Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Records of Spodoptera exempta
2.2. Bioclimatic Variables and Crop Data
2.3. Optimize the MaxEnt Model
2.4. Model Construction and Suitable Area Classification
3. Results
3.1. Evaluation of Model Performance
3.2. Important Bioclimate Variables and Response Curve
3.3. Potential Suitable Area of Spodoptera exempta under Current Climatic Conditions
3.4. Potential Suitable Area of Spodoptera exempta under Future Climatic Conditions
3.5. Overlapping Areas of Spodoptera exempta and Global Wheat, Rice, and Maize Planting Areas
4. Discussion
4.1. Model Accuracy Assessment
4.2. Important Bioclimatic Variables Affecting the Geographic Distribution Patterns of Spodoptera exempta
4.3. The Potential Suitable Areas of Spodoptera exempta in the World under Current and Future Climatic Conditions
4.4. Prevention and Control Measures of Spodoptera exempta
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fox, D.K.J. Migrant Lepidoptera in New Zealand 1974–1975. N. Z. Entomol. 1976, 6, 199–200. [Google Scholar] [CrossRef]
- Haggis, M.J. Distribution of the African armyworm, Spodoptera exempta (walker) (Lepidoptera: Noctuidae), and the frequency of larval outbreaks in Africa and Arabia. Bull. Entomol. Res. 2009, 76, 151–170. [Google Scholar] [CrossRef]
- Yoshimatsu, S.; Uesato, T.; Ibusuki, H.; Yuda, T. First recognition of the damage of crops by Spodoptera exempta (Walker) (Noctuidae) and the records of the adult moth until now in Japan. Jpn. Heterocerists’ J. 2011, 260, 243–245. (In Japanese) [Google Scholar]
- EPPO. EPPO Global Database 2022. Available online: https://gd.eppo.int/ (accessed on 21 November 2022).
- Odindo, M.O. Epizootiological observations on a nuclear polyhedrosis of the African armyworm Spodoptera exempta (Walk). Int. J. Trop. Insect Sci. 1983, 4, 291–298. [Google Scholar] [CrossRef]
- Cheke, R.; Tucker, M. An evaluation of potential economic returns from the strategic control approach to the management of African armyworm Spodoptera exempta (Lepidoptera: Noctuidae) populations in eastern Africa. Crop Prot. 1995, 14, 91–103. [Google Scholar] [CrossRef]
- Gómez-Undiano, I.; Musavi, F.; Mushobozi, W.L.; David, G.M.; Day, R.; Early, R.; Wilson, K. Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models. Sci. Rep. 2022, 12, 16234. [Google Scholar] [CrossRef]
- Tanzubil, P.B.; McCaffery, A.R. Effects of Azadirachtin on reproduction in the African armyworm (Spodoptera exempta). Entomol. Exp. Appl. 1990, 57, 115–121. [Google Scholar] [CrossRef]
- Seebens, H.; Essl, F.; Blasius, B. The intermediate distance hypothesis of biological invasions. Ecol. Lett. 2017, 20, 158–165. [Google Scholar] [CrossRef]
- Kumar, S.; Neven, L.G.; Yee, W.L. Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 2014, 5, 1–23. [Google Scholar] [CrossRef]
- Dormann, C.F.; Schymanski, S.J.; Cabral, J.; Chuine, I.; Graham, C.; Hartig, F.; Kearney, M.; Morin, X.; Römermann, C.; Schröder, B.; et al. Correlation and process in species distribution models: Bridging a dichotomy. J. Biogeogr. 2012, 39, 2119–2131. [Google Scholar] [CrossRef]
- Santana, P.A.; Kumar, L.; Silva, R.S.D.; Picanço, M.C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 2019, 92, 1373–1385. [Google Scholar] [CrossRef]
- Ceia-Hasse, A.; Sinervo, B.; Vicente, L.; Pereira, H.M. Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 2014, 37, 679–688. [Google Scholar] [CrossRef]
- Tourinho, L.; Sinervo, B.; Caetano, G.H.O.C.; Vale, M.M. A less data demanding ecophysiological niche modeling approach for mammals with comparison to conventional correlative niche modeling. Ecol. Model. 2021, 457, 109687. [Google Scholar] [CrossRef]
- Phillips, S.J. A Brief Tutorial on Maxent. Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History. Lessons Conserv. 2009, 3, 108–135. [Google Scholar]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Mousazade, M.; Ghanbarian, G.; Pourghasemi, H.R.; Safaeian, R.; Cerdà, A. Maxent Data Mining Technique and Its Comparison with a Bivariate Statistical Model for Predicting the Potential Distribution of Astragalus fasciculifolius Boiss. in Fars, Iran. Sustainability 2019, 11, 3452. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Guardia, S.M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Wu, T.W.; Lu, Y.X.; Fang, Y.J.; Xin, X.G.; Li, L.; Li, W.P.; Jie, W.H.; Zhang, J.; Liu, Y.M.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Chang. Res. 2019, 15, 519–525. [Google Scholar]
- Qiao, H.J.; Soberón, J.; Peterson, A.T. No silver bullets in correlative ecological niche modeling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Zhu, G.P.; Redei, D.; Kment, P.; Bu, W.J. Effect of geographic background and equilibrium state on niche model transferability: Predicting areas of invasion of Leptoglossus occidentalis. Biol. Invasions 2014, 16, 1069–1081. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Information Theory, 2nd ed.; Akademia Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Zhu, G.P.; Qiao, H.J. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Wang, X.F.; Duan, Y.X.; Jin, L.L.; Wang, C.Y.; Peng, M.C.; Li, Y.; Wang, X.H.; Ma, Y.F. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 6590–6604. [Google Scholar]
- Guo, Y.L.; Zhao, Z.F.; Qiao, H.J.; Wang, R.; Wei, H.Y.; Wang, L.K.; Gu, W.; Li, X. Challenges and Development Trend of Species Distribution Model. Adv. Earth Sci. 2020, 35, 1292–1305. [Google Scholar]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.C.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Grünig, M.; Calanca, P.; Mazzi, D.; Pellissier, L. Inflection point in climatic suitability of insect pest species in Europe suggests non-linear responses to climate change. Glob. Chang. Biol. 2020, 26, 6338–6349. [Google Scholar] [CrossRef]
- Aguilon, D.J.; Medina, C.; Velasco, L. Effects of Larval Rearing Temperature and Host Plant Condition on the Development, Survival, and Coloration of African Armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). J. Environ. Sci. Manag. 2015, 18, 54–60. [Google Scholar] [CrossRef]
- Rose, D.; Rainey, R.C. The signifcance of low-density populations of the African armyworm Spodoptera exempta (Walk.). Philos. Trans. R. Soc. B Biol. Sci. 1979, 287, 393–402. [Google Scholar]
- Wilson, K.; Gatehouse, A. Seasonal and geographical variation in the migratory potential of outbreak populations of the African armyworm moth, Spodoptera exempta. J. Anim. Ecol. 1993, 62, 169–181. [Google Scholar] [CrossRef]
- Harvey, A.; Mallya, G. Predicting the severity of Spodoptera exempta (Lepidoptera: Noctuidae) outbreak seasons in Tanzania. Bull. Entomol. Res. 1995, 85, 479–487. [Google Scholar] [CrossRef]
- Grzywacz, D.; Mushobozi, W.L.; Parnell, M.; Jolliffe, F.; Wilson, K. Evaluation of Spodoptera exempta nucleopolyhedrovirus (SpexNPV) for the field control of African armyworm (Spodoptera exempta) in Tanzania. Crop Prot. 2008, 27, 17–24. [Google Scholar] [CrossRef]
- David, W.A.L.; Taylor, E.S.G. Rearing Spodoptera exempta on semi-synthetic diets and on growing maize. Entomol. Exp. Appl. 1975, 18, 226–237. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- CABI. Spodoptera exempta (Black Armyworm); CABI Compendium: Wallingford, UK, 2022. [Google Scholar]
- Rose, D.J.W.; Dewhurst, C.F.; Page, W.W. The bionomics of the African armyworm Spodoptera exempta in relation to its status as a migrant pest. Integr. Pest Manag. Rev. 1995, 1, 49–64. [Google Scholar] [CrossRef]
- Rose, D.J.W.; Dewhurst, C.F.; Page, W.W. The African Armyworm Handbook, 2nd ed.; Natural Resources Institute, University of Greenwich: London, UK, 2000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Jin, Z.; Qi, Y.; Zhao, H.; Yang, N.; Guo, J.; Chen, B.; Xian, X.; Liu, W. Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change. Insects 2024, 15, 348. https://doi.org/10.3390/insects15050348
Li M, Jin Z, Qi Y, Zhao H, Yang N, Guo J, Chen B, Xian X, Liu W. Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change. Insects. 2024; 15(5):348. https://doi.org/10.3390/insects15050348
Chicago/Turabian StyleLi, Ming, Zhenan Jin, Yuhan Qi, Haoxiang Zhao, Nianwan Yang, Jianyang Guo, Baoxiong Chen, Xiaoqing Xian, and Wanxue Liu. 2024. "Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change" Insects 15, no. 5: 348. https://doi.org/10.3390/insects15050348
APA StyleLi, M., Jin, Z., Qi, Y., Zhao, H., Yang, N., Guo, J., Chen, B., Xian, X., & Liu, W. (2024). Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change. Insects, 15(5), 348. https://doi.org/10.3390/insects15050348