leucine | Mean | 2.45 ± 0.34 | 2.52 ± 0.20 | 5.55 ± 0.69 |
Minimum | 1.45 | 1.98 | 1.20 | |
Maximum | 7.0 | 3.06 | 8.30 | |
Tryptophan | Mean | 0.36 ± 0.02 | 0.40 ± 0.03 | 1.22 ± 0.21 |
Minimum | 0.26 | 0.33 | 0.34 | |
Maximum | 0.54 | 0.44 | 1.76 | |
Σ EAAs | 14.31 | 19.14 | 44.75 | |
PER | 0.75 | 1.05 | 2.67 | |
Non-EAAs | ||||
Aspartic acid | Mean | 2.57 ± 0.27 | 4.56 ± 0.14 | 7.91 ± 1.13 |
Minimum | 1.50 | 4.15 | 1.50 | |
Maximum | 5.0 | 4.84 | 11.69 | |
Glutamic acid | Mean | 3.23 ± 0.59 | 4.50 ± 0.32 | 14.39 ± 1.10 |
Minimum | 1.0 | 3.82 | 5.69 | |
Maximum | 11.00 | 5.10 | 21.50 | |
Alanine | Mean | 1.46 ± 0.04 | 6.10 ± 1.54 | 5.52 ± 0.49 |
Minimum | 1.09 | 2.59 | 2.45 | |
Maximum | 1.58 | 9.78 | 10.20 | |
Glycine | Mean | 2.0 ± 0.4 | 7.11 ± 2.20 | 5.58 ± 0.56 |
Minimum | 0.86 | 2.21 | 1.89 | |
Maximum | 6.0 | 12.08 | 10.09 | |
Proline | Mean | 0.75 ± 0.10 | 1.52 ± 0.21 | 5.20 ± 0.63 |
Minimum | 0.33 | 1.14 | 2.04 | |
Maximum | 1.31 | 2.08 | 9.76 | |
Serine | Mean | 1.42 ± 0.25 | 4.60 ± 1.10 | 5.04 ± 0.59 |
Minimum | 0.66 | 2.25 | 2.22 | |
Maximum | 4.0 | 6.76 | 10.6 | |
Tyrosine | Mean | 0.80 ± 0.02 | 3.39 ± 0.51 | 5.61 ± 0.47 |
Minimum | 0.62 | 2.50 | 2.24 | |
Maximum | 0.89 | 4.60 | 8.46 | |
Cysteine | Mean | 0.20 ± 0.02 | 0.54 ± 0.07 | 1.13 ± 0.15 |
Minimum | 0.11 | 0.43 | 0.20 | |
Maximum | 0.30 | 0.76 | 1.90 | |
Σ non-EAAs | 12.43 | 32.32 | 50.38 |
Items * | Mean ± SD | Minimum | Maximum |
---|---|---|---|
Proteins % | 19.20 ± 1.09 | 16.0 | 31.0 |
EAA, g/100 g protein | |||
Lysine | 3.54 ± 0.71 | 0.09 | 16.10 |
Methionine | 1.38 ± 0.23 | 0.02 | 4.0 |
Threonine | 3.10 ± 0.50 | 0.30 | 7.90 |
Arginine | 1.55 ± 0.27 | 0.10 | 6.50 |
Histidine | 2.31 ± 0.39 | 0.03 | 7.90 |
Valine | 3.27 ± 0.54 | 0.05 | 8.60 |
Phenylalanine | 2.51 ± 0.41 | 0.06 | 6.30 |
Isoleucine | 2.69 ± 0.43 | 0.20 | 6.50 |
Leucine | 4.44 ± 0.69 | 0.40 | 10.40 |
Tryptophan | 1.48 ± 0.40 | 0.10 | 6.50 |
Σ EAAs | 26.27 | ||
Non-EAAs | |||
Aspartic acid | 6.83 ± 0.86 | 0.10 | 12.30 |
Glutamic acid | 7.21 ± 1.12 | 0.20 | 16.55 |
Alanine | 3.75 ± 0.53 | 0.08 | 8.10 |
Glycine | 6.21 ± 1.39 | 0.10 | 32.0 |
Proline | 1.37 ± 0.37 | 0.07 | 9.60 |
Serine | 3.83 ± 0.52 | 0.09 | 7.20 |
Tyrosine | 1.48 ± 0.42 | 0.20 | 8.40 |
Cysteine | 0.16 ± 0.03 | 0.04 | 0.40 |
Σ non-EAAs | 30.84 |
Items | Mean ± SD | Minimum | Maximum |
---|---|---|---|
Proteins, % | 42.10 ± 1.20 | 24.0 | 62.0 |
EAA, % protein * | |||
Lysine | 5.18 ± 0.16 | 3.7 | 6.23 |
Methionine ** | 3.04 ± 0.20 | 2.0 | 4.0 |
Threonine | 3.22 ± 0.35 | 0 | 4.50 |
Arginine | 4.66 ± 0.18 | 3.30 | 6.0 |
Histidine | 1.88 ± 0.06 | 1.50 | 2.20 |
Valine | 3.43 ± 0.09 | 2.80 | 4.0 |
Phenylalanine | 5.16 ± 0.51 | 3.40 | 6.50 |
Isoleucine | 2.91 ± 0.18 | 2.20 | 4.40 |
Leucine | 4.20 ± 0.22 | 3.30 | 5.30 |
Tryptophan | 0.68 ± 0.06 | 0.30 | 1.4 |
Σ EAAs | 34.67 |
Specification * | Fish Meal | Soybean Meal | Pupae (SWP) | |
---|---|---|---|---|
Protein | Mean | 64.45 ± 2.27 | 47.05 ± 0.76 | 60.47 ± 2.36 |
Range | 20.0 | 5.50 | 69.0 | |
EAA | ||||
Lysine | Mean | 6.28 ± 0.55 | 3.25 ± 0.18 | 6.01 ± 0.64 |
Range | 4.33 | 4.06 | 7.72 | |
Methionine | Mean | 2.44 ± 0.19 | 0.73 ± 0.06 | 3.94 ± 0.48 |
Range | 1.34 | 1.06 | 6.05 | |
Threonine | Mean | 3.64 ± 0.28 | 1.95 ± 0.13 | 4.88 ± 0.54 |
Range | 2.37 | 2.54 | 8.56 | |
Arginine | Mean | 5.15 ± 0.39 | 3.98 ± 0.29 | 4.22 ± 0.54 |
Range | 3.51 | 4.30 | 5.74 | |
Histidine | Mean | 2.43 ± 0.22 | 1.51 ± 0.11 | 6.63 ± 1.73 |
Range | 1.99 | 1.81 | 24.34 | |
Valine | Mean | 4.25 ± 0.33 | 2.55 ± 0.15 | 4.67 ± 0.37 |
Range | 2.43 | 2.76 | 4.89 | |
Phenylalanine | Mean | 3.44 ± 0.26 | 2.78 ± 0.22 | 4.14 ± 0.53 |
Range | 2.06 | 3.08 | 6.45 | |
Isoleucine | Mean | 3.68 ± 0.28 | 2.49 ± 0.17 | 3.49 ± 0.39 |
Range | 2.14 | 2.63 | 4,87 | |
Leucine | Mean | 6.30 ± 0.47 | 4.29 ± 0.32 | 5.55 ± 0.69 |
Range | 3.62 | 4.90 | 7.10 | |
Tryptophan | Mean | 0.93 ± 0.10 | 0.73 ± 0.08 | 1.22 ± 0.21 |
Range | 0.48 | 0.91 | 1.42 | |
Σ EAAs | 38.54 | 24.26 | 44.75 | |
PER | 2.28 | 1.38 | 2.67 | |
Non-EAA | ||||
Aspartic acid | Mean | 7.95 ± 0.67 | 6.0 ± 1.30 | 7.91 ± 1.13 |
Range | 3.70 | 9.38 | 10.19 | |
Glutamic acid | Mean | 11.30 ± 0.97 | 10.09 ± 1.78 | 14.39 ± 1.10 |
Range | 5.64 | 11.21 | 15.81 | |
Alanine | Mean | 5.66 ± 0.38 | 2.38 ± 0.37 | 5.52 ± 0.49 |
Range | 2.16 | 2.76 | 7.77 | |
Glycine | Mean | 6.62 ± 0.82 | 2.38 ± 0.42 | 5.58 ± 0.56 |
Range | 5.50 | 2.69 | 8.20 | |
Proline | Mean | 4.07 ± 0.43 | 2.74 ± 0.49 | 5.20 ± 0.63 |
Range | 2.75 | 3.13 | 7.72 | |
Serine | Mean | 3.48 ± 0.30 | 2.64 ± 0.55 | 5.04 ± 0.59 |
Range | 1.85 | 3.47 | 8.38 | |
Tyrosine | Mean | 2.62 ± 0.27 | 2.0 ±0.29 | 5.61 ± 0.47 |
Range | 2.09 | 2.49 | 6.22 | |
Cysteine | Mean | 0.67 ± 0.08 | 0.64 ± 0.09 | 1.13 ± 0.15 |
Range | 0.70 | 1.46 | 1.70 | |
Σ non-EAAs | 42.37 | 28.87 | 50.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hăbeanu, M.; Gheorghe, A.; Dinita, G.; Mihalcea, T. An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish. Insects 2024, 15, 332. https://doi.org/10.3390/insects15050332
Hăbeanu M, Gheorghe A, Dinita G, Mihalcea T. An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish. Insects. 2024; 15(5):332. https://doi.org/10.3390/insects15050332
Chicago/Turabian StyleHăbeanu, Mihaela, Anca Gheorghe, Georgeta Dinita, and Teodor Mihalcea. 2024. "An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish" Insects 15, no. 5: 332. https://doi.org/10.3390/insects15050332
APA StyleHăbeanu, M., Gheorghe, A., Dinita, G., & Mihalcea, T. (2024). An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish. Insects, 15(5), 332. https://doi.org/10.3390/insects15050332