Effects of Black Soldier Fly (Hermetia illucens L., BSF) Larvae Addition on In Vitro Fermentation Parameters of Goat Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rumen Fluid Collection
2.2. Experimental Design and Fermentation Substrates
2.3. In Vitro Fermentation
2.4. Sample Analysis
2.4.1. Chemical Composition of Feeds
2.4.2. Ruminal Fermentation Characteristics
2.4.3. Chitin Analysis
2.5. Statistical Analysis
3. Results
3.1. Nutrition Facts of BSF
3.2. Amino Acid Content of BSF
3.3. Fatty Acid Content of BSF
3.4. Effect of Different Levels of BSF on Gas Production
3.5. Effect of Different Levels of BSF on CH4 Production
3.6. Effect of Different Levels of BSF on pH and NH3-N
3.7. Effect of Different Levels of BSF on VFAs
4. Discussion
4.1. Gas Production
4.2. CH4 Production
4.3. pH and NH3-N
4.4. VFAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Chang, J.; Havlík, P.; van Dijk, M.; Valin, H.; Janssens, C.; Ma, L.; Bai, Z.; Herrero, M.; Smith, P.; et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 2021, 4, 1042–1051. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R. Sustainable development and pollution: The effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A potential source of protein and other nutrients for feed and food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-M.; Khosravi, S.; Yoon, K.-Y.; Kim, K.-W.; Lee, B.-J.; Hur, S.-W.; Lee, S.-M. Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. Aquac. Rep. 2021, 20, 100747. [Google Scholar] [CrossRef]
- Dörper, A.; Veldkamp, T.; Dicke, M. Use of black soldier fly and house fly in feed to promote sustainable poultry production. J. Insects Food Feed 2021, 7, 761–780. [Google Scholar] [CrossRef]
- Gebremichael, A. Fillet yield and flesh quality of common carp (Cyprinus carpio) fed with extruded feed containing black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor). AACL Bioflux 2022, 15, 2273–2281. [Google Scholar]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Cheseto, X.; Ekesi, S.; Dicke, M.; van Loon, J.J. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exp. Appl. 2020, 168, 472–481. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar]
- Banaszkiewicz, T. Nutritional value of soybean meal. In Soybean and Nutrition; IntechOpen: Rijeka, Croatia, 2011; Volume 12, pp. 1–20. [Google Scholar]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Kishawy, A.T.; Mohammed, H.A.; Zaglool, A.W.; Attia, M.S.; Hassan, F.A.; Roushdy, E.M.; Ismail, T.A.; Ibrahim, D. Partial defatted black solider larvae meal as a promising strategy to replace fish meal protein in diet for Nile tilapia (Oreochromis niloticus): Performance, expression of protein and fat transporters, and cytokines related genes and economic efficiency. Aquaculture 2022, 555, 738195. [Google Scholar] [CrossRef]
- Limbu, S.M.; Shoko, A.P.; Ulotu, E.E.; Luvanga, S.A.; Munyi, F.M.; John, J.O.; Opiyo, M.A. Black soldier fly (Hermetia illucens, L.) larvae meal improves growth performance, feed efficiency and economic returns of Nile tilapia (Oreochromis niloticus, L.) fry. Aquac. Fish Fish. 2022, 2, 167–178. [Google Scholar] [CrossRef]
- Adebayo, H.; Kemabonta, K.; Ogbogu, S.; Elechi, M.; Obe, M.T. Comparative assessment of developmental parameters, proximate analysis and mineral compositions of black soldier fly (Hermetia illucens) prepupae reared on organic waste substrates. Int. J. Trop. Insect Sci. 2021, 41, 1953–1959. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Murawska, D.; Kubiak, D.; Han, J. Chemical composition and fatty acid profile of the pectoralis major muscle in broiler chickens fed diets with full-fat black soldier fly (Hermetia illucens) larvae meal. Animals 2022, 12, 464. [Google Scholar] [CrossRef]
- Hristov, A.; Lee, C.; Cassidy, T.; Long, M.; Heyler, K.; Corl, B.; Forster, R. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011, 94, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Burdick, M. Evaluation of Medium-Chain Fatty Acid Supplementation Effects on Dairy Cow Performance and Rumen Fermentation. Master’s Thesis, University of Alberta Libraries, Edmonton, AB, Canada, 2022. [Google Scholar]
- Cusiayuni, A.; Nurfatahillah, R.; Harahap, R.; Wiryawan, K.; Evvyernie, D.; Jayanegara, A. Modification of in vitro methanogenesis and rumen fermentation by using lauric acid: A meta analysis. Adv. Anim. Vet. Sci. 2022, 10, 1048–1055. [Google Scholar] [CrossRef]
- Almeida, K.; Santos, G.; Daniel, J.; Osorio, J.; Yamada, K.; Sippert, M.; Cabral, J.; Marchi, F.; Araujo, R.; Vyas, D. Effects of calcium ammonium nitrate fed to dairy cows on nutrient intake and digestibility, milk quality, microbial protein synthesis, and ruminal fermentation parameters. J. Dairy Sci. 2022, 105, 2228–2241. [Google Scholar] [CrossRef]
- Guimaraes, O.; Wagner, J.; Spears, J.; Brandao, V.; Engle, T. Trace mineral source influences digestion, ruminal fermentation, and ruminal copper, zinc, and manganese distribution in steers fed a diet suitable for lactating dairy cows. Animal 2022, 16, 100500. [Google Scholar] [CrossRef] [PubMed]
- Mion, B.; Van Winters, B.; King, K.; Spricigo, J.; Ogilvie, L.; Guan, L.; DeVries, T.; McBride, B.; LeBlanc, S.; Steele, M.; et al. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. J. Dairy Sci. 2022, 105, 6693–6709. [Google Scholar] [CrossRef]
- Kamarudin, M.S.; Rosle, S.; Yasin, I.S.M. Performance of defatted black soldier fly pre-pupae meal as fishmeal replacement in the diet of lemon fin barb hybrid fingerlings. Aquac. Rep. 2021, 21, 100775. [Google Scholar] [CrossRef]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in siberian sturgeon farming: The effects on aquaculture sustainability, economy and fish git development. Animals 2021, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Totakul, P.; Matra, M.; Cherdthong, A.; Hanboonsong, Y.; Wanapat, M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci. 2022, 35, 317. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Yantina, N.; Novandri, B.; Laconi, E.; Ridla, M. Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J. Indones. Trop. Anim. Agric. 2017, 42, 247–254. [Google Scholar] [CrossRef]
- Hervás, G.; Boussalia, Y.; Labbouz, Y.; Della Badia, A.; Toral, P.G.; Frutos, P. Insect oils and chitosan in sheep feeding: Effects on in vitro ruminal biohydrogenation and fermentation. Anim. Feed Sci. Technol. 2022, 285, 115222. [Google Scholar] [CrossRef]
- Nekrasov, R.V.; Ivanov, G.A.; Chabaev, M.G.; Zelenchenkova, A.A.; Bogolyubova, N.V.; Nikanova, D.A.; Sermyagin, A.A.; Bibikov, S.O.; Shapovalov, S.O. Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals 2022, 12, 2118. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Novandri, B.; Yantina, N.; Ridla, M. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet. World 2017, 10, 1439. [Google Scholar] [CrossRef]
- Wei, X.; Ouyang, K.; Long, T.; Liu, Z.; Li, Y.; Qiu, Q. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation 2022, 8, 276. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 1997; p. 2010. [Google Scholar]
- Van Soest, P.v.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Tian, X.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.-X.; Luo, Q.-Y.; Wang, X.; Xiao, M.-M.; Zhou, D.; Lu, Q.; Chen, X. Effect of supplementation with selenium-yeast on muscle antioxidant activity, meat quality, fatty acids and amino acids in goats. Front. Vet. Sci. 2022, 8, 813672. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lee, S.-M.; Cho, Y.-B.; Kam, D.-K.; Lee, S.-C.; Kim, C.-H.; Seo, S. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Anim. Feed Sci. Technol. 2011, 166, 269–274. [Google Scholar] [CrossRef]
- Taethaisong, N.; Paengkoum, S.; Nakharuthai, C.; Onjai-uea, N.; Thongpea, S.; Sinpru, B.; Surakhunthod, J.; Meethip, W.; Paengkoum, P. Consumption of Purple Neem Foliage Rich in Anthocyanins Improves Rumen Fermentation, Growth Performance and Plasma Antioxidant Activity in Growing Goats. Fermentation 2022, 8, 373. [Google Scholar] [CrossRef]
- Nur Atikah, I.; Alimon, A.; Yaakub, H.; Abdullah, N.; Jahromi, M.; Ivan, M.; Samsudin, A. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet. Res. 2018, 14, 344. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules 2012, 17, 4604–4611. [Google Scholar] [CrossRef]
- Thakur, M.; Hurburgh, C.R. Quality of US soybean meal compared to the quality of soybean meal from other origins. J. Am. Oil Chem. Soc. 2007, 84, 835–843. [Google Scholar] [CrossRef]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Mahala, A.G.; Elseed, A. Chemical composition and in vitro gas production characteristics of six fodder trees leaves and seeds. Res. J. Agric. Biol. Sci. 2007, 3, 983–986. [Google Scholar]
- Henry, D.; Ruiz-Moreno, M.; Ciriaco, F.; Kohmann, M.; Mercadante, V.; Lamb, G.; DiLorenzo, N. Effects of chitosan on nutrient digestibility, methane emissions, and in vitro fermentation in beef cattle. J. Anim. Sci. 2015, 93, 3539–3550. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, L.; Ding, N.; Yang, K.; Xin, Z.; Hu, M.; Zhou, Z.; Zhao, Z.; Deng, B.; Deng, J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front. Microbiol. 2022, 13, 1044986. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Kikuchi, A.; Masuda, H.; Miyahara, R.; Hiruma, Y.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 2018, 8, 1461. [Google Scholar] [CrossRef]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 2016, 92, fiv160. [Google Scholar] [CrossRef] [PubMed]
- Wencelova, M.; Varadyova, Z.; Mihalikova, K.; Kisidayova, S.; Jalc, D. Evaluating the effects of chitosan, plant oils, and different diets on rumen metabolism and protozoan population in sheep. Turk. J. Vet. Anim. Sci. 2014, 38, 26–33. [Google Scholar] [CrossRef]
- Uyanga, V.A.; Ejeromedoghene, O.; Lambo, M.T.; Alowakennu, M.; Alli, Y.A.; Ere-Richard, A.A.; Min, L.; Zhao, J.; Wang, X.; Jiao, H.; et al. Chitosan and chitosan-based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J. Funct. Foods 2023, 104, 105520. [Google Scholar] [CrossRef]
- Goiri, I.; Indurain, G.; Insausti, K.; Sarries, V.; Garcia-Rodriguez, A. Ruminal biohydrogenation of unsaturated fatty acids in vitro as affected by chitosan. Anim. Feed Sci. Technol. 2010, 159, 35–40. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Renna, M.; Coppa, M.; Lussiana, C.; Le Morvan, A.; Gasco, L.; Maxin, G. Full-fat insect meals in ruminant nutrition: In vitro rumen fermentation characteristics and lipid biohydrogenation. J. Anim. Sci. Biotechnol. 2022, 13, 138. [Google Scholar] [CrossRef]
- Morgavi, D.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Giger-Reverdin, S.; Morand-Fehr, P.; Tran, G. Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest. Prod. Sci. 2003, 82, 73–79. [Google Scholar] [CrossRef]
- Machmüller, A.; Ossowski, D.; Kreuzer, M. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Anim. Feed Sci. Technol. 2000, 85, 41–60. [Google Scholar] [CrossRef]
- Yanza, Y.R.; Szumacher-Strabel, M.; Jayanegara, A.; Kasenta, A.M.; Gao, M.; Huang, H.; Patra, A.K.; Warzych, E.; Cieślak, A. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 2021, 105, 874–889. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Qazi, I.H.; Matra, M.; Wanapat, M. Role of Chitin and Chitosan in Ruminant Diets and Their Impact on Digestibility, Microbiota and Performance of Ruminants. Fermentation 2022, 8, 549. [Google Scholar] [CrossRef]
- Palmonari, A.; Stevenson, D.; Mertens, D.; Cruywagen, C.; Weimer, P. pH dynamics and bacterial community composition in the rumen of lactating dairy cows. J. Dairy Sci. 2010, 93, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Prachumchai, R.; Cherdthong, A. Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation. Animals 2023, 13, 2416. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, S.; Tudisco, R.; Balestrieri, A.; Piccolo, G.; Infascelli, F.; Cutrignelli, M.I. Fermentation characteristics of different grain legumes cultivars with the in vitro gas production technique. Ital. J. Anim. Sci. 2009, 8 (Suppl. S2), 280. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Supapong, C.; Khonkhaeng, B.; Wanapat, M.; Foiklang, S.; Milintawisamai, N.; Gunun, N.; Gunun, P.; Chanjula, P.; et al. Inclusion of yeast waste as a protein source to replace soybean meal in concentrate mixture on ruminal fermentation and gas kinetics using in vitro gas production technique. Anim. Prod. Sci. 2018, 59, 1682–1688. [Google Scholar] [CrossRef]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants—A meta-analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef]
- Mahmoudi-Abyane, M.; Alipour, D.; Moghimi, H. Effects of different sources of nitrogen on performance, relative population of rumen microorganisms, ruminal fermentation and blood parameters in male feedlotting lambs. Animal 2020, 14, 1438–1446. [Google Scholar] [CrossRef]
- Lin, M.; Schaefer, D.; Guo, W.; Ren, L.; Meng, Q. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci. 2011, 24, 471–478. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Martín-Tereso, J.; Ter Wijlen, H. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol. 2008, 145, 259–270. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G.; Takiya, C.S.; Rennó, F.P. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, O.; Gülşen, N.; İnal, F.; Alataş, M.S.; İnanç, Z.S.; Ahmed, İ.; Şişman, D.; Küçük, A.E. Comparative Analysis of In Vitro Fermentation Parameters in Total Mixed Rations of Dairy Cows with Varied Levels of Defatted Black Soldier Fly Larvae (Hermetia illucens) as a Substitute for Soybean Meal. Fermentation 2023, 9, 652. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.; Krizsan, S.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 2017, 100, 4409–4424. [Google Scholar] [CrossRef] [PubMed]
- Gouda, G.; Khattab, H.; Abdel-Wahhab, M.; El-Nor, S.A.; El-Sayed, H.; Kholif, S. Clay minerals as sorbents for mycotoxins in lactating goat’s diets: Intake, digestibility, blood chemistry, ruminal fermentation, milk yield and composition, and milk aflatoxin M1 content. Small Rumin. Res. 2019, 175, 15–22. [Google Scholar] [CrossRef]
- Pino, F.; Heinrichs, A. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. J. Dairy Sci. 2016, 99, 2797–2810. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Yang, W.; Dong, Q.; Yang, X.; He, D.; Zhang, P.; Dong, K.; Huang, Y. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest. Sci. 2009, 126, 239–244. [Google Scholar] [CrossRef]
- Durand, M.; Kawashima, R. Influence of minerals in rumen microbial digestion. In Digestive Physiology and Metabolism in Ruminants, Proceedings of the 5th International Symposium on Ruminant Physiology, Clermont-Ferrand, France, 3–7 September 1979; Springer: Dordrecht, The Netherlands, 1980; pp. 375–408. [Google Scholar]
- Hilal, E.Y.; Elkhairey, M.A.; Osman, A.O. The role of zinc, manganse and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 2016, 6, 304–324. [Google Scholar] [CrossRef]
- Guimaraes, O.; Jalali, S.; Wagner, J.J.; Spears, J.W.; Engle, T.E. Trace mineral source impacts rumen trace mineral metabolism and fiber digestion in steers fed a medium-quality grass hay diet. J. Anim. Sci. 2021, 99, skab220. [Google Scholar] [CrossRef]
- Bach, A.; Calsamiglia, S.; Stern, M. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M.; Barroso, F.G.; Fabrikov, D.; Sánchez-Muros, M.J. In vitro crude protein digestibility of insects: A review. Insects 2022, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Nishida, T. Optimal Inclusion Levels of Cricket and Silkworm as Alternative Ruminant Feed: A Study on Their Impacts on Rumen Fermentation and Gas Production. Sustainability 2023, 15, 1415. [Google Scholar] [CrossRef]
- Kim, D.; Mizinga, K.; Kube, J.; Friesen, K.; McLeod, K.; Harmon, D. Influence of monensin and lauric acid distillate or palm oil on in vitro fermentation kinetics and metabolites produced using forage and high concentrate substrates. Anim. Feed Sci. Technol. 2014, 189, 19–29. [Google Scholar] [CrossRef]
- Nalla, K.; Manda, N.K.; Dhillon, H.S.; Kanade, S.R.; Rokana, N.; Hess, M.; Puniya, A.K. Impact of probiotics on dairy production efficiency. Front. Microbiol. 2022, 13, 805963. [Google Scholar] [CrossRef] [PubMed]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef]
- Selenius, O.; Korpela, J.; Salminen, S.; Gallego, C.G. Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl. Food Biotechnol. 2018, 5, 163–172. [Google Scholar]
- Choi, C.-R.; Kim, E.-K.; Kim, Y.-S.; Je, J.-Y.; An, S.-H.; Lee, J.D.; Wang, J.H.; Ki, S.S.; Jeon, B.-T.; Moon, S.-H.; et al. Chitooligosaccharides decreases plasma lipid levels in healthy men. Int. J. Food Sci. Nutr. 2012, 63, 103–106. [Google Scholar] [CrossRef]
- Miltko, R.; Kowalik, B.; Michałowski, T.; Bełżecki, G. Chitin as a source of energy for rumen ciliates. J. Anim. Feed Sci. 2015, 24, 203–207. [Google Scholar] [CrossRef]
Items | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
BSF0 | BSF5 | BSF10 | BSF15 | |||
Ingredient, % DM | ||||||
Corn | 60.0 | 60.0 | 60.0 | 60.0 | ||
Soybean meal | 25.0 | 20.0 | 15.1 | 10.5 | ||
Rice bran | 7.5 | 8.9 | 10.4 | 10.0 | ||
Cassava | 3.0 | 3.0 | 3.0 | 3.0 | ||
BSF | - | 5.0 | 10.0 | 15.0 | ||
Soybean oil | 3.0 | 1.6 | - | - | ||
Limestone | 0.2 | 0.2 | 0.2 | 0.2 | ||
NaCl | 0.3 | 0.3 | 0.3 | 0.3 | ||
Premix 1 | 1.0 | 1.0 | 1.0 | 1.0 | ||
Chemical composition, % DM | ||||||
DM | 87.8 | 88.7 | 88.8 | 89.0 | 0.18 | 0.14 |
Ash | 5.0 b | 5.4 a | 5.4 a | 5.5 a | 0.07 | 0.02 |
CP | 13.3 | 13.9 | 14.2 | 14.0 | 0.16 | <0.01 |
EE | 4.0 b | 4.5 ab | 5.5 a | 5.5 a | 0.25 | <0.01 |
NDF | 44.9 a | 41.8 b | 42.5 b | 43.5 ab | 0.23 | 0.03 |
ADF | 24.4 | 23.8 | 23.9 | 23.3 | 0.11 | 0.12 |
Fatty Acids | Treatments | |||
---|---|---|---|---|
BSF0 | BSF5 | BSF10 | BSF15 | |
C10:0 | 0.02 | 0.05 | 0.05 | 0.04 |
C12:0 | 0.00 | 2.20 | 4.19 | 6.29 |
C14:0 | 0.16 | 0.12 | 0.25 | 0.29 |
C16:0 | 14.67 | 14.18 | 13.96 | 12.68 |
C18:0 | 2.32 | 1.67 | 2.16 | 1.97 |
C18:1 c9 | 21.49 | 20.78 | 20.45 | 18.60 |
C18:2 n-6 | 40.47 | 37.84 | 37.07 | 32.06 |
C18:3 n-3 | 2.85 | 2.56 | 2.42 | 2.01 |
C20:0 | 0.10 | 0.04 | 0.05 | 0.03 |
C20:1 | 0.05 | 0.04 | 0.04 | 0.03 |
C22:0 | 0.06 | 0.04 | 0.04 | 0.02 |
SFA | 17.33 | 18.30 | 20.70 | 21.32 |
UFA | 64.86 | 61.29 | 59.97 | 52.69 |
n-6 PUFA | 40.47 | 37.84 | 37.07 | 32.06 |
n-3 PUFA | 2.85 | 2.56 | 2.42 | 2.01 |
n-3 PUFA/n-6 PUFA, % | 7.04 | 6.77 | 6.53 | 6.27 |
Items | Contents |
---|---|
DM | 973.3 g/kg |
CP | 407.4 g/kg |
EE | 327.0 g/kg |
Ash | 82.8 g/kg |
CF | 57.7 g/kg |
Ca | 33.9 mg/kg |
P | 898.4 mg/kg |
Na | 61.8 mg/kg |
Cu | 9.6 mg/kg |
Se | 0.5 mg/kg |
Chitin | 0.71 g/kg |
Items | Contents |
---|---|
Indispensable amino acids | |
Arginine | 2.47 |
Histidine | 1.43 |
Isoleucine | 1.72 |
Leucine | 2.88 |
Lysine | 2.60 |
Methionine | 1.27 |
Phenylalanine | 1.69 |
Threonine | 1.68 |
Valine | 2.37 |
Dispensable amino acids | |
Alanine | 2.73 |
Aspartic acid | 3.62 |
Cysteine | 0.26 |
Glycine | 2.33 |
Glutamic acid | 5.31 |
Proline | 1.87 |
Serine | 1.65 |
Tyrosine | 2.28 |
Items | Contents |
---|---|
C10:0 | 0.11 |
C12:0 | 41.9 |
C14:0 | 6.80 |
C15:0 | 0.04 |
C16:0 | 5.17 |
C16:1 | 0.49 |
C17:0 | 0.06 |
C18:0 | 0.99 |
c9 C18:1 | 7.58 |
C18:2n-6 | 9.39 |
C18:3n-3 | 0.82 |
C20:0 | 0.02 |
C20:1 | 0.05 |
C20:5n-3 | 0.16 |
C21:0 | 0.62 |
C23:0 | 0.39 |
SFA | 56.10 |
MUFA | 8.13 |
PUFA | 10.37 |
TUFA | 18.50 |
n-6 PUFA | 9.39 |
n-3 PUFA | 0.98 |
TUFA/SFA, % | 32.98 |
n-3 PUFA/n-6 PUFA, % | 10.4 |
Items | Treatments | |||||
---|---|---|---|---|---|---|
BSF0 | BSF5 | BSF10 | BSF15 | SEM | p-Value | |
pH | ||||||
3 h | 6.96 | 6.99 | 7.14 | 7.13 | 0.15 | 0.13 |
6 h | 6.78 | 6.66 | 6.59 | 6.62 | 0.25 | 0.71 |
9 h | 6.94 | 6.93 | 7.00 | 7.01 | 0.12 | 0.63 |
12 h | 7.00 | 6.95 | 7.04 | 7.04 | 0.10 | 0.56 |
Mean | 6.92 | 6.88 | 6.94 | 6.95 | 0.11 | 0.83 |
NH3-N, mg/dL | ||||||
3 h | 0.89 b | 0.85 b | 1.11 a | 1.20 a | 0.18 | <0.01 |
6 h | 1.13 b | 1.51 a | 1.34 a | 1.01 b | 0.22 | <0.01 |
9 h | 1.51 ab | 1.64 a | 1.43 ab | 1.26 b | 0.20 | 0.01 |
12 h | 1.19 | 1.32 | 1.20 | 1.16 | 0.17 | 0.45 |
Mean | 1.18 b | 1.33 a | 1.28 ab | 1.16 b | 0.10 | 0.01 |
Items | Treatments | |||||
---|---|---|---|---|---|---|
BSF0 | BSF5 | BSF10 | BSF15 | SEM | p-Value | |
Acetic acid (mmol/L) | ||||||
3 h | 21.27 | 24.71 | 24.19 | 18.28 | 4.54 | 0.10 |
6 h | 53.00 a | 60.03 a | 52.71 a | 40.50 b | 8.62 | <0.01 |
9 h | 67.96 | 68.18 | 69.15 | 62.22 | 5.41 | 0.19 |
12 h | 72.78 | 72.97 | 74.35 | 66.23 | 5.82 | 0.13 |
Mean | 53.76 a | 56.47 a | 55.10 a | 46.81 b | 4.88 | <0.01 |
Propionic acid (mmol/L) | ||||||
3 h | 7.44 b | 10.00 a | 8.01 b | 6.00 c | 1.73 | <0.01 |
6 h | 15.68 a | 17.02 a | 15.81 a | 12.46 b | 2.22 | <0.01 |
9 h | 18.15 a | 20.47 a | 18.45 a | 15.58 b | 2.31 | <0.01 |
12 h | 19.16 ab | 20.04 a | 19.25 ab | 16.56 b | 2.69 | <0.01 |
Mean | 15.11 b | 17.38 a | 15.38 b | 12.65 c | 2.65 | <0.01 |
Butyric acid (mmol/L) | ||||||
3 h | 7.75 | 7.91 | 7.65 | 7.26 | 0.49 | 0.21 |
6 h | 9.85 b | 10.46 a | 9.18 bc | 8.78 c | 0.85 | <0.01 |
9 h | 9.23 | 9.84 | 9.24 | 8.85 | 0.79 | 0.26 |
12 h | 15.43 | 16.02 | 15.06 | 14.82 | 0.80 | 0.11 |
Mean | 10.57 ab | 11.06 a | 10.28 b | 9.93 b | 0.57 | <0.01 |
A:P | ||||||
3 h | 2.93 | 2.46 | 3.06 | 3.03 | 0.53 | 0.26 |
6 h | 3.39 | 3.56 | 3.37 | 4.00 | 0.43 | 0.78 |
9 h | 3.78 | 3.36 | 3.74 | 4.11 | 0.45 | 0.15 |
12 h | 3.80 | 3.48 | 3.75 | 4.11 | 0.46 | 0.21 |
Mean | 3.47 | 3.22 | 3.48 | 3.60 | 0.30 | 0.22 |
Total VFAs (mmol/L) | ||||||
3 h | 36.47 ab | 42.62 a | 39.85 a | 31.55 b | 6.25 | 0.02 |
6 h | 78.54 a | 87.51 a | 77.69 a | 61.73 b | 11.00 | <0.01 |
9 h | 95.35 a | 98.49 a | 96.84 a | 88.65 b | 7.14 | 0.03 |
12 h | 107.37 a | 111.04 a | 108.66 a | 97.61 b | 7.56 | 0.02 |
Mean | 79.43 a | 85.92 a | 80.76 a | 69.38 b | 6.65 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Chen, S.; Paengkoum, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Wang, Q.; Thongpea, S.; Paengkoum, P. Effects of Black Soldier Fly (Hermetia illucens L., BSF) Larvae Addition on In Vitro Fermentation Parameters of Goat Diets. Insects 2024, 15, 343. https://doi.org/10.3390/insects15050343
Lu S, Chen S, Paengkoum S, Taethaisong N, Meethip W, Surakhunthod J, Wang Q, Thongpea S, Paengkoum P. Effects of Black Soldier Fly (Hermetia illucens L., BSF) Larvae Addition on In Vitro Fermentation Parameters of Goat Diets. Insects. 2024; 15(5):343. https://doi.org/10.3390/insects15050343
Chicago/Turabian StyleLu, Shengyong, Shengchang Chen, Siwaporn Paengkoum, Nittaya Taethaisong, Weerada Meethip, Jariya Surakhunthod, Qingfeng Wang, Sorasak Thongpea, and Pramote Paengkoum. 2024. "Effects of Black Soldier Fly (Hermetia illucens L., BSF) Larvae Addition on In Vitro Fermentation Parameters of Goat Diets" Insects 15, no. 5: 343. https://doi.org/10.3390/insects15050343
APA StyleLu, S., Chen, S., Paengkoum, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Wang, Q., Thongpea, S., & Paengkoum, P. (2024). Effects of Black Soldier Fly (Hermetia illucens L., BSF) Larvae Addition on In Vitro Fermentation Parameters of Goat Diets. Insects, 15(5), 343. https://doi.org/10.3390/insects15050343